

Choosing an Optimum Reference Receiver for 200Gbps/Lane C2M

Tobey P.-R. Li, Mau-Lin Wu

MediaTek

IEEE P802.3dj Task Force

May 2024

Outline

- Background and Introduction
- **Update to C2M Link Simulation based on COM 4.5beta3**
- **D** Reference Receiver Parameters Study
- **D** Proposed Changes to Table 176E–7

Background and Introduction

- A wide range of reference receiver parameters were used for C2M analysis
- In 802.3dj D1.0, lots of TBDs are gated by C2M IL budget
- Investigation highlights
 - C2M ILdd target: [28:2:34] dB
 - Number of Rx FFE fixed-position taps: [8:4:24]
 - Number of pre-cursor taps: [4:6]
 - Requirement of Rx FFE floating taps: [0:1] banks

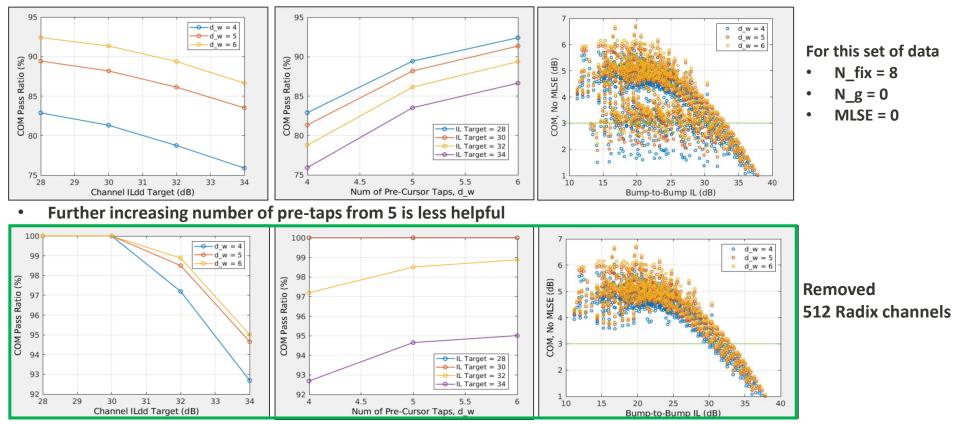
Channel Test Cases

• Channel source: Tools & Channels

C2M Channel Source	Test Cases
rabinovich_3df_01_2209	3
rabinovich_3df_02_2209	3
rabinovich_3dj_02_230116	1
rabinovich_3dj_03_230116	1
shanbhag_3dj_03_2305	6
akinwale_3dj_02_2307	28
akinwale_3dj_03_2307	27
akinwale_3dj_04_2307	28
lim_3dj_01_230629	1
lim_3dj_02_230629	1
weaver_3dj_elec_02_230831	32
lim_3dj_06_2309	1
gore_3dj_elec_02_231026	18
kareti_3dj_elec_02_240111	60
Total	210

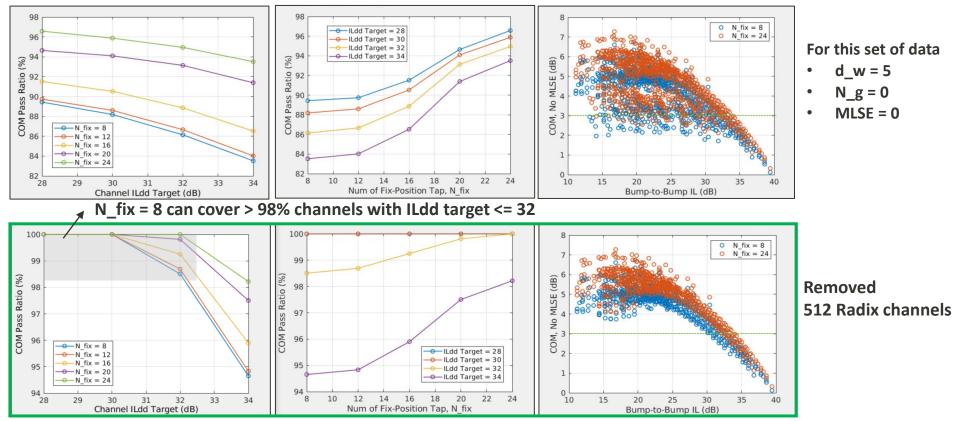
- Host package model follows 802.3dj D1.0 Table 179–15
- Module package uses Class A model except z_p(1) = 8 and z_p(2) = 0 for both Test 1 and Test 2

Parameter	Symbol	Value	Units
Device model Single-ended device capacitance for stage 1 Single-ended device capacitance for stage 2 Single-ended device capacitance for stage 3 Single-ended device series inductance for stage 1 Single-ended device series inductance for stage 2 Single-ended device series inductance for stage 3 Single-ended device series inductance for stage 3 Single-ended device series inductance for stage 3	$\begin{array}{c} C_{d}^{(1)} \\ C_{d}^{(2)} \\ C_{d}^{(3)} \\ L_{s}^{(1)} \\ L_{s}^{(2)} \\ L_{s}^{(3)} \\ C_{b} \end{array}$	$\begin{array}{c} 40 \times 10^{-6} \\ 90 \times 10^{-6} \\ 110 \times 10^{-6} \\ 0.13 \\ 0.15 \\ 0.14 \\ 30 \times 10^{-6} \end{array}$	타 타 타 태 태 태 태 태 태 태 태 태 태 태 태 태 태 태 태 태
Class A package model Transmission line parameter γ_0 Transmission line parameter a_1 Transmission line parameter a_2 Transmission line parameter a_2 Transmission line 1 length, Test 1 Transmission line 1 length, Test 2 Transmission line 1 characteristic impedance Transmission line 2 length Transmission line 2 characteristic impedance Single-ended package capacitance at package-to-board interface	$\begin{array}{c} \gamma_{0} \\ a_{1} \\ a_{2} \\ \tau \\ z_{p}(1) \\ z_{c}^{p}(1) \\ z_{c}^{c}(2) \\ z_{c}^{c}(2) \\ Z_{c}^{c} \\ Z_{c} \\ C_{p} \end{array}$	5×10^{-4} 8.9 × 10^{-4} 2 × 10^{-4} 6.141 × 10^{-4} 33 12 87.5 1.8 92.5 40 × 10^{-6}	1/mm ns ^{1/2} /mm 6.141e - μμμ mm Ω mm Ω nF
Class B package model Transmission line parameter γ_0 Transmission line parameter a_1 Transmission line parameter a_2 Transmission line 1 length, Test 1, Tx / Rx Transmission line 1 length, Test 2, Tx / Rx Transmission line 1 characteristic impedance Transmission line 2 length Transmission line 2 length Transmission line 3 characteristic impedance Transmission line 3 characteristic impedance Transmission line 4 length Transmission line 4 length Transmission line 4 characteristic impedance Single-ended package capacitance at package-to-board interface	$\begin{array}{c} \gamma_{0} \\ a_{1} \\ a_{2} \\ \tau \\ r_{p} \\ r_{p} \\ c_{1} \\ c_{2} \\ c_{2} \\ c_{3} \\ c_{2} \\ c_{3} \\ c_{2} \\ c_{3} \\ c_{2} \\ c_{3} \\ c_{2} \\ c_{$	$\begin{array}{c} 5\times10^{-4}\\ 6.5\times10^{-4}\\ 2.93\times10^{-4}\\ 6.1+1+30-\\ 45/44\\ 30/29\\ 87.5\\ 2\\ 95\\ 1.3\\ 100\\ 1.5\\ 78\\ 40\times10^{-6}\end{array}$	$\frac{1/mm}{ns^{1/2}/mm}$ 6.141e mm Ω mm Ω mm Ω mm Ω nm Ω nm Ω


COM Configuration

• Simulator: COM 4.5beta3

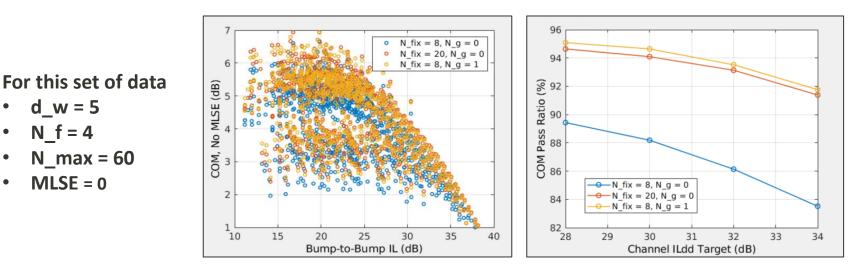
Table 93A-1 parameters				 I/O control			Operational		
Parameter	Setting	Units	Information	DIAGNOSTICS	0	logical	ERL Pass threshold	10	dB
f_b	106.25	GBd		DISPLAY_WINDOW	0	logical	COM Pass threshold	3	db
f_min	0.05	GHz		CSV_REPORT	0	logical	DER_0	2.00E-05	
Delta_f	0.01	GHz		RESULT_DIR	<pre>\results\CRKR_{date}\</pre>		T_r	0.004	ns
C_d	[0.4e-4 0.9e-4 1.1e-4;0.4e-4 0.9e-4 1.1e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical	FORCE_TR	1	logical
L_s	[0.13 0.15 0.14; 0.13 0.15 0.14]	nH	[TX RX]	 Port Order	[1324]		PMD_type	C2C	
C_b	[0.3e-4 0.3e-4]	nF	[TX RX]	RUNTAG	KR_set1_eval_		EW	1	
R_0	50	Ohm		COM_CONTRIBUTION	1	logical	MLSE	0	logical
R_d	[46.25 46.25]	Ohm	[TX RX]				ts_anchor	1	
PKG_NAME	PKG_LowR_CLASSA PKG_Module		TX RX	TDR and ERL options			sample_adjustment	[-16 16]	
A_v	0.413	V		TDR	1	logical	Local Search	0	
A_fe	0.413	V		ERL	1	logical	Filter: Rx FFE		
A_ne	0.608	V		ERL_ONLY	0	ns	ffe_pre_tap_len	5	UI
z_p select	[12]			TR_TDR	0.01		ffe_post_tap_len	12	UI
L	4			N	4000	logical	ffe_pre_tap1_max	1	
M	32			TDR_Butterworth	1		ffe_post_tap1_max	1	
filter and Eq				beta_x	0		ffe_tapn_max	1	
f_r	0.58	*fb		rho_x	0.618		FFE_OPT_METHOD	MMSE	
c(0)	0.5		min	TDR_W_TXPKG	0	UI	num_ui_RXFF_noise	4096	
c(-1)	[-0.34:0.02:0]		[min:step:max]	N_bx	0		Floating Tap Control		
c(-2)	[0:0.02:0.12]		[min:step:max]	fixture delay time	[00]		N_bg	0	0 1 2 or 3 groups
c(-3)	0		[min:step:max]	Tukey_Window	1		N_bf	4	taps per group
c(1)	[-0.2:0.02:0]		[min:step:max]	Noise, jitter		UI	N_f	60	UI span for floating taps
N_b	1	UI		sigma_RJ	0.01	UI	bmaxg	1	max DFE value for floating taps
b_max(1)	0.75		As/dffe1	A_DD	0.02	V^2/GHz	B_float_RSS_MAX	1	rss tail tap limit
b_max(2N_b)	0		As/dfe2N_b	eta_0	1.25E-08	dB	N_tail_start	11	(UI) start of tail taps limit
b_min(1)	0		As/dffe1	SNR_TX	33		RXFFE FLOAT CTL	FOM	
b_min(2N_b)	0	S	As/dfe2N_b	R_LM	0.95				
g_DC	0	dB	[min:step:max]						
f_z	42.5	GHz							
f_p1	42.5	GHz							
f_p2	106.25	GHz							
g_DC_HP	[-6:1:0]		[min:step:max]						
f_HP_PZ	1.328125	GHz							
Butterworth	1	logical	include in fr						


* Was 0.45 in <u>lit_3dj_01a_2403</u>

COM vs RX FFE Pre-Tap Length

* Pass criteria: COM >= 3dB & Channel bump-to-bump IL <= ILdd target

COM vs RX FFE Fixed-Tap Length

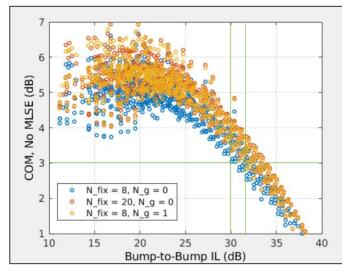

* Pass criteria: COM >= 3dB & Channel bump-to-bump IL <= ILdd target

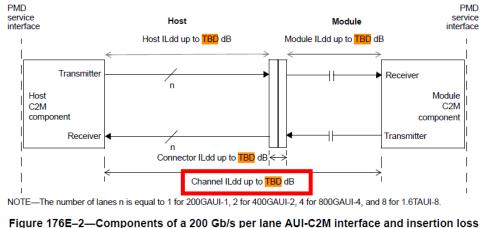
COM with Floating-Tap Enabled

d w = 5N f = 4

MLSE = 0

Floating taps can provide higher flexibility and can use a fewer taps to achieve • comparable performance than using fixed taps only




* Pass criteria: COM >= 3dB & Channel bump-to-bump IL <= ILdd target

8

Choosing An Optimum Reference Receiver

	d_w	N_fix	N_g*N_f	N_max	MLSE	EQ Power	Associated CH ILdd Budget
FFE Fixed Tap Only	5	8	0	-	0	Low	<= 30 dB
FFE Fixed Tap Only	5	20	0	-	0	High	<= 32 dB
FFE Fixed Taps + Floating Taps	5	8	1*4	60	0	Med	<= 32 dB

ire 176E–2—Components of a 200 Gb/s per lane AUI-C2M interface and insertion loss budget at 53.125 GHz

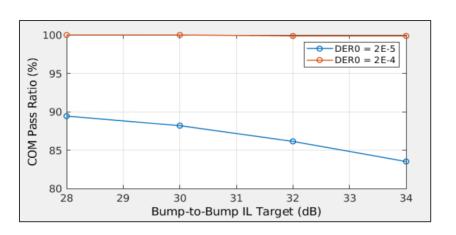
Removed 512 Radix channels

Proposal

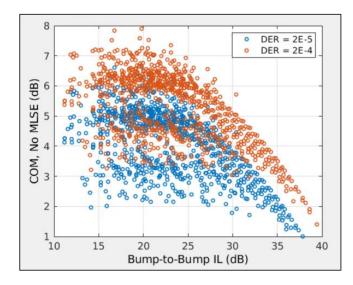
• Proposed COM parameter values to Table 176E–7

Parameter	Symbol	Value	Units	
Signaling rate	f _b	106.25	GBd	
Maximum start frequency	f_{\min}	0.05	GHz	
Maximum frequency step	Δf	0.01	GHz	
Device model TBD	Same with Table 179–15			
Package model	(Host side)			
твр	TBD	TBD		
Single-ended reference resistance	R ₀	<mark>50</mark>	Ω	
Single-ended transmitter termination resistance	$R_d^{(t)}$	TBD	Ω	

Parameter	Symbol	Value	Units
Number of samples per unit interval	М	<mark>32</mark>	—
Receiver discrete-time equalizer parameters Number of pre-cursor taps Number of fixed-position taps Number of floating tap groups Number of taps per floating tap group Highest allowed tap index Normalized upper limit on feed-forward coefficient w(j) Normalized lower limit on feed-forward coefficient w(j) Number of feedback taps Normalized upper limit on feedback coefficient b(j) Normalized lower limit on feedback coefficient b(j)	$\begin{array}{c} d_w \\ N_{fix} \\ N_g \\ N_f \\ N_{max}(j) \\ w_{min}(j) \\ N_b \\ b_{max}(j) \\ b_{min}(j) \end{array}$	58 4 60 TBD 7BD 0.75 0	
Target detector error ratio	DER ₀	2 × 10 ⁻⁵	—


Parameter	Symbol	Value	Units
Single-ended receiver termination resistance	$R_d^{(r)}$	TBD	Ω
Receiver 3 dB bandwidth	f _r	0.58*fb ^	62GHz
Transmitter equalizer, coefficient –3 Minimum value Maximum value Step size	c(-3)	TBD	_
Transmitter equalizer, coefficient –2 Minimum value Maximum value Step size	c(-2)	<mark>0:0.02:0.</mark> :	<mark>12</mark> —
Transmitter equalizer, coefficient –1 Minimum value Maximum value Step size	c(-1)	-0.34:0.0	<mark>2:0</mark> —
Transmitter equalizer, coefficient 0 Minimum value	<i>c</i> (0)	<mark>0.5</mark>	-
Transmitter equalizer, coefficient 1 Minimum value Maximum value Step size	c(1)	-0.2:0.02	:0 —
Continuous time filter, gain 1 Minimum value Maximum value Step size	<i>g</i> 1	TBD	dB dB dB
Continuous time filter, gain 2 Minimum value Maximum value Step size	82	<mark>-6:1:0</mark>	dB dB dB
Continuous time filter, zero 1 frequency for $g_1=0$ Continuous time filter, zero 1 frequency for $g_2=0$	$f_{z1} \\ f_{z2}$	fb/2.5 fb/80	GHz GHz
Continuous time filter, pole 1 frequency Continuous time filter, pole 2 frequency Continuous time filter, pole 3 frequency	f_{p1} f_{p2} f_{p3}	fb/2.5 fb fb/80	GHz GHz GHz
Transmitter differential peak output voltage Victim Far-end aggressor Near-end aggressor	$egin{array}{c} A_v \ A_{fe} \ A_{ns} \end{array}$	0.413 0.413 0.608	V V V
Transmitter transition time	T _r	<mark>0.004</mark>	ns
Number of signal levels	L	4	-
One-sided noise spectral density	η ₀	1.25E-8	V ² /GHz
Transmitter signal-to-noise ratio	SNR _{TX}	33	dB
Random jitter, RMS	σ_{RJ}	TBD	UI
Dual-Dirac jitter, peak	A_{DD}	TBD	UI
Level separation mismatch ratio	R _{LM}	0.95	—

10



COM vs DER0

- For this set of data, d_w = 5, N_fix = 8, N_g = 0, and MLSE = 0
- All the channels can comfortably exceed COM of 3dB with FEC termination (DER0 = 2E-4)

* Pass criteria: COM >= 3dB & Channel bump-to-bump IL <= ILdd target

Thank you Questions and Discussions