PMA with RS-FEC symbol multiplexing test vectors

Arnon Loewenthal– Alphawave Semi

Omri Levy – Alphawave Semi

Zvi Rechtman – NVIDIA

Amir Rubin - NVIDIA

Supporters

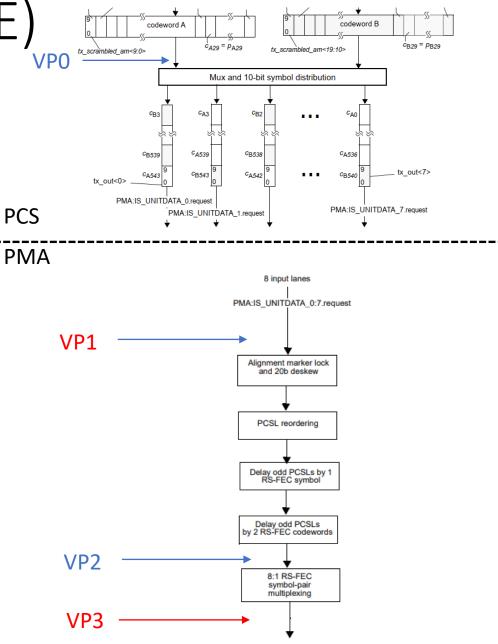
- Kechao Huang, Huawei
- Xiang He, Huawei

This presentation

- Provides PMA sublayer (CL176) interoperability test vectors
- Comment #298 was submitted by the author to include CL176 test vectors in the draft.

C/ 176	SC 176C	P 594	L 1	# 298		
Loewenth	al, Arnon	alphawave se	alphawave semi			
Comment	Туре Т	Comment Status X				
Annex	(176C "SM-PM	A test vectors" is currently emp	oty.			
Suggested	dRemedy					
		00GBASE-R 8:1, 400GBASE-F Annex 176C based on supporti	•	•		
Proposed	Response	Response Status O				

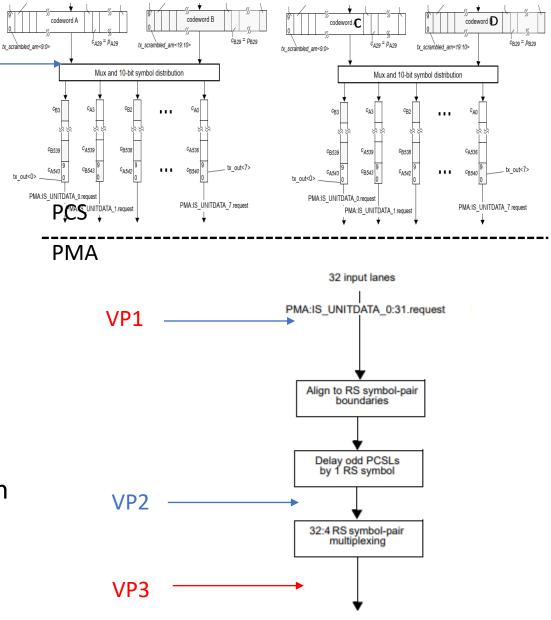
Background


- Clause 176 PMA with RS-FEC symbol muxing was adopted for 200GBASE-R, 400GBASE-R, 800GBASE-R and 1.6TBASE-R using 200G/lane AUIs or PMDs
- RS-FEC symbol muxing (<u>ran 3dj 01a 2303.pdf</u>) was adopted (<u>March 2023 Plenary, Motion #4</u>).
- 4x RS-FEC codewords interleaving for 200GE and 400GE using 200G/lane AUIs or PMDs (<u>he 3dj 02a 2307</u>) was adopted (<u>July 2023</u> <u>Interim, Motion #10</u>).

Test vectors - general

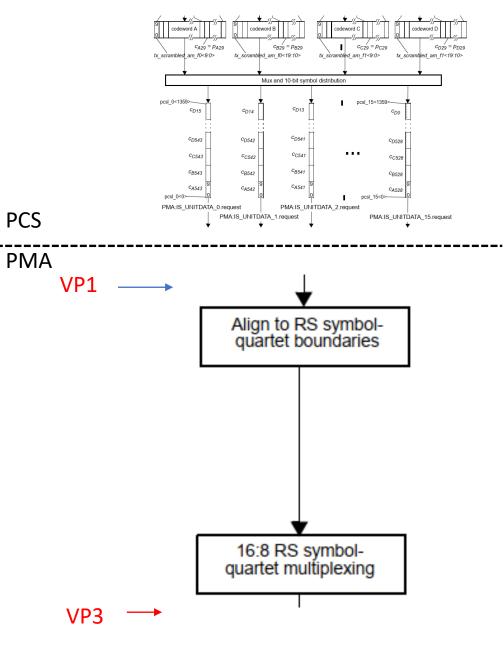
- The PMA test vectors can be used during development to check for interoperability.
- Test vectors input
 - Valid PCS data with AM which enables checking for interoperability with PCS.
 - The PCS data is with zero skew between PCS lanes, which can result from a direct connection to a PCS. This is an assumption for vectors generation, in practice other cases are also possible.
- Test vectors address following sections of CL176 (based on draft 1.0):
 - 200GBASE-R 8:1 (CL 176.5.1)
 - 400GBASE-R 16:2 (CL 176.6.1)
 - 800GBASE-R 32:4 (CL 176.7.1)
 - 1.6TBASE-R 16:8 (CL 176.8.1)
- Acronym VP (Vector Point) is used for reference points for which vectors are available.

Vector points (200GE/400GE)


- Test vectors are given for test points on the right.
 - VP1 and VP3 are required for interoperability.
 - VPO and VP2 are given as a reference for debug.
- VP0 is identical to Annex 119A extended by 2 additional CWs.
- Assumptions are same as 802.3 Annex 119A:
 - First CW has AM block.
 - Constant transmission of Idle control characters.
 - Scrambler AM padding PRBS9 generator seed: P<0:8> = 0x100.
 - AM block tx_am_sf<2:0> = {0, 0, 0}.
 - Scrambler seed S<0:57> = 0x24E6959D0FA5DBD
- 8:1 symbol-pair mux for PMA lane 'n' is done between PCS lanes {n*8, n*8+1, ..., n*8+7}.

6

Vector points (800GE)


- Test vectors are given for test points on the right.
 - VP1 and VP3 are required for interoperability.
 - VPO and VP2 are given as a reference for debug.
- VP0 is identical to Annex 172A.
- VPO assumptions are same as 802.3df Annex 172A:
 - First CW has AM block.
 - Constant transmission of Idle control characters.
 - Scrambler AM padding PRBS9 generator seed: P<0:8> = 0x100.
 - AM block tx_am_sf<2:0> = {0, 0, 0}.
 - Flow 0 scrambler seed S<0:57> = 0x24E6959D0FA5DBD
 - Flow 1 scrambler seed S<0:57> = 0x1FB58857D81624F
- 8:1 symbol-pair mux for PMA lane 'n' is done between PCS lanes {n*4, n*4+16, n*4+1, n*4+16+1 ..., n*4+3, n*4+16+3}.

VP0-

Vector points (1.6TE)

- Test vectors are given for test points on the right.
 - VP1 and VP3 are required for interoperability.
 - VP1 relies on 802.3dj draft 1.0 Annex 175A.
 - VP2 is not required since there is no odd lanes delay for 1.6T.
- 2:1 symbol-quartet mux for PMA lane 'n' is done between PCS lanes {n*2, n*2+1}.

Test vector format

- For all VPs except VP0 transmission order inside a line is from left to right top to bottom. ٠
- For VPO bits ordering is same as in Annex119A. Inside a 10b symbol bits are transmitted from LSB to MSB, and 10b symbols are ٠ transmitted from left to right.
- VP0: ٠
 - Same as defined in Annex 119A (hex stream with 320 bits / 80 hex per line) ٠
 - Separate files for codeword A and codeword B (2 codewords per file, 34 lines) ٠

1st symbol

A6\$\AA6A9A64992649921486284BD26519565D946D5B56D5B57D936ED8B6CF7EFA842EDE6024F1DB

\$\$156BC9A159A5EDB273FD0CCBB63B810BD2EA92401C8F6204458108BF4D44C2D1675209D8331CC8

- VP1-2: •
 - 2nd symbol Text file per PMA output lane. ٠
 - Each line is 80 bits, binary form, belongs to each input PCS lane. ٠
 - X is used for don't care, caused by adding delay on odd lanes. ٠

	Port	input lane 0	input lane 1	input lane 2	input lane 3	input lane 4	input lane 5	input lane 6	input lane 7
200GE	PMA lane 0	PCS lane 0	PCS lane 1	PCS lane 2	PCS lane 3	PCS lane 4	PCS lane 5	PCS lane 6	PCS lane 7
400GE	PMA lane 0	PCS lane 0	PCS lane 1	PCS lane 2	PCS lane 3	PCS lane 4	PCS lane 5	PCS lane 6	PCS lane 7
	PMA lane 1	PCS lane 8	PCS lane 9	PCS lane 10	PCS lane 11	PCS lane 12	PCS lane 13	PCS lane 14	PCS lane 15
800GE	PMA lane 0	PCS_lane0	PCS_lane16	PCS_lane1	PCS_lane17	PCS_lane2	PCS_lane18	PCS_lane3	PCS_lane19
	PMA lane 1	PCS_lane4	PCS_lane20	PCS_lane5	PCS_lane21	PCS_lane6	PCS_lane22	PCS_lane7	PCS_lane23
	PMA lane 2	PCS_lane8	PCS_lane24	PCS_lane9	PCS_lane25	PCS_lane10	PCS_lane26	PCS_lane11	PCS_lane27
	PMA lane 3	PCS_lane12	PCS_lane28	PCS_lane13	PCS_lane29	PCS_lane14	PCS_lane30	PCS_lane15	PCS_lane31
	PMA lane 0	PCS lane 0	PCS lane 1						
	PMA lane 1	PCS lane 2	PCS lane 3						
1.6TE	PMA lane 2	PCS lane 4	PCS lane 5						
	PMA lane 3	PCS lane 6	PCS lane 7						
	PMA lane 4	PCS lane 8	PCS lane 9						
	PMA lane 5	PCS lane 10	PCS lane 11						
	PMA lane 6	PCS lane 12	PCS lane 13						
	PMA lane 7	PCS lane 14	PCS lane 15						

first

01011001010010010010010010000001010011010	Input lane 0
010110010101001001100100001000001010011010	Input lane 1
01011001010100100110010001100010100011010	Input lane 2
01011001010100100110010001011010100011010	
010110010101001001100100100001111010011010	
0101100101001001001100100010011111010011010	
010110010100100100110010010111100100011010	
0101100101001001001100100010010010011010	Input lane 7
001100011001010000110010111110011001110000	Input lane 0
011111100001100110100101100001001000000	-
	last

Test vector format

• VP3

- Text file per PMA lane
- Each line is 160 bits
- X is used for don't care, caused by adding delay on odd lanes.

Test vectors folder content

The test vectors is divided into 4 folders, each contains files as listed below.

- 200GBASE-R 8:1
 - vp0_cws_[a..b].txt
 - vp1_lane0.txt
 - vp2_lane0.txt
 - vp3_lane0.txt
- 400GBASE-R 16:2
 - vp0_cws_[a..b].txt
 - vp1_lane[0..1].txt
 - vp2_lane[0..1].txt
 - vp3_lane[0..1].txt

- 800GBASE-R 32:4
 - vp0_cws_[a..d].txt
 - vp1_lane[0..3].txt
 - vp2_lane[0..3].txt
 - vp3_lane[0..3].txt
- 1.6TBASE-R 16:8
 - vp1_lane[0..7].txt
 - vp3_lane[0..7].txt

Summary

- 200G per lane PMA (CL176) interoperability test vectors are proposed.
- Proposed test vectors:

https://www.ieee802.org/3/dj/public/24_05/loewenthal_3dj_02_2405