Background for ER1 PTP Accuracy Issue
(Comment #108)

David Ofelt — Juniper Networks
2024-04 802.3dj Interim

Non-Juniper

Contributers

e Gary Nicholl - Cisco

* John D’Ambrosia - Futurewei
* David Law - HPE

* Ulf Parkholm - Ericsson

Non-Juniper

Introduction

* High accuracy timing is an important feature for many networks

* Achievable accuracy can be limited by architectural issues
* Even with perfect architecture- you need a very careful implementation

* The standard may define behaviors that make higher accuracy more difficult
* Implementations will need to avoid these if timing accuracy matters

* The current S00GBASE-ER1 baseline has an architectural option that limits timing
accuracy in common system configurations
* Another presentation proposes changes to the baseline to fix this (sluyski_3dj_01_2405)
* This presentation attempts to give background on what the issue is

Goal

Host A Host B

* Two hosts

* Both have clocks
* assume clocks are counting at the exact same rate
* clocks don’t indicate the same time of day

* Goalisto synchronize the two clocks so that both read the exact same time
* Until this happens, we can’t compare timestamps between the two hosts
* time deltas calculated using the same clock can be exchanged

How? (very simplified)

DelayAtoB

>
>

Host A Host B

* Measure one way delay between the two hosts
* Set ClockB to be (ClockA + DelayAtoB)

* Acansend B a message and B can update its clock

H OW? Host A RoundTripDelay

Host B

ClockB

TimeSpentinB

HostA

* Measure one way delay between the two hosts

* Can’tactually calculate that, but can estimate with:
DelayAtoB = (RoundTripDelay - TimeSpentInB) / 2
DelayAtoB = ((ts—t1) - (ts— t5)) / 2
* Assumes media is symmetric (hard assumption to avoid in many cases)

* Assumes we are measuring from the MDI to the MDI
This is hard to do- more detail on subsequent slides

* The clocks on the two hosts can’t be compared, but differences in time can be used
* The one-way delay estimate only uses time deltas calculated using the local clock

Non-Juniper

t

4

\
/

t3

Timestamp Detalls

* TX side timestamps
* these go in the packet
* need to have a MAC to edit packet data
* need to have an unencrypted packet (can be encrypted later)

* RX side timestamps

* these are out-of-band with the packet
e can’t be sent over the wire

Realistic Implementation Details

time inserted into
packet\somewhere in the tx path

* Can’t measure at the MDI, so we need to measure \ . tx delay="? |
from within the chip and account for any error

between that point and the MDI.

SERDES TX
* Iftx/rx delay are constant

* MDIlis effectively at the timestamp point

* If tx/rx delays are not constant
* Equivalent to media randomly changing length

SERDES RX

* Implementation techniques and clause 90 allow
designs to adjust for both static and dynamic delays

. /
received packet
timestamped somewhere in the receive path

Non-Juniper

AM insertion picture showing dynamic error

1 50ns |

[gl
tx=150 tx=100

Pkt2 \ Pkt1

MAC TX PCS TX

L M
SERDES TX >
/ » latency =L+75

Pkt2 / Pkt1 I » latency = L]

tx=150 AM tx=100

25ns |
gl

e At timestamp point, pkt2 was 50ns behind pkt1,

but at receive timestamp point, itis 75ns.

AM insertion picture showing adjustment

SERDES TX

‘M

» latency =L+75

Clause90 and other implementation techniques can
pre-adjust for the AM insertion (or idle insert/delete)

» latency =L]

Now at the timestamp point, the timestamp in
pkt2 reflects the actual delay

10

Extender Sublayer

* Extender Sublayer is two PCSs separated by an Ml

* Standard is written to delete and then re-add alignment markers
* Assuming the PCSs on either side use them

* Implementations are not required to do this, can leave them in across the Ml
in between the two PCSs in the XS
* 400ZR Implementation Agreement takes this approach

* Timestamp adjustments in an XS are tricky
* XS doesn’t have a MAC so can’t edit packets
* No other channel to pass information

11

ER1 Problem

AUI ER1 AUI

/ \
/

\

Bitstream has AMs Bitstream no AMs Bitstream has AMs

ER1 encoding doesn’t contain AMs
* payload bitrate is lower than AUl rate

If ER1 has AUI & XS (hormal module case)
* AMs are deleted when going from AUI->ER1
* AMs are re-inserted at arbitrary point when going from ER1->AUI

No guarantee that AMs are re-inserted where they were deleted
* This changes in the relationship of packets with each other messes with timing

No tools available to correct for this

Non-Juniper

ER1 fix

* Two easy fixes
* Can just map the AMs along with the rest of the bitstream
* Canremember where the AMs are deleted and then re-insert them exactly in the same

spot
* These are functionally equivalent

* The second one is believed to be an easier change and is backward compatible with the
current baseline.

* Proposalin sluyski_3dj_01_2405

13

Summary

* The current SO0GBASE-ER1 baseline has an issue that limits timing accuracy

* The changes proposed in sluyski_3dj_01_2405 bring the timing accuracy for
ER1 in line with the rest of the PMDs defined in 802.3dj

14

Non-Juniper

