SM-PMA test vectors – fix for 800G

Arnon Loewenthal– Alphawave Semi Omri Levy – Alphawave Semi Zvi Rechtman – NVIDIA Amir Rubin - NVIDIA

Supporters

- Kechao Huang, Huawei
- Xiang He, Huawei
- Adee Ran, Cisco
- Kapil Shrikhande, Marvell

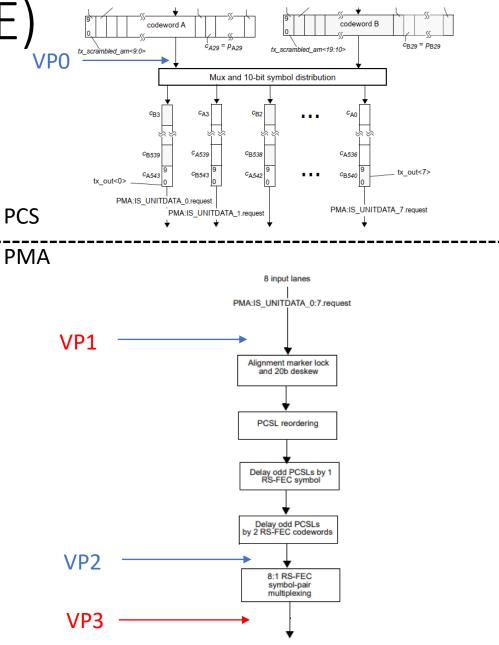
Received feedback

- Lenin Patra, Marvell
- Hailan Zhu, Broadcom
- Eugene Opsasnick, Broadcom

This presentation

- Two issues where found in CL176 test vectors as presented in 2024 May interim (<u>loewenthal 3dj 01a 2405</u>):
 - For 1.6T vp2 was part of the vector files although it should not exist.
 - For 800G vp1 and vp2 files had less bits than required (5120b instead of 5440b).
- First issue is fixed by removing 1.6T vp2 files.
- Second issue root cause is that required number of bits don't divide 80 which is the line length that was used. Fix is to move to 40b lines for vp1 and vp2.
- Comment #298 was submitted by the author to include CL176 test vectors in the draft.

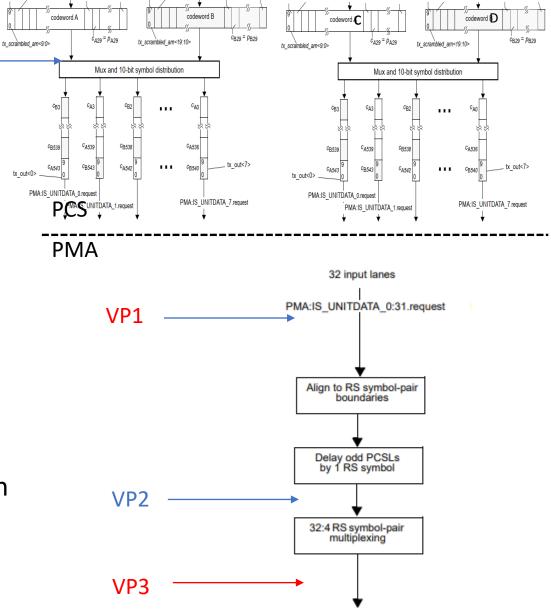
Background


- Clause 176 PMA with RS-FEC symbol muxing was adopted for 200GBASE-R, 400GBASE-R, 800GBASE-R and 1.6TBASE-R using 200G/lane AUIs or PMDs
- RS-FEC symbol muxing (<u>ran 3dj 01a 2303.pdf</u>) was adopted (<u>March 2023 Plenary, Motion #4</u>).
- 4x RS-FEC codewords interleaving for 200GE and 400GE using 200G/lane AUIs or PMDs (<u>he 3dj 02a 2307</u>) was adopted (<u>July 2023</u> <u>Interim, Motion #10</u>).

Test vectors - general

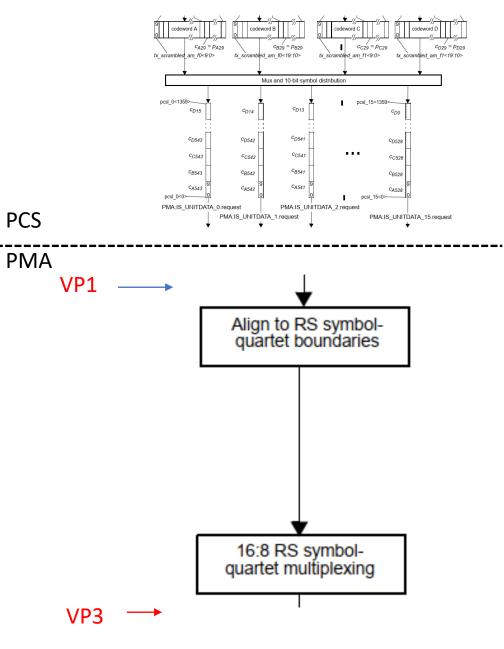
- The PMA test vectors can be used during development to check for interoperability.
- Test vectors input
 - Valid PCS data with AM which enables checking for interoperability with PCS.
 - The PCS data is with zero skew between PCS lanes, which can result from a direct connection to a PCS. This is an assumption for vectors generation, in practice other cases are also possible.
- Test vectors address following sections of CL176 (based on draft 1.0):
 - 200GBASE-R 8:1 (CL 176.5.1)
 - 400GBASE-R 16:2 (CL 176.6.1)
 - 800GBASE-R 32:4 (CL 176.7.1)
 - 1.6TBASE-R 16:8 (CL 176.8.1)
- Acronym VP (Vector Point) is used for reference points for which vectors are available.

Vector points (200GE/400GE)


- Test vectors are given for test points on the right.
 - VP1 and VP3 are required for interoperability.
 - VPO and VP2 are given as a reference for debug.
- VPO is identical to Annex 119A extended by 2 additional CWs.
- Assumptions are same as 802.3 Annex 119A:
 - First CW has AM block.
 - Constant transmission of Idle control characters.
 - Scrambler AM padding PRBS9 generator seed: P<0:8> = 0x100.
 - AM block tx_am_sf<2:0> = {0, 0, 0}.
 - Scrambler seed S<0:57> = 0x24E6959D0FA5DBD
- 8:1 symbol-pair mux for PMA lane 'n' is done between PCS lanes {n*8, n*8+1, ..., n*8+7}.

7

Vector points (800GE)


- Test vectors are given for test points on the right.
 - VP1 and VP3 are required for interoperability.
 - VPO and VP2 are given as a reference for debug.
- VP0 is identical to Annex 172A.
- VPO assumptions are same as 802.3df Annex 172A:
 - First CW has AM block.
 - Constant transmission of Idle control characters.
 - Scrambler AM padding PRBS9 generator seed: P<0:8> = 0x100.
 - AM block tx_am_sf<2:0> = {0, 0, 0}.
 - Flow 0 scrambler seed S<0:57> = 0x24E6959D0FA5DBD
 - Flow 1 scrambler seed S<0:57> = 0x1FB58857D81624F
- 8:1 symbol-pair mux for PMA lane 'n' is done between PCS lanes {n*4, n*4+16, n*4+1, n*4+16+1 ..., n*4+3, n*4+16+3}.

VP0-

Vector points (1.6TE)

- Test vectors are given for test points on the right.
 - VP1 and VP3 are required for interoperability.
 - VP1 relies on 802.3dj draft 1.0 Annex 175A.
 - VP2 is not required since there is no odd lanes delay for 1.6T.
- 2:1 symbol-quartet mux for PMA lane 'n' is done between PCS lanes {n*2, n*2+1}.

Test vector format

- For all VPs except VP0 transmission order inside a line is from left to right top to bottom.
- For VPO bits ordering is same as in Annex119A. Inside a 10b symbol bits are transmitted from LSB to MSB, and 10b symbols are transmitted from left to right.
- VP0:
 - Same as defined in Annex 119A (hex stream with 320 bits / 80 hex per line)
 - Separate files for codeword A and codeword B (2 codewords per file, 34 lines)

1st symbol

A6, #9AA6A9A64992649921486284BD26519565D946D5B56D5B57D936ED8B6CF7EFA842EDE6024F1DB

63156BC9A159A5EDB273FD0CCBB63B810BD2EA92401C8F6204458108BF4D44C2D1675209D8331CC8

- VP1-2:
 - **1-2:** 2nd symbol '
 Text file per PMA output lane.
 - Each line is 40 bits, binary form, belongs to each input PCS lane.
 - X is used for don't care, caused by adding delay on odd lanes.

	Port	input lane 0	input lane 1	input lane 2	input lane 3	input lane 4	input lane 5	input lane 6	input lane 7
200GE	PMA lane 0	PCS lane 0	PCS lane 1	PCS lane 2	PCS lane 3	PCS lane 4	PCS lane 5	PCS lane 6	PCS lane 7
400GE	PMA lane 0	PCS lane 0	PCS lane 1	PCS lane 2	PCS lane 3	PCS lane 4	PCS lane 5	PCS lane 6	PCS lane 7
	PMA lane 1	PCS lane 8	PCS lane 9	PCS lane 10	PCS lane 11	PCS lane 12	PCS lane 13	PCS lane 14	PCS lane 15
800GE	PMA lane 0	PCS_lane0	PCS_lane16	PCS_lane1	PCS_lane17	PCS_lane2	PCS_lane18	PCS_lane3	PCS_lane19
	PMA lane 1	PCS_lane4	PCS_lane20	PCS_lane5	PCS_lane21	PCS_lane6	PCS_lane22	PCS_lane7	PCS_lane23
	PMA lane 2	PCS_lane8	PCS_lane24	PCS_lane9	PCS_lane25	PCS_lane10	PCS_lane26	PCS_lane11	PCS_lane27
	PMA lane 3	PCS_lane12	PCS_lane28	PCS_lane13	PCS_lane29	PCS_lane14	PCS_lane30	PCS_lane15	PCS_lane31
1.6TE	PMA lane 0	PCS lane 0	PCS lane 1						
	PMA lane 1	PCS lane 2	PCS lane 3						
	PMA lane 2	PCS lane 4	PCS lane 5						
	PMA lane 3	PCS lane 6	PCS lane 7						
	PMA lane 4	PCS lane 8	PCS lane 9						
	PMA lane 5	PCS lane 10	PCS lane 11]					
	PMA lane 6	PCS lane 12	PCS lane 13						
	PMA lane 7	PCS lane 14	PCS lane 15						

first

Test vector format

• VP3

- Text file per PMA lane
- Each line is 160 bits
- X is used for don't care, caused by adding delay on odd lanes.

Test vectors folder content

The test vectors is divided into 4 folders, each contains files as listed below.

- 200GBASE-R 8:1
 - vp0_cws_[a..b].txt
 - vp1_lane0.txt
 - vp2_lane0.txt
 - vp3_lane0.txt
- 400GBASE-R 16:2
 - vp0_cws_[a..b].txt
 - vp1_lane[0..1].txt
 - vp2_lane[0..1].txt
 - vp3_lane[0..1].txt

- 800GBASE-R 32:4
 - vp0_cws_[a..d].txt
 - vp1_lane[0..3].txt
 - vp2_lane[0..3].txt
 - vp3_lane[0..3].txt
- 1.6TBASE-R 16:8
 - vp1_lane[0..7].txt
 - vp3_lane[0..7].txt

Summary

- 200G per lane PMA (CL176) interoperability test vectors are proposed.
- Fixes were applied to the two found issues.