802.3dj D1.0 Comment Resolution Logic Track

Gary Nicholl (Cisco), 802.3dj Chair, Architecture and Logic Track

Introduction

 This slide package was assembled by the 802.3dj editorial team to provide background and detailed resolutions to aid in comment resolution.

Clause 177, Inner FEC Sync Comment # 505

CI 177 SC 177.6 P262 L5 # 505

Ren, Hao Huawei

Comment Type TR Comment Status D Inner FEC Sync

In Figure 177—8, the input variable of state FS_LOCK_INIT is not correct. It would cause a FS lock error.

SuggestedRemedy

FS_LOCK_INIT state should be entered after all the 8 flows obtain their inner FEC codeword boundaries and inner FEC flow 0 is identified, when fs_lock is false.

Propose change:

Change the input variable from '!all_synced 'to 'all_synced *!fs_lock '.

Change the definition of all_synced

from

'A Boolean variable that is set to true when sync_flow<x> is true for all eight flows and is set to false when sync_flow<x> is false for any x.'
to

'A Boolean variable that is set to true when inner FEC flow 0 is identified and is set to false when sync_flow<x> is false for any x.' (in page 258 line 48-50)

Proposed Response

Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

Change the condition for FS_LOCK_INIT state from "!all_synced" to "all_synced*!fs_lock"

Change the definition of variable "all_synced" from:

"A Boolean variable that is set to true when sync_flow<x> is true for all eight flows and is set to false when sync_flow<x> is false for any x."

to:

" A Boolean variable that is set to true when sync_flow<x> is true for all eight flows AND inner FEC flow 0 is identified, and is set to false when sync_flow<x> is false for any x."

Clause 177, Inner FEC Sync Comment # 505

Change the definition of variable "all_synced" in 177.6.2.1 as follows:

all_synced

A Boolean variable that is set to true when sync_flow<x> is true for all eight flows AND inner FEC flow 0 is identified, and is set to false when sync_flow<x> is false for any x.

Change Figure 177-8 as follows:

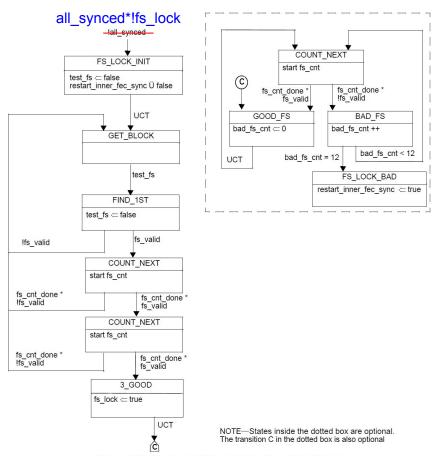


Figure 177-8—Inner FEC pad detection state diagram

Clause 73, Priority Table Comment #149

802.3-2022

Table 73-5—Priority Resolution

Priority	Technology	Capability	
1	200GBASE-KR4 or 200GBASE-CR4	200 Gb/s 4 land highest priority	
2	100GBASE-KR2 or 100GBASE-CR2	100 Gb/s 2 lane	
3	100GBASE-CR4	100 Gb/s 4 lane	
4	100GBASE-KR4	100 Gb/s 4 lane	
5	100GBASE-KP4	100 Gb/s 4 lane	
6	100GBASE-CR10	100 Gb/s 10 lane	
7	50GBASE-KR or 50GBASE-CR	50 Gb/s 1 lane	
8	40GBASE-CR4	40 Gb/s 4 lane	
9	40GBASE-KR4	40 Gb/s 4 lane	
10	25GBASE-KR or 25GBASE-CR	25 Gb/s 1 lane	
11	25GBASE-KR-S or 25GBASE-CR-S	R-S 25 Gb/s 1 lane, short reach	
12	10GBASE-KR	10 Gb/s 1 lane	
13	10GBASE-KX4	10 Gb/s 4 lane	
14	5GBASE-KR	5 Gb/s 1 lane	
15	2.5GBASE-KX	2.5 Gb/s 1 lane	
16	1000BASE-KX	1 Gb/s 1 lane, lowest priority	

802.3df-2024 (includes additions from 802.3ck)

Table 73-5-Priority Resolution

Technology	Capability	
800GBASE-KR8 or 800GBASE-CR8	800 Gb/s 8 lane highest priority	
400GBASE-KR4 or 400GBASE-CR4	400 Gb/s 4 lane	
200GBASE-KR2 or 200GBASE-CR2	200 Gb/s 2 lane	
200GBASE-KR4 or 200GBASE-CR4	200 Gb/s 4 lane	
100GBASE-KR1 or 100GBASE-CR1	100 Gb/s 1 lane	
100GBASE-KR2 or 100GBASE-CR2	100 Gb/s 2 lane	
100GBASE-CR4	100 Gb/s 4 lane	
100GBASE-KR4	100 Gb/s 4 lane	
100GBASE-KP4	100 Gb/s 4 lane	
100GBASE-CR10	100 Gb/s 10 lane	
50GBASE-KR or 50GBASE-CR	50 Gb/s 1 lane	
40GBASE-CR4	40 Gb/s 4 lane	
40GBASE-KR4	40 Gb/s 4 lane	
25GBASE-KR or 25GBASE-CR	25 Gb/s 1 lane	
25GBASE-KR-S or 25GBASE-CR-S	25 Gb/s 1 lane, short reach	
10GBASE-KR	10 Gb/s 1 lane	
10GBASE-KX4	10 Gb/s 4 lane	
5GBASE-KR	5 Gb/s 1 1ane	
2.5GBASE-KX	2.5 Gb/s 1 lane	
1000BASE-KX	1 Gb/s 1 lane, lowest priority	

Clause 73, Priority Table Comment #149

802.3dj D1.0

Table 73-5—Priority Resolution

Technology	Capability	
1.6TBASE-KR8 or 1.6TBASE-CR8	1.6 Tb/s 8 lane	
800GBASE-KR4 or 800GBASE-CR4	800 Gb/s 4 lane	
800GBASE-KR8 or 800GBASE-CR8	800 Gb/s 8 lane, highest priority	
400GBASE-KR2 or 400GBASE-CR2	400 Gb/s 2 lane	
400GBASE-KR4 or 400GBASE-CR4	400 Gb/s 4 lane	
200GBASE-KR1 or 200GBASE-CR1	200 Gb/s 1 lane	
200GBASE-KR2 or 200GBASE-CR2	200 Gb/s 2 lane	
200GBASE-KR4 or 200GBASE-CR4	200 Gb/s 4 lane	
100GBASE-KR1 or 100GBASE-CR1	100 Gb/s 1 lane	

Add "highest priority" here.

Clause 177, State Diagram Conventions Comment #492

177.6 Detailed functions and state diagrams

177.6.1 State diagram conventions

The body of this subclause is composed of state diagrams, including the associated definitions of variables, functions, and counters. Should there be a discrepancy between a state diagram and descriptive text, the state diagram prevails.

The notation used in the state diagrams follows the conventions of 1.2, along with the extensions listed in 21.5. The notation ++ after a counter or integer variable indicates that its value is to be incremented.

177.6.2 State variables

177.6.2.1 Variables

all_synced

A Boolean variable that is set to true when sync_flow<x> is true for all eight flows and is set to false when sync flow<x> is false for any x.

fs_cnt_done

Boolean variable that indicates that fs cut has reached its terminal count.

177.6.2.3 Counters

bad_cw_cnt

Counts the number of invalid Inner FEC codewords based on the output of CAL_SYNDROME function. A codeword is considered invalid when its syndrome is non-zero.

bad fs cnt

Counts the number of consecutive FS that don't match the expected values.

CW CDI

Counts the number of Inner FEC codewords processed.

fs_cnt

Counts the interval of Inner FEC codewords between two adjacent pads.

valid_cw_cnt

Counts the number of valid Inner FEC codewords based on the output of CAL_SYNDROME function. A codeword is considered valid when its syndrome is zero.

Clause 177, State Diagram Conventions Comment #492

21.5.3 State transitions

The following terms are valid transition qualifiers:

- a) Boolean expressions
- b) An event such as the expiration of a timer: timer done
- An event such as the reception of a message: PMA_UNITDATA.indication
- An unconditional transition: UCT
- A branch taken when other exit conditions are not satisfied: ELSE

Any open arrow (an arrow with no source block) represents a global transition. Global transitions are evaluated continuously whenever any state is evaluating its exit conditions. When a global transition becomes true, it supersedes all other transitions, including UCT, returning control to the block pointed to by the open arrow.

73.10.2 State diagram timers

All timers operate in the manner described in 14.2.3.2.

autoneg wait timer

Timer for the amount of time to wait before evaluating the number of link integrity test functions with link_status=OK asserted. The autoneg_wait_timer shall expire 25 ms to 50 ms from the assertion of link_status=OK from the PCS.

break link timer

Timer for the amount of time to wait in order to assure that the link partner enters a Link Fail state. The timer shall expire 60 ms to 75 ms after being started.

clock_detect_min_timer

Timer for the minimum time between detection of differential Manchester clock transitions. The clock_detect_min_timer shall expire 4.8 ns to 6.2 ns after being started or restarted.

14.2.3.2 State diagram timers

All timers operate in the same fashion. A timer is reset and starts counting upon entering a state where "start x_timer" is asserted. Time "x" after the timer has been started, "x_timer_done" is asserted and remains asserted until the timer is reset. At all other times, "x_timer_not_done" is asserted.

Clause 177, State Diagram Conventions Comment #492

91.5.4.2.1 Variables

all locked

A Boolean variable that is set to true when amps_lock \Leftrightarrow is true for all x and is set to false when amps_lock \Leftrightarrow is false for any x.

amp counter done

Boolean variable that indicates that amp counter has reached its terminal count.

1st ram counter done

Boolean variable that indicates that 1st ram counter has reached its terminal count.

1st ramps counter done

Boolean variable that indicates that 1st_ramps_counter has reached its terminal count.

fec_lpi_fw

Boolean variable that controls the behavior of the Transmit LPI and Receive LPI state diagrams. This variable is set to true when the local PCS is configured to use the fast wake mechanism and set to false otherwise.

ram counter done

Boolean variable that indicates that ram counter has reached its terminal count.

9

Clause 176 (SM-PMA), 200GbE/400GbE deskew Comment #368

20b deskew is incorrect. According to Motion #10 in https://www.ieee802.org/3/di/public/23_07/motions_3cwdfdj_2307.pdf, it is required to deskew to codeword boundaries

SuggestedRemedy

Remove the second and third paragraph in 176.5.1.3.1 and reuse 119.2.5.1.

Proposed Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

The referenced motion includes the following extra requirement compared to the baseline slides "along with deskew (alignment) to codeword boundaries for 100G/lane input lanes". This was not implemented in Draft 1.0.

A consensus presentation is anticipated. Pending CRG review of the presentation.

Motion #10

Move to adopt the 4x RS codewords interleaving for 200GbE and 400 GbE using 200G/lane AUIs or PMDs, as shown in slides 4-6 and 10 of he_3dj_02a_2307 along with deskew (alignment) to codeword boundaries for 100G/lane input lanes.

M: Xiang He

S: Adee Ran

Technical (>=75%)

802.3 voters only

Result: passed by unanimous consent. 9:38 a.m.

Comment #368 points out that Motion #10 was not correctly implemented in D1.0.

Specifically deskew (alignment) was specified to 20-bit (RS symbol pair) boundaries as called out in the original baseline presentation (he_3dj_02a_2307) and not to codeword boundaries as called out in Motion #10

A consensus presentation was put together to address this topic, clarify the intent of Motion #10 and propose a couple of options:

https://www.ieee802.org/3/dj/public/24 06/shrikhande 3dj 01 2406.pdf