IEEE P802.3dj Plenary meeting, July 14, 2024

Update on the impact of CD limits on RX sensitivity penalty and TDECQ measurements

Qirui Fan⁽¹⁾, Xiang Liu⁽¹⁾, Tao Gui⁽²⁾, Frank Chang⁽³⁾

⁽¹⁾Huawei Hong Kong Research Center, China; ⁽²⁾Huawei, China; ⁽³⁾Source Photonics, USA

Introduction

- In <u>fan_3dj_01a_2405</u>, we reported the experimentally measured CD tolerance with FFE equalization using one commercial 800G-LR4 OSFP module.
- In this contribution, we repeat the experiments to another 2 modules.
- Also, we experimentally show that the dispersion penalty at CDmin can be reduced by increasing the EML chirp.

Measurements under the factory configurations

113GBd Transmitter Module+custom RoSA with FFE

- The RX sensitivity penalty is >1.5dB when the CD is <-23.5ps/nm.

EML chirp tuning for reducing the RX sensitivity penalty at CD_{min}

As shown in johnson 3dj optx 01 240627, the EML chirp is related to EA bias voltage.

 \checkmark <1.5dB RX sensitivity penalty can be obtained at -24.4ps/nm when the EML chirp is increased.

The impact of CD on current TDECQ measurements

EA bias voltages are set as its reference value

The impact of CD on current TDECQ measurements

EA bias voltage is offset by -0.1v from its reference value

Concluding remarks

- We experimentally verify that -24.6ps/nm is acceptable with <1.5dB RX sensitivity penalty @ BER=4.85E-3 by optimizing the EML chirp (using FFE only, Rx with stronger equalizer could work with worse link dispersion).
- The TDECQ measurement setup will need to be improved.
- This contribution is for information only