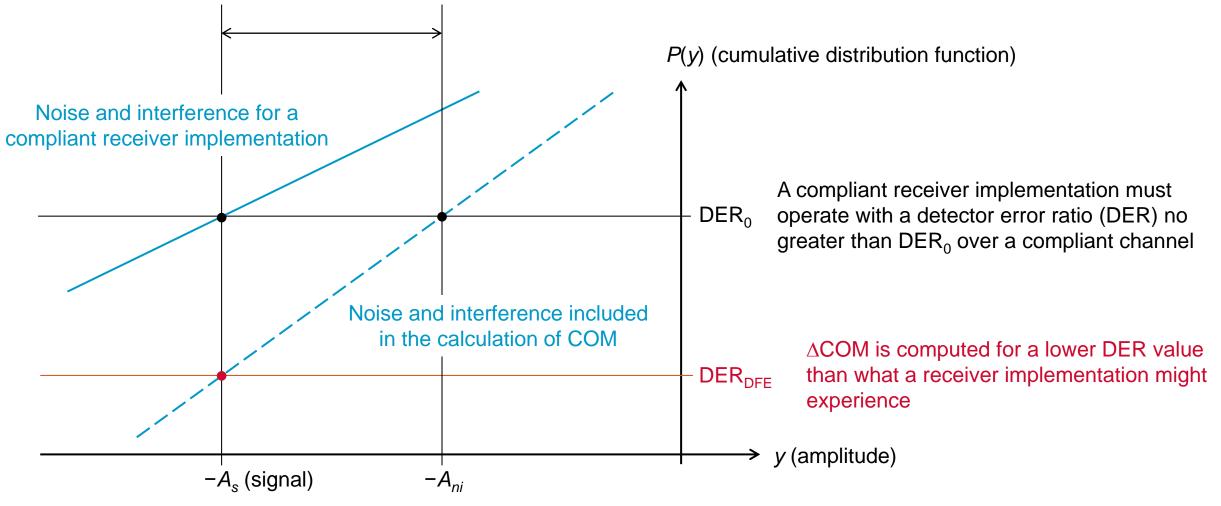

Modification to the calculation of COM for an MLSD reference receiver

Adam Healey, Raj Hegde Broadcom Inc. IEEE P802.3dj Task Force July 2024 (r1)

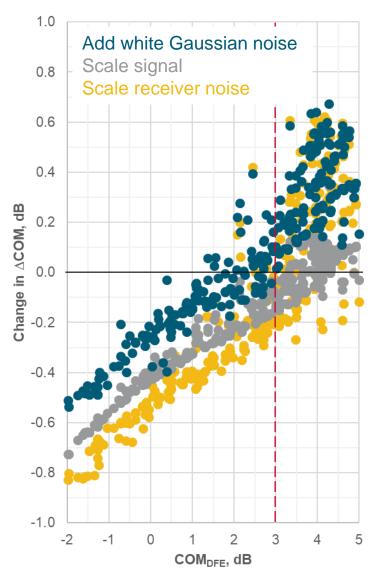
Problem statement



- Let COM_{DFE} be the channel operating margin for a reference receiver with decision feedback equalization (DFE)
- Let \triangle COM be the difference between COM for a reference receiver with maximum likelihood sequence detection (MLSD) and COM_{DFE}
- $\triangle COM$ is related to COM_{DFE}
- However, the receiver impairment model used to compute COM_{DFE} is incomplete
- As a result, ∆COM may be larger than what an actual implementation would experience

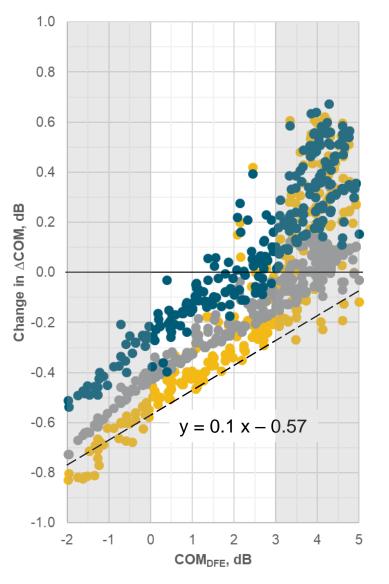
NOTE — The MLSD channel model is $1+b_1D$, where D is a 1 unit interval delay.

Relationship between channel and receiver requirements


Some possible modifications to the **\langle COM** calculation

 Different ways to approximate the impact of receiver impairments are considered

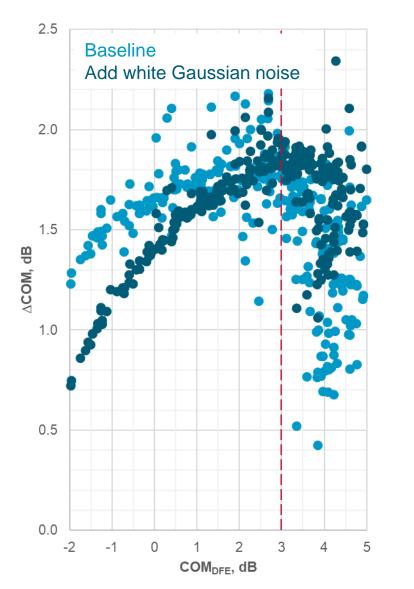
Label	Description		
Add white Gaussian noise	• Add a constant to the receiver noise power spectral density $S_{rn}(\theta)$ • Increase the value of the constant until COM _{DFE} is reduced by COM _{min}		
Scale signal	 Scale (reduce) A_s by the factor 10^(-COM_{min}/20) No change to the noise and interference amplitude distribution or power spectral density 		
Scale receiver noise	• Scale (increase) $S_m(\theta)$ by a constant factor • Increase the value of the constant until COM _{DFE} is reduced by COM _{min}		

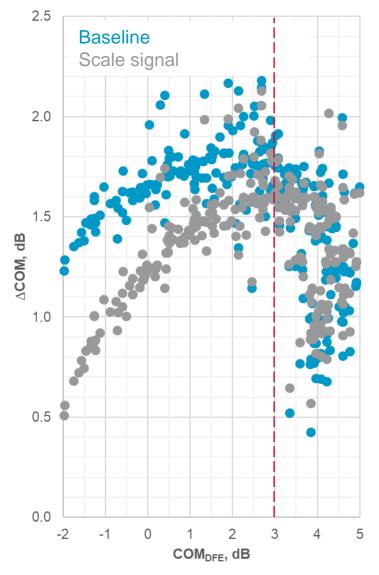

- Different approaches result in different distributions and coloring of the total noise and residual inter-symbol interference
- Changes are applied after optimization of variable parameters

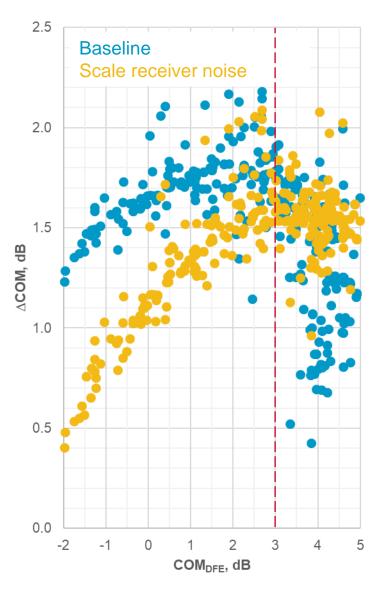
Impact of the impairment allowance on $\triangle COM$

- $COM_{min} = 3 dB$
- For COM < COM_{min}, including the impairment allowance generally reduces \triangle COM
- Reduction in ΔCOM increases with decreasing COM_{DFE}
- The change in ∆COM is also influenced by the distribution and coloring of the total noise and residual inter-symbol interference
- The "scale receiver noise" approach provides more conservative results

Another approach


- The nature of the impairments that consume the allowance is implementation-specific and unspecified
- The amplitude distribution and power spectral density of these impairments are not known
- A simpler, conservative, bound could be used to abstract these implementation details
- The MLSD implementation allowance Q could be made a function of COM_{DFE}
- E.g., $Q(COM_{DFE}) = 0.57 0.1 COM_{DFE}$


Summary and conclusions


- Definition of ∆COM for the MLSD reference receiver is optimistic relative to a receiver implementation
- This is because the calculation is based on a noise distribution and power spectral density that does not include all receiver impairments
- COM_{min} provides an allowance for these additional impairments
- Propose to include a proxy for the impairments allowed via COM_{min} in the calculation of ΔCOM
- Recommend that receiver noise be scaled (after variable parameters have been optimized) to represent the additional impairments or define a MLSD implementation allowance Q that is a function of COM_{DFE}
- If "pre-screening" is done (compute ∆COM only for DER_{DFE} no greater than a given value), DER_{DFE} should include the additional impairment allowance

Back-up

ΔCOM for each of the different calculation methods

Test case definition (133 x 3 = 399 test cases)

KR channel source files	Number of cases		
shanbhag_3dj_02_2305	4		
weaver_3dj_02_2305	36		
weaver_3dj_elec_01_230622	4		
mellitz_3dj_02_elec_230504	27		
<u>mellitz_3dj_03_elec_230504</u>	25		
akinwale_3dj_01_2310	7		
Total	103		

CR channel source files	Number of cases		
shanbhag_3dj_01_2305	6		
<u>kocsis_3dj_02_2305</u>	5		
lim_3dj_03_230629	1		
lim_3dj_04_230629	1		
<u>lim_3dj_07_2309</u>	1		
akinwale_3dj_02_2311	4		
weaver_3dj_02_2311	12		
Total	30		

Parameter	Model A1	Model A2	Model B	Units	Information
package_tl_gamma0_a1_a2	[5e-4, 8.9e-4, 2e-4]		[5e-4, 6.5e-4, 2.93e-4]	var.	
package_tl_tau	6.141e-3		6.141e-3	ns/mm	
package_Z_c	[87.5, 87.5; 92.5, 92.5]		[87.5, 87.5; 95, 95; 100, 100; 78, 78]	Ohm	[TX, RX]
z_p (TX)	[12; 1.8]	[33; 1.8]	[45; 2; 1.3; 1.5]	mm	
z_p (NEXT)	[12; 1.8]	[33; 1.8]	[45; 2; 1.3; 1.5]	mm	
z_p (FEXT)	[12; 1.8]	[33; 1.8]	[45; 2; 1.3; 1.5]	mm	
z_p (RX)	[12; 1.8]	[33; 1.8]	[44; 2; 1.3; 1.5]	mm	
C_p	[40e-6, 40e-6]			nF	[TX, RX]