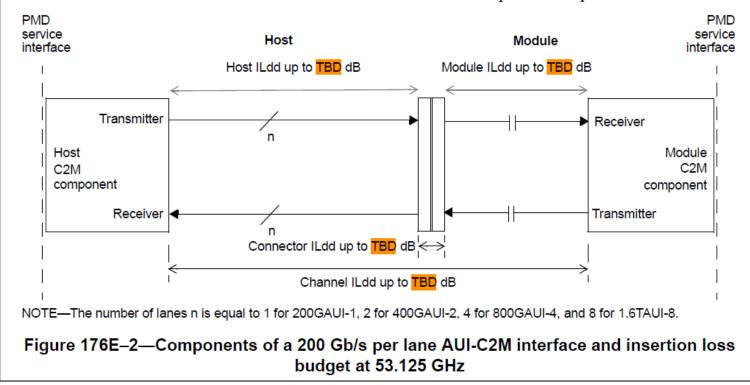
P802.3dj C2M Loss --Starting Point

Kent Lusted, Intel Corporation


Preface

- The AUI C2M ILdd value has been under study for a long time
 - Many AUI C2M ILdd values were proposed over the last 12 months: 28-36 dB
- During D1.0 comment resolution, the CRG adopted many COM parameter values for AUI C2M analysis that clarified the reference receiver capability

Channel ILdd – (die-to-die)

 D1.0 comment #129 final response adds an editor's note that the losses in the diagram are intended to be die to die

Figure 176E–2 depicts a typical 200 Gb/s per lane AUI-C2M application and the associated ILdd budget at 53.125 GHz. This ILdd budget represents a minimum capability that components are expected to support. The recommended characteristics of the channel between the C2M components are provided in 176E.4.

Parameter Values in Recent Contributions

Contribution	Ildd Recommendation
lusted_3dj_01a_2406 (slide 6)	~33dB for PCB host ~29dB for cabled host
ghiasi_3dj_01_2407	30dB 32dB with extra care

Observations

- Consensus seems to be forming around ILdd (die-die) = 33dB, based on offline discussions
- Viewpoints expressed on whether a different ILdd number is needed for PCB vs. cabled hosts
 - Two numbers or two figures or call-out in the specification
- Subdivision of the ILdd budget among the sub-parts may take more time
- Impact of "skew" on analysis and results is a turbulent topic
- Not all of the AUI C2M channels need to "pass"
 - In other words, poorly designed channels should "fail"

Next Steps

- Identify "top 10" C2M channels to focus analysis on
 - "Crawl, walk, run" strategy
 - Check the expanding channel space for pass vs. fail
- Choose an ILdd (die-die) number and refine it through the comment resolution process
 - Fill in the remaining sub-parts as consensus emerges

Thanks!