Proposal to update the specification of 2km optical PMDs

Guangcan Mi, Ping Liao, Huijian Zhang Huawei Tehcnologies Co., Ltd

IEEE 802.3dj 2024 July Plenary

Supporter

- Limin Geng, Hisilicon
- Haifeng Liu, HG Genuine

Introduction

- The 802.3dj task force hase recently released the updated D1.1 specification of 2km optical PMDs.
- Some refinement has been done over the last round of comment resolutions.
- There are still some fundamental TBDs left in the baselines, which largely points to the unsettlement of Ref. Rx
 - CD specs
 - TECQ/TDECQ max
 - CD penalty |TDECQ-TECQ|
 - Stressed Rx. Sens.

Looks like moving towards consensus

Relies on

- 1. definition of Ref. Rx, i.e. tap limits of the 15-tap FFE
- 2. definition of BER threshold used in TECQ

• This presentation provides suggestions to further improve the specification.

Tap Limits of the 15-tap FFE

Consider a typical Transmitter system,

- The industry likely will design one set of implementation to work in either FECi or FECo modes, depending on the tested performance of each individual part and its part code
- For the same transmitter system, the impairment needing equalization is set.

113.4375GBd ←→ 106.25GBd

stronger EQ. Weaker EQ.

How significant will the difference be?

A 3-tap FFE analogy: analytical analysis

- Assume tap weights $[-c1,c0,-c1] @ f_1 = >106.25GB and [-c2,c0,-c2] @ f_2 = >113.4375GB.$
- For the transmitter to get stronger equalization @ 113.4375GB, the amplitude of the equalizer' s
 frequency response should be higher than that for 106.25GB, the relation between c1 and c2 is as
 following:

Observations

1. The ratio of c^2/c^1 varies monotonically with frequency, with its maximum value occurs at f=0:

$$c2_{max} = (c1 * f2/f_1) / (\frac{f_1}{f_2} - 2 * c1 * \left(\frac{f_1}{f_2} - \frac{f_2}{f_1}\right) \qquad for f = 0$$

2. The ratio of c2/c1 decreases with higher value of c1. For a tap limit>0.4, the difference is a minimal value of 0.01

Using one set of tap limit for the 15-tap FFE

The case of 15-tap FFE will be more complicated.

Defining a tap limit to avoid excessive equalization, with margins incorporated

113.4375GBd ←→ 106.25GBd
 stronger EQ. Weaker EQ.
 Tap limit ⊇ Tap limit

Apply one set of tap limit

Build an envelope One single mode in scope

	Symbol	Min	Max	Units
Feedforward equalizer (FFE) length	N _b		15	UI
Maximum FFE pre-cursors			3	UI
Maximum FFE post-cursors			13	UI
FFE main tap coefficient limit		0.9	2.5	-
Normalized FFE coefficient limits ⁺ n = -3 n = -2 n = -1 n = 1 n = 2 $n \ge 3$	bb(n)	-0.1 -0.1 TBD -0.1 -0.1	0.1 0.2 0.05 0.05 0.2 0.1	-
FFE Gain ¹		1	1	-

The other knob on defining the Transmitter Metric

- Change the SER threshold used in TECQ of 2km PMDs to 9.7e-3
 - Align to the input from Logical Track's work
 - Aligning the BER requirement among FECi optical PMDs
 - DRn-2, FR4 and LR4
 - Provide consistency of the standard and avoid future confusion
 - In past generations, all PMDs using KP4 FEC shared the same BER threshold. All PAM4 PMDs used one solitary BER threshold for Rx Sens. and TECQ/TDECQ calculation. The meaning of the BER threshold has been self-explanatory.
 - For 200G/L, two FEC modes are defined, with different coding gain. Therefore it is intuitive that they have separate raw BER thresholds.
 - However, within the PMDs using FECi, the adoption of two different BER threshold has no technical basis.
 - It would cause confusion for readers of the 802.3dj standard. Let's make it precise while writing it
 - E.g. the discussion on MPI and DGD penalty in the last round of comment resolution
 - The relation between OMA and ER in 802.3df
 - Mitigation to the requirement of Tx performance can be done via setting appropriate TECQ/TDECQ max value

Summary and Proposal

- We propose the following change to the current specification of the 2km optical PMDs, including 800GBASE-DR4-2, 1600GBASE-DR4-2, 800GBASE-FR4.
 - Adopt the same tap weight limit of the 15tap reference receiver for both FECi and FECo PMDs
 - Change the SER threshold of 2km PMDs from 4e-3 to 9.7e-3