MLSE Sequence Truncation Implementation Penalty

Hossein Shakiba Huawei Technologies Canada July 2024

Supporter(s)

• Upen Reddy Kareti (Cisco Systems Inc.)

Outline

- Motivation
- Introduction
- Sequence Truncation
- Sequence Truncation in Equation U1.c
- Data from Test Channels
- Options
- Summary and Conclusion
- Back-up Slides

Motivation

- MLSE implementation penalty is still TBD in Draft 1.1 (*Q* in Equation 178A-36)
- It is one of the open "Big Ticket Items" after comment resolutions in June Electronic Interim (<u>lusted_3dj_elec_01_240620.pdf</u>)
- In <u>shakiba_3dj_01a_2403.pdf</u> the following implementation issues were listed and analyzed:
 - ✤ Pre-screening
 - ✤ Sequence Truncation
 - * α Mismatch
 - ✤ Quantization Noise
- This contribution highlights sequence truncation as the primary implementation constraint specific to MLSE and proposes an analytic approach to quantify it
- Presented data is based on COM version "com_ieee8023_93a_460beta3_hs1p0"
 - Customization is to include implementation penalty due to truncation

Introduction

- Pre-screening provides a means of removing the MLSE ΔCOM improvement if the pre-MLSE signal quality is not suitable for clock recovery
 - * It's been implemented in the COM code by ignoring MLSE and setting $\Delta COM = 0$ if *DER* before MLSE is higher than a set threshold (defaulted to 1E-2)
- Contributions <u>shakiba 3dj 01a 2403.pdf</u> and <u>shakiba 3dj 02 2405.pdf</u> demonstrated that quantization noise impact goes well beyond MLSE and suggested a direct method to include it as a new noise component at the COM and system modeling levels
- Contribution <u>healey 3dj 01b 2405.pdf</u> also recognized the importance of quantization noise and discussed the above and another approach to account for it
 - This contribution appears to favour the other approach that uses eta_0 as a knob to mimic the effect
- Currently, α mismatch is not recognized as a critical concern

Sequence Truncation

- One of the practical simplifications to MLSE is to limit length of the sequence
- There are several ways this can be implemented, but they all share a similar concept
- The case considered here for analysis is the case where the sequence processing and traceback are both limited to a truncated length
- As a result:
- 1) Error events shorter than *trunc* will still be entirely processed and Equation U1.c directly applies
 - ♦ Equation U1.c executes to its first trunc 1 terms
- 2) Longer error events will be partially processed and in Equation U1.c:
 - The MLSE sequence noise will have *trunc* terms
 - * The PDF convolution expression iterates trunc 1 times
 - * The correlation matrix $\rho_{noise, jEE}$ truncates to a $\rho_{noise, truncEE}$ (trunc × trunc) sub-matrix

Sequence Truncation in Equation U1.c*

$$PDF_{noise,jEE}(x) = \begin{cases} PDF_{noise}(x) * \operatorname{conv}_{i=2}^{j} \frac{1}{1-\alpha} PDF_{noise}\left(\frac{x}{1-\alpha}\right) * \frac{1}{\alpha} PDF_{noise}\left(\frac{x}{\alpha}\right) & ,j < trunc\\ PDF_{noise,truncEE}(x) = PDF_{noise}(x) * \operatorname{conv}_{i=2}^{trunc} \frac{1}{1-\alpha} PDF_{noise}\left(\frac{x}{1-\alpha}\right) & j \ge trunc \end{cases}$$

$$\rho_{noise,jEE} = \begin{cases} \rho_{noise,jEE} \left((j+1) \times (j+1) \right) &, j < trunc \\ \rho_{noise,truncEE} = \rho_{noise,jEE} \left((1:trunc) \times (1:trunc) \right) & j \ge trunc \end{cases}$$

$$DER_{MLSE,trunc} \approx \sum_{j=1}^{trunc-1} \left(\frac{L-1}{L}\right)^{j-1} \left(CDF_{noise,jEE} \left(-A_s \frac{\left(\text{trace}(\rho_{noise,jEE}) \right)^{\frac{3}{2}}}{\sqrt{\Sigma_{vertical} \Sigma_{horizental}}(\rho_{noise,jEE})} \right) \right) + L \left(\frac{L-1}{L}\right)^{trunc-1} \left(CDF_{noise,truncEE} \left(-A_s \frac{\left(\text{trace}(\rho_{noise,truncEE}) \right)^{\frac{3}{2}}}{\sqrt{\Sigma_{vertical} \Sigma_{horizental}}(\rho_{noise,truncEE})} \right) \right)$$

* Rewritten format based on the Draft 1.0 comments (Annex 178A)

• This leads to a sequence truncation penalty of:

$$Q_{trunc} \approx 20 \log_{10} \left(\frac{CDF_{noise}^{-1}(DER_{MLSE})}{CDF_{noise}^{-1}(DER_{MLSE,trunc})} \right)$$

• Which is basically the reduction in SNR due to truncation

July 2024

Test Results* – Without Truncation

• With the latest COM version (mostly MMSE RxFFE changes and MLSE updates), for the test cases equation U1.c results in an MLSE ΔCOM with Min = 0.93dB, Max = 2.04dB, and Ave = 1.56dB (still no MLSE implementation penalty, Q = 0)

* For the test channels see the Appendix

July 2024

Test Results – With Truncation, Overall Picture

- There is a trade off between performance vs. complexity and latency (reasons for truncation)
- Data supports why implementations have usually chosen truncating to no less than 10
- Some implementations have chosen around 20
- Truncating in the range of 10-20 seems to be a reasonable choice
- For our purpose, with some pessimism, the lower end of the range (~ 10-15) may be considered

Test Results – With Truncation, Versus IL

- Generally speaking, truncation penalty increases with insertion loss
- The slight drops at the high loss end are from cases that most likely fail anyway
- ullet This is a trend that many people may expect and may like igodot

July 2024

Test Results – With Truncation, *trunc* = 8

- A truncation length of 8 penalizes MLSE by an average of 0.61dB
- The resulting Δ*COM* averages to 0.95dB, concentrated around 30-40dB IL, which is a critical range where MLSE has the most impact

Test Results – With Truncation, *trunc* = 10

- A truncation length of 10 penalizes MLSE by an average of 0.32dB
- The resulting ΔCOM averages to 1.24dB, concentrated around 30-40dB IL, which is a critical range where MLSE has the most impact

Test Results – With Truncation, *trunc* = 12

- A truncation length of 12 penalizes MLSE by an average of 0.16dB
- The resulting ΔCOM averages to 1.41dB, concentrated around 30-40dB IL, which is a critical range where MLSE has the most impact

Options

- The following options have been discussed for including the MLSE implementation penalty (*Q* in equation 178A-36):
 - 1) Subtract an agreed upon fix amount (Q_{cte}) from ΔCOM ($Q = Q_{cte}$)

 \bigotimes Difficult to justify and partially defeating the prospect of calculating $\triangle COM$ using U1.c on a case basis

2) Limit $\triangle COM$ to an agreed upon maximum value ($\triangle COM_{max}$)

 $(Q = \begin{cases} 0 & , \Delta COM \leq \Delta COM_{max} \\ \Delta COM - \Delta COM_{max} & , \Delta COM > \Delta COM_{max} \end{cases})$

 \bigotimes Difficult to justify and partially defeating the prospect of calculating $\triangle COM$ using U1.c on a case basis

3) Derate $\triangle COM$ by an agreed upon factor ($Q \propto \triangle COM$)

 \otimes Difficult to justify and partially defeating the prospect of using U1.c to calculate ΔCOM

4) Use the proposed method in this contribution and use the truncation SNR penalty (Q_{trunc} in slide 7) as Q with an agreed upon value for trunc

 \odot Same justification and inline with the prospect and methodology of calculating ΔCOM using U1.c

Summary and Conclusion

- MLSE implementation penalty is still TBD (*Q* in Equation 178A-36)
- This contribution extended the same analysis approach of calculating MLSE ΔCOM using U1.c to calculating the MLSE sequence truncation penalty, Q_{trunc}
- With the view of truncation being the primary reason for MLSE implementation constraint, Q_{trunc} can represent Q in equation 178A-36
- This option is preferred over the other options of using a constant penalty, limiting ΔCOM to a maximum value, or derating ΔCOM
- The option is inline with the method and analysis used to calculate MLSE ΔCOM using U1.c
- Contributions are encouraged to agree upon the method and parameters

Backup Slides

Test Channels (KR/CR)

Channel #	Channel Source
1	https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_03_230629.zip
2	https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_04_230629.zip
3 – 7	https://www.ieee802.org/3/dj/public/tools/CR/kocsis_3dj_02_2305.zip
8 – 34	https://www.ieee802.org/3/dj/public/tools/KR/mellitz_3dj_02_elec_230504.zip
35 – 40	https://www.ieee802.org/3/dj/public/tools/CR/shanbhag_3dj_01_2305.zip
41 - 44	https://www.ieee802.org/3/dj/public/tools/KR/shanbhag_3dj_02_2305.zip
45 – 80	https://www.ieee802.org/3/dj/public/tools/KR/weaver_3dj_02_2305.zip
81 - 88	https://www.ieee802.org/3/dj/public/tools/KR/weaver_3dj_elec_01_230622.zip
89	https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_07_2309.zip
90 – 96	https://www.ieee802.org/3/dj/public/tools/KR/akinwale_3dj_01_2310.zip
97 – 100	https://www.ieee802.org/3/dj/public/tools/CR/akinwale_3dj_02_2311.zip
101 - 112	https://www.ieee802.org/3/dj/public/tools/CR/weaver_3dj_02_2311.zip

COM Config

										· · · · · · · · · · · · · · · · · · ·			
Table 93A-1 parameters			I/O control				Table 93	3A-3 parameters		SAVE_CONFIG2MAT	0		
Parameter	Setting	Units	Information	DIAGNOSTICS	0	logical	Parameter	Setting	Units	Information		Receiver testing	
f_b	106.25	GBd		DISPLAY_WINDOW	0	logical	package_tl_gamma0_a1_a2	[5e-4 0.00065 0.0003]			RX_CALIBRATION	0	logical
f_min	0.05	GHz		CSV_REPORT	0	logical	package_tl_tau	0.006141	ns/mm		Sigma BBN step	5.00E-03	V
Delta_f 0.01		GHz		RESULT_DIR	.\results\C2 M_{date}\		package_Z_c	92;7070;8080;100)	Ohm			ICN parameters	
C_d	[0.4e-4 0.9e-4 1.1e-4 ;0.4e-4 0.9e-4 1.1e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical	z_p (TX)	1 1 1 1; 11 1 1; 0.5	mm	[test cases to run]	f_v	0.278	Fb
L_s	[0.13 0.15 0.14; 0.13 0.15 0.14]	nH	[TX RX]	Port Order	[1324]		z_p (NEXT)	1 1 11; 11 11; 0.5	mm	[test cases]	f_f	0.278	Fb
C_b	[0.3e-4 0.3e-4]	nF	[TX RX]	RUNTAG	C2MTP1a_COM_model		z_p (FEXT)	1 1 11; 11 11; 0.5	mm	[test cases]	f_n	0.278	Fb
R_0	5.00E+01	Ohm		COM_CONTRIBUTION	1	logical	z_p (RX)	1 1 11; 11 11; 0.5	mm	[test cases]	f_2	61.625	GHz
R_d	[50 50]	Ohm	[TX RX]				С_р	[0.4e-4 0.4e-4]	nF	[test cases]	A_ft	0.450	V
PKG_NAME PKG_HiR_CLASSB_PKG_Module			TX RX	TDR and ERL options		Operational				A_nt	0.450	V	
A_v	0.413	V		TDR	1	logical	ERL Passth reshold	10	dB				
A_te	0.413	٧		ERL	1	logical	COM Pass threshold	3	db		Parameter	Setting	
A_ne	0.608	V		ERL_ONLY	0	ns					board_tl_gamma0_a1_a2	[0 6.44084e-4 3.6036e-05]	1.4 db/in @ 53.125G
z_p select	[4]			TR_TDR	0.01		DER_0	2.50E-05			board_tl_tau	5.790E-03	ns/m m
L	4			N	4000	logical	r_T	4.00E-03	ns		board_Z_c	100	Ohm
м	32			TDR_Butterworth	1		FORCE_TR	1	logical		z_bp (TX)	32	mm
filter and Eq.			beta_x	0						z_bp (NEXT)	32	mm	
f_r 📕	0.58	*fb		rho_x	0.618		PMD_type	C2C			z_bp (FEXT)	32	mm
c(0)	0.55		min	TDR_W_TXPKG	0	UI					z_bp (RX)	32	mm
c(-1)	0		[min:step:max]	N_bx	20						C_0	[0.2e-40]	nF
c(-2)	0		[min:step:max]	fixture delay time	[00]		T_O	0	mUI		C_1	[0.2e-40]	nF
c(-3)	0		[min:step:max]	Tukey_Window	1		samples_for_C2M	100	sampl es/U		Include PCB	0	logical
c(-4)	0		[min:step:max]	Noise	, jitter	UI	EW	0			Seletions (rec	tangle, gaussian, dual_rayleigh	triangle
c(1)	0		[min:step:max]	sigma_RJ	0.01	U	MLSE	3	logical		Histogram_Window_Weight	gau ssia n	selection
N_b	1	<u>v</u> i		A_DD	0.02	V^2/GHz	ts_anchor	1			Qr	0.02	<u>v</u> i
b_max(1)	0.85		As/dffe1	eta_0	1.25E-08	dB	sample_adjustment	[-3232]					
b_max(2N_b)	0.3		As/dfe2N_b	SNR_TX	33		Local Search	0					
b_min(1) 0			As/dffe1	R_LM	0.95			Filter: RxFFE	1				
b_min(2N_b)	-0.15	S	As/dfe2N_b				ffe_pre_tap_len	5	<u>VI</u>				
g_DC	-1	dB	[min:step:max]	DER_CDR	1.00E-02		ffe_post_tap_len	12	<u>VI</u>				
f_z	42.50	GHz		ENOB	32		ffe_pre_tap1_max	1	(normalized)				
t_p1	42.50	GHz		trunc	128		fte_post_tap 1_max	1	(normalized)	BUILDER MART			
T_p2 -	100.25	GHZ	facin sten on mil	DREAD, CRUMPS	4	Invial	THE TAPP MAX	1	(normalized)	EV-LMISOT MMISE			
g_DC_HP	-4	CU-	[min:step:max]	DKDAD_CKUMDS	1	logical	FRE OPI_METHOD	1024		POM- ISI			
I_HP_P2	1.328125	GHZ	include in fr				PY EE FLOAT CT	1024		POINTO ISI			
Butterworth	1	logical	include in it				KITE TOBICIL	Electing Tap Control					
							N. h-						
				baseline			N bf	4	tans per group	<u>↓</u>			
				Dasenne			N_DI	50	LII span for floating taps	<u>↓</u>			
				relevent for RyFFF			hro avr	0.2	may DEE value for floating tags				
				adjusted in experiment			B flost RSS MAY	1	restail tan limit				
				aujuseu mexperiment			N tail dart	13	(III) start of tail tans limit				
							n_tall_stalt	13	(or sare or can taps in the				