
Clause 184 functions
(supporting comments 243-

247, 249, 250, 252)
Tom Huber, Nokia

1

Supporters

• Steve Gorshe, Microchip
• Matt Brown, Alphawave
• Arnon Loewenthal, Alphawave
• Gary Nicholl, Cisco
• Eugene Opsasnick, Broadcom
• Leon Bruckman, Nvidia

2

General problem statement

• Clause 184 defines the inner FEC and PMA for 800GBASE-LR1
using pseudocode to describe the processes in 184.4 and 184.5

• Multiple comments were submitted against D1.0 with the
intention to simplify the pseudocode; these were rejected on the
basis that:

• The text was technically correct, unambiguous, and came from the
baseline slides

• It would be better to have a more complete proposal before making any
changes (in particular wrt how changes to one subclause might impact a
subsequent subclause)

• This presentation provides a more complete proposal in support
of comments 243-247, 249, 250, and 252

3

Structure of the inner FEC functions

Each of these functions is
specified with pseudocode,
with the output of each
function providing the input to
the next one

This function is specified
with pseudocode

These functions are specified as
the inverse of the transmit process

This function is specified as the
inverse of the transmit process

4

Clarifying the pseudocode fragments

• The pseudocode fragments in clause 184.4.[1-7] and 184.5.8 are
unnecessarily complex, which hinders understanding for readers that don’t
already understand the processing that is occurring

• The complexity largely comes from the inclusion of extra iterators for lanes (when
functions are performed per-lane) and/or bits within the symbols that are being
manipulated

• In addition, pseudocode for the PCS lane alignment and reordering is introduced, even
though these processes are well-specified already with state diagrams

• It would also be beneficial to have English descriptions of what some of these
functions are doing at the beginning of each subclause so the reader can
better understand the detailed manipulations that are being specified via the
pseudocode

5

Lane alignment and reordering
(Subclauses 184.4.1-2, comments 243-245)
• Clauses 184.4.1 and 184.4.2 provide pseudocode that is intended to explain

how to lock to the AMs and reorder the PCS lanes; there is no need for this
level of specification in clause 184

• These functions are essentially unchanged since 802.3ba, other than the number of PCS
lanes and the values of the AMs

• The functions are specified using state diagrams in clause 119 (referenced by clause
172)

• The functions are used not only in the x00GBASE-R PCS (x=1,2,4,8), but also in the
x00GXS (x=2,4,8)

• Aligning to AMs inherently aligns to 10-bit symbols because the RS FEC frame
is based on 10-bit symbols and is delimited by the AMs

6

PCS receive example (clause 119, to which
clause 172 refers)
• 119.2.5.1 Alignment lock and deskew

The receive PCS forms n separate bit streams by concatenating the bits from each of the n
PMA:IS_UNITDATA_i.indication primitives in the order they are received (where n = 8 for a 200GBASER
PCS and n = 16 for a 400GBASE-R PCS). It obtains lock to the alignment markers as specified by the alignment
marker lock state diagram shown in Figure 119–12. Note that alignment marker lock is achieved before FEC
codewords are processed and therefore the alignment markers are processed in a high error probability
environment.

After alignment marker lock is achieved on each of the n lanes (bit streams), all inter-lane Skew is removed as
specified by the PCS synchronization state diagram shown in Figure 119–13. The PCS receive function shall
support a maximum Skew of 180 ns, and maximum Skew Variation of 4 ns, between PCS lanes.

• 119.2.5.2 Lane reorder and de-interleave

PCS lanes can be received on different lanes of the service interface from which they were originally
transmitted. The PCS receive function shall order the PCS lanes according to the PCS lane number. The PCS
lane number is defined by the unique portion (UM0 to UM5) of the alignment marker that is mapped to each
PCS lane (see 119.2.4.4).

7

Not
required!

PHY_XS examples (clauses 118 and 171)

• 118.1.2 200GXS/400GXS Sublayer

The 200GXS, if implemented, shall be identical in function to the 200GBASE-R PCS in Clause 119 with the
addition of the functions defined in 118.2. A single device may be configured as either a 200GXS or the
200GBASE-R PCS and may be managed through different optional management registers.

The 400GXS, if implemented, shall be identical in function to the 400GBASE-R PCS in Clause 119 with the
addition of the functions defined in 118.2. A single device may be configured as either a 400GXS or the
400GBASE-R PCS and may be managed through different optional management registers.

• 171.3 PHY 800GXS

The PHY 800GXS shall be identical in function to an 800GBASE-R PCS (see Clause 172) with the following
exceptions:
— The PCS is inverted with the transmit function used for the receive direction and vice versa.

8

Pseudocode from 184.4.1-2

• Alignment lock and deskew (184.4.1)
For each I

For m = 0 to 31
pcsli[m, i] = FEC:IS_UNITDATA_m.request(tx_symbol)

End for
End for

RS-FEC symbol alignment shall be achieved on the 32 pcsli[m, i]
lanes (m = 0 to 31) as follows:
— j mod 10 = 0 when pcsli[m, j]
corresponds to the first bit of an RS-FEC symbol

• Reordering (184.4.2)
The 32 pcsli[m] lanes (m = 0 to 31) are rearranged to 32 pcsla[q]
lanes (q = 0 to 31) where q corresponds to PCSL q

While this correctly describes alignment
to RS-FEC symbols (which is what was
intended – full deskew is not required), it
isn’t adding any new information beyond
what is in the state diagram in figure 119-
12

This is more complex than what is in
clause 119 and isn’t really adding any
additional information

9

Proposal for subclauses 184.4.1-2

• The main value of the pseudocode in these clauses is that it ultimately
defines the vector pcsla[], which is the input to the next function

• pcsla[] can be defined directly and more clearly without pseudocode

• The alignment lock and lane reordering functions are clearly defined in
172.2.5.1-2 (which point to 119.2.5.1-2)

• Suggested changes:
• Remove ‘deskew’ from the title and text of 184.4.1 (since full deskew is not required)
• Replace the contents of 184.4.1 and 184.4.2 with references to 172.2.5.x (or 119.2.5.x)
• Add a definition of pcsla[q,i] in 184.4.3 that is based on 10-bit RS FEC symbols:

• The vector pcsla[q,i] represents the PCS lanes, aligned to 10-bit RS FEC symbols, where the
index q indicates the PCS lane number (0 to 31) and the index i represents the sequence of 10-
bit RS FEC symbols.

10

Lane permutation
(Subclause 184.4.3, comments 245-246)
• The 800GBASE-R PCS has two flows, with two FEC encoders each

• PCS lanes 0-15 come from flow0, lanes 16-31 from flow1
• Within each PCS lane, the FEC symbols from the two encoders for that flow alternate

• Lanes in flow0 have symbols A, B, A, B; those in flow1 have C, D, C, D

• The purpose of the lane permutation function is to create a set of 32 output
lanes (inner FEC flows) that all have the symbol pattern A, B, C, D

• This is accomplished by swapping the assignment of PCS lanes of flow0 and
flow1 to the corresponding sets of 16 output lanes every two symbols

• In other words, output lane 0 takes two symbols from PCS lane 0, then two from PCS
lane 16, output lane 1 takes two symbols from PCS lane 1, then two from PS lane 17, etc.

11

Pseudocode from 184.4.3

Symbol iterator

PCS lane iterator
Bits within a symbol iterator

The permutation function does not change bit positions within the symbols, so it is simpler
to describe the operation on symbols (i.e., replace 10i+j with i and eliminate the j loop).

12

Proposal for subclause 184.4.3 (1)

• Introductory text:
This function rearranges the RS FEC symbols of the PCS lanes to create 32 output inner
FEC lanes such that each group of four consecutive symbols on each output lane contains
one symbol from each of the four RS FEC encoders in the 800GBASE-R PCS

• Pseudocode
Define pcsla[q, i] to be the 10-bit symbol in PCS lane q at time i (after lane alignment and reordering)

Define permo[q, i] to be the 10-bit symbol in output lane q at time i at the output of the permutation function

The permutation function is defined by the following pseudocode:

For each i

For each q = 0 to 31

permo[q ,i] = pcsla[(q + 16×floor(i/2)) mod 32, i]

End for

End for

13

Proposal for subclause 184.4.3 (2)
• Modify figure 184-3 to more

clearly shows the detail of the
40-bit symbols on which the lane
permutation is operating and
how the function is producing
groups of 4 symbols in each lane
that come from four different
FEC codewords.

14

Remaining functions are per-lane

• Per figure 184-2, the functions
between lane permutation and
interleaving into the BCH FEC
frame are performed separately on
each lane

• Corresponding pseudocode
should describe the processing for
a single lane, not the set of 32
lanes

15

Convolutional interleaver
(Subclause 184.4.4, comment 247)
• The purpose of the convolutional interleaver is to rearrange the time order of

the RS FEC symbols for each lane such that each BCH FEC symbol (which
has a payload of 11 RS FEC symbols) has no more than one RS FEC symbol
from any RS FEC codeword

• The (preceding) lane permutation function has created lanes where each
group of 4 consecutive RS FEC (10-bit) symbols comes from four separate RS
FEC codewords, so the convolutional interleaver operates on 40-bit symbols

• The output of the convolutional interleaver reorders the 40-bit symbols of a
lane such that consecutive symbols in the output stream were separated by
17 symbols in the input stream

• RS FEC codewords are 5440 bits (13.6 40-bit symbols)

16

Pesudocode from 184.4.4

40-bit symbol iterator

Lane iterator
Bits within a symbol iterator

This function operates independently on
each lane, on 40-bit symbols (i.e. groups of
four 10-bit RS FEC symbols). It rearranges
the symbols such that the BCH FEC
codewords (which are 110 bits) contain no
more than one symbol from any RS FEC
codeword.

The operation does not move symbols between
lanes, so it can be specified more simply as
operating on an individual lane, in which case the
index p and associated for loop can be removed

The operation does not change bit positions
within the 40-bit symbols; it simply changes the
position of the symbols. The multiplier 40, index j
and associated for loop can be removed so the
operation is described based on 40-bit symbols. 17

Proposal for subclause 184.4.4

• Introductory text is fine as written (from the start of the clause
through the first paragraph after the figure)

• Replace the text on page 479, starting at the second paragraph
below figure 184-4:

The following is performed individually on each of the q lanes of
permo, operating on 40-bit symbols (consisting of four RS-FEC
symbols) j:
For each j

convio[j] = permo[j – 18 × j mod 3]
End for
Note: convio[j] is undefined when the index to permo is negative. 18

BCH encoder
(Subclause 184.4.5, comment 249)
• The BCH encoder adds the inner FEC code
• It operates on 110-bit symbols (11 RS-FEC symbols) and adds 16

parity bits to create 126-bit symbols
• This can be described more clearly in pseudocod using the ‘range of bits’

notation rather than a bit-level iterator

• Since the function operates on each lane individually, there is no
need to include a per-lane index in the description of the encoder

19

Pseudocode from 184.4.5 This function operates independently on
each lane, on 110-bit symbols (i.e. groups of
eleven 10-bit symbols). It computes the 16
parity bits and adds them to the end of the
110 input bits to create the 126-bit BCH
codeword.

The operation could be described more
simply as appending 16 bits to each group
of 110 bits rather than copying 110 bits and
then adding 16 bits, like what is done in
clause 91.

110-bit symbol iterator

Lane iterator
Bits within a symbol iterator

The operation does not change lane numbers, so
the algorithm can be specified more simply as
operating on an individual lane and the index p
and associated for loop can be removed

This p is not referring to the lane number iterator,
but to the parity bits computed by the FEC.

20

Proposal for subclause 184.4.5

On page 480:
• Delete the dashed items defining the indexes q, i, and j
• Delete the text describing how u and v are related to i and j
• Remove the references to q in the description of the message polynomial

m(x)
• Define parity[15:0] to be the coefficients of the computed parity polynomial
• Replace the pseudocode with this:
For each u

encodeo[126u:126u+109] = convio[110u:110u+109]

encodeo[126u+110:126u+125] = parity[15:0]

End for

(i.e., after each 110 bits, add the 16 computed parity bits for those 110 bits)
21

184.4.6 - Circular shift
(Subclause 184.4.6, comment 250)
• The circular shift rotates the bits within the 110 payload bits of the

BCH codewords to further improve burst tolerance (leaving the 16
parity bits unchanged)

• The amount of shift depends on the lane number

22

Pseudocode from 184.4.6

126-bit symbol iterator

Lane iterator
Bits within a symbol iterator

This function operates independently
on each lane, on the first 110 bits of
each BCH FEC codeword,
reorganizing the bits. The amount of
shifting is different for each lane, so
the index p is needed, but there is no
need to include an iterator since the
function is applied to each lane

The function operates on each lane or the p loop (the
value of p is still important, however, since the shift
does depend on the lane number)

Since bits 110-125 do not change, there is no
need to explain that; the second for j loop can be
removed.

23

Proposal for subclause 184.4.6

Replace the entire clause with this:
The circular shift function is applied to each lane. It rearranges the
110 payload bits of each BCH FEC codeword to further increase
robustness to burst errors. Consider each 126-bit BCH FEC
codeword as a vector of bits, encodeo[j], and apply the following
process:
For j = 0 to 109

circo[j] = encodeo[(j – 20q) mod 110]
End for
Where q corresponds to the lane number (0 to 31)

24

Convolutional de-interleaver
(Subclause 184.5.8, comment 252)
• The purpose of the convolutional de-interleaver is to undo the

manipulation performed by the convolutional interleaver

25

Pseudocode from 184.5.8

40-bit symbol iterator

Lane iterator
Bits within a symbol iterator

The operation does not move symbols between
lanes, so it can be specified more simply as
operating on an individual lane, in which case the
index p and associated for loop can be removed

The operation does not change bit positions
within the 40-bit symbols; it simply changes the
position of the symbols. The multiplier 40, index j
and associated for loop can be removed so the
operation is described based on 40-bit symbols.

This function operates independently on
each lane, on 40-bit symbols (i.e. groups of
four 10-bit RS FEC symbols). It restores the
original order of 40-bit symbols prior to
convolutional interleaving in the transmitter.

26

Proposal for subclause 184.5.8

• Introductory text is fine as written (up through the first paragraph
after the figure)

• Replace the text on page 490 with this:
The following is performed individually on each of the q lanes:
Denote the input and output of the convolutional de-interleaver as
input[j] and output[j], where the index j identifies 40-bit symbols.
For each j

output[j + 18 × (2 – j mod 3)] = input[j]
End for
Note: output[j] is undefined when the index is negative. 27

