Supporting Material – TQM Related Comments (259, 260) for 800GBASE-LR1, 800GBASE-ER1-20, 800GBASE-ER1

IEEE P802.3dj Task Force IEEE 802.3 September 2024 Interim Hamburg, Germany

- · Tom Issenhuth, Huawei
- John D'Ambrosia, Futurewei, U.S. Subsidiary of Huawei
- Mike Sluyski, Cisco
- Eric Maniloff, Ciena
- · Xiang Liu, Huawei
- Bernd Huebner, Cisco
- Gary Nicholl, Cisco
- Joshua Kihong Kim, Hirose Electric USA
- Brian Fetz, Keysight
- · Qirui Fan, Huawei
- Or Vidal, Alphawave Semi

Introduction

- The following presentation addresses the following comments
 - **Comment #259** (SC 185.9) This subclause "Transmitter quality metric (TQM) test setup and calculation" is incomplete and there is an editors note requesting contributions to help complete
 - Comment #260 (SC 187.9) This subclause "Transmitter quality metric (TQM) test setup and calculation" is incomplete and there is an editors note requesting contributions to help complete.
- This presentation will provide a proposed recommendation to address these comments.
- This presentation builds upon
 - "Leveraging IEEE P802.3cw Specification Approach for IEEE P802.3dj"
 (https://www.ieee802.org/3/dj/public/24 07/dambrosia 3dj 01 2407.pdf)
 - "Reference Receiver Design for Transmitter Constellation Closure (TCC) as a Transmitter Quality Metric (TQM) for coherent transmitters" (https://www.ieee802.org/3/dj/public/24 07/fan 3dj 02a 2407.pdf)
 - SG15-LS125, Liaison Statement "LS/r on B400G work and EVM"
 - SG15-TD214/WP2 "Transmitter Quality Metric (TQM) and Reference Receiver for 800G"
 (https://www.ieee802.org/3/private/liaison_docs/itu/Att-TD214-WP2.pdf, Note Password needed)
 - "Transmit Quality Metric approach for Coherent Specifications"
 (https://www.ieee802.org/3/dj/public/24_05/maniloff_3dj_02_2405.pdf)
 - IEEE P802.3cw D3.0

Recommendations for Both Comments

- 1. Utilize the document structure proposed in dambrosia_3dj_01_2407.pdf.
 - Calculate TQM Calculation for 800GBASE-LR1, 800GBASE-ER1-20, 800GBAS-ER1, as per SG15-LS125 / SG15-TD214/WP2 and maniloff_3dj_02_2405.pdf:
 - a) TQM = Δ RSNRtx, Tx-only RSNR penalty (Renamed as "Extended TCC") in dB (normative with a maximum specification)
 - b) SNRtx, ECtx in dB (informative)
- 2. Proposed Figures & associated text where appropriate
 - a) TQM Test Setup See Page 4
 - b) Calibrated coherent detector Front End See Page 5
 - c) Coherent Detector Front-end See Page 6
 - a) Address IQ offset in coherent detector front-end (reference IEEE P802.3cw D3.0 "IQ offset per polarization")
 - d) Offline Digital Signal processing See Page 7
- 3. Implement with editorial license
- 4. Continued liaisons with ITU-T on TQM development efforts recommended.

TQM Test Setup

Calibrated Coherent Detector Front-End

 Add proposed table consisting of parameter values for post calibration residuals

Description	Value	Unit
X-Y gain error (max)	0.2	dB
X-Y skew (max)	0.5	ps
I-Q phase error for X (max)	2	degree
I-Q gain error for X (max)	0.2	dB
I-Q skew for X (max)	0.2	ps
I-Q DC offset for X (max)	-26	dB
I-Q instantaneous offset for X (max)	-20	dB
I-Q phase error for Y (max)	2	degree
I-Q gain error for Y (max)	0.2	dB
I-Q skew for Y (max)	0.2	ps
I-Q DC offset for Y (max)	-26	dB
I-Q instantaneous offset for Y (max)	-20	dB
Bandwidth mismatch [X,Y:I,Q] (max)	1	GHz
Carrier frequency offset (max)	0.1	GHz

 Add subclauses providing definitions of noted parameters

Coherent Detector Front-end

Add text:

The incoming optical signal is split into two orthogonal polarizations (x and y) by a polarization beam splitter (PBS). The two polarization components are mixed with their copolarized components from the optical local oscillator (LO) in two 90-degree optical hybrids, followed by four balanced photo-detectors (BD $_{\rm x}$), which convert the four components of the optical signals into their corresponding electric signals.

Add Table: Coherent detector front-end parameters

Description	Value	Unit
3-dB bandwidth (min)	65	GHz
ENOB	5	bit
Oversampling ratio	1.25	
Local oscillator linewidth (max)	30	kHz

Add subclauses providing definitions of noted parameters

Offline digital signal processing used for TQM calculation

Add subclauses providing definitions of noted steps. Leverage descriptions for each step on Page 7 of fan_3dj_02a_2407.pdf.