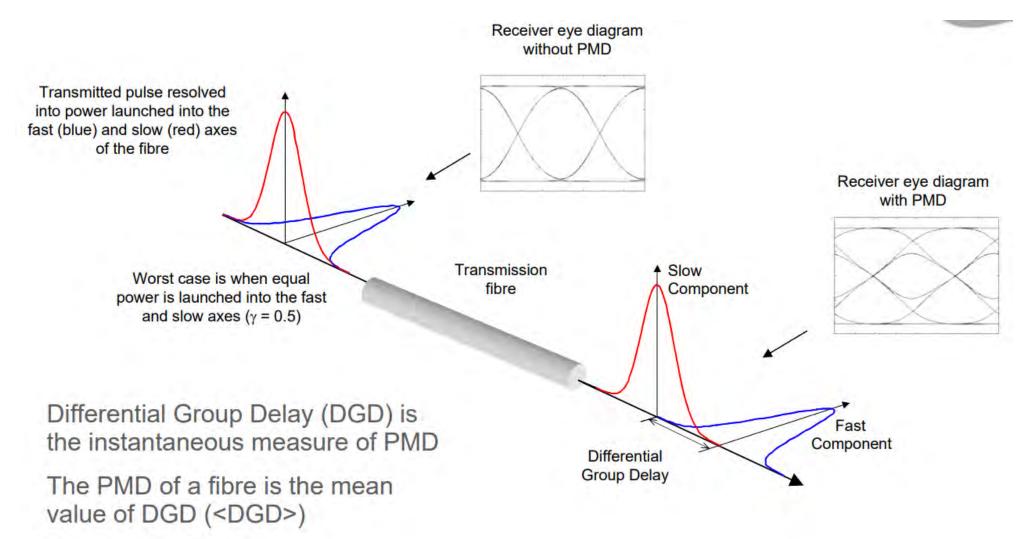
IEEE P802.3dj Interim Meeting, September 16-19, 2024

Assessment of the PMD penalty in 800G-LR4 based on the updated ITU-T G.652 fiber PMD_Q model (In correspondence to Comment 93)

Xiang Liu and Qirui Fan

Huawei Hong Kong Research Center, Hong Kong, China


Introduction

- ITU-T has updated the G.652 fiber recommendations by adding the statistical link design methodology for chromatic dispersion (CD) and polarization-mode dispersion (PMD) for short-reach systems [1,2].
- With the new PMD model, the 800G-LR4 PMD penalty was found in <u>ferretti 3dj optx 01b 240829</u> [3] to be marginally acceptable when the DGD tolerance reported in ITU-T G.691 was assumed.
- Here, we quantify the PMD penalty when 800G-LR4 specific DGD tolerance is assumed, and verify that the PMD penalty is <0.7 dB.

[1] LS on revision of Recommendation G.652, <u>https://www.ieee802.org/3/minutes/jul24/incoming/SG15-LS121_Redacted.pdf</u>
[2] Draft revised Recommendation G.652 (for consent), <u>https://www.itu.int/md/T22-SG15-240701-TD-PLEN-0375/en</u>
[3] Vince Ferretti, <u>"</u>An in-depth look at PMD and DGD scenarios for 50 Gbaud, 100 Gbaud and 200 Gbaud IMDD links," <u>https://www.ieee802.org/3/dj/public/adhoc/optics/0824_OPTX/ferretti_3dj_optx_01b_240829.pdf</u>

Introduction on PMD

Reference: https://www.ieee802.org/3/ba/public/mar08/anslow 01 0308.pdf

Background on PMD_Q

- Due to the fact that fibers used in cable manufacturing have different polarization mode dispersion (PMD) coefficients, PMD requirements for fiber are expressed in terms of PMD_Q in modern ITU standards such as G.652, G.653, G.654, G.655 and G.656.
- The definition of PMD_Q is based on a statistical approach where an imaginary reference link consisting of M equal length fiber cable sections is considered.
- The value of PMD_Q for a transmission link depends on M and Q, where Q is the probability of the link PMD being exceeding PMD_Q, which is chosen to be acceptably small.
- In G.652-656, M=20 and Q=1E-4 (or 0.01%) are chosen.

PMD_Q in the updated ITU-T G.652 (1)

• Statistical link design values for PMD in a link composed of 4, 10, 20, and 40 cable pieces are also included.

Number of	Mean normalized	Mean normalized	
concatenated cables M	PMD _O	DGD	
4	1.32	0.59	
10	1.13	0.80	
20	1.00	1.00	
30	0.96	1.17	

Here, DGD_{mean, normalized}(M) =PMD_{Q, mean, normalized}(M) * sqrt(M/20)
 (Note: this is a very conservative estimation of DGD because the "worst-case" PMD at Q=1E-4 is used)

PMD_Q in the updated ITU-T G.652 (2)

• G.652 specifies the following "Cable attributes"

PMD coefficient	Μ	20	cables
	Q	0.01	%
	Maximum	0.20	ps√km
	PMD _Q		

which means $PMD_Q(M=20)=0.2 \text{ ps/sqrt(km)}$.

• For M=4, the PMD coefficient becomes:

 $PMD_{Q}(M=4) = PMD_{Q, \text{ mean, normalized}}(M=4) * 0.2 \text{ ps/sqrt(km)}$ = 1.32 * 0.2 ps/sqrt(km) = 0.264 ps/sqrt(km)

 For LR (10km) and M=4, the mean differential group delay is:
 <DGD_Q(M=4,10km)> = PMD_Q(M=4) *sqrt(10km)

 =0.264*sqrt(10) ps = 0.835 ps

So the maximum DGD is: $DGD_{max}=3.75 * < DGD_Q(M=4,10km) > =3.13 ps$

(Here the ratio 3.75 is the S factor according to <u>anslow_01_0308</u>, which corresponds to an outage probability of 8.21e-8)

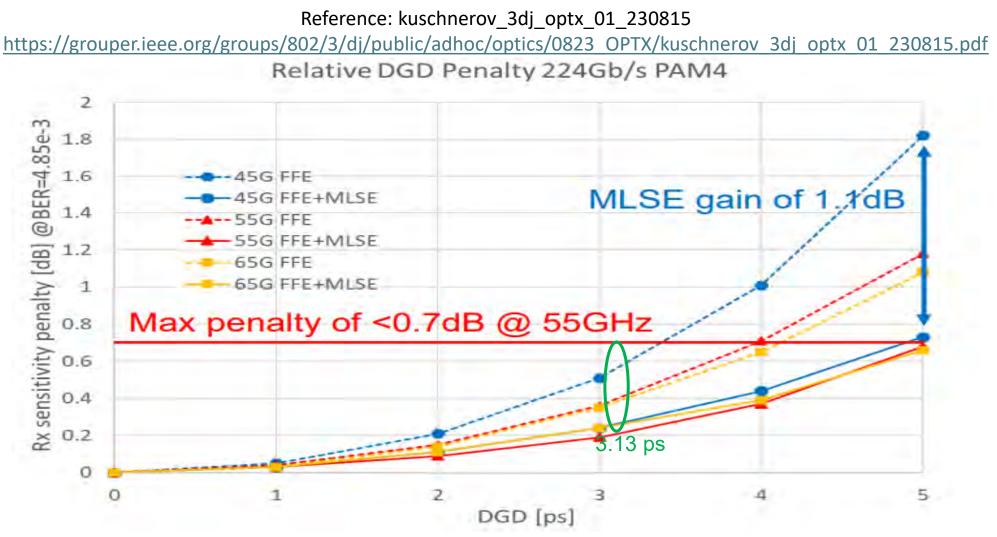

PMD penalty allocation in IEEE 800GBASE-LR4 (According to 8023dj_D1p1)

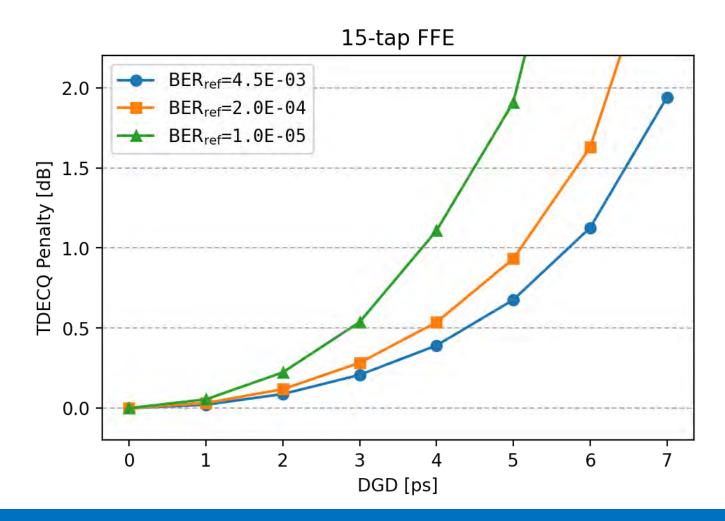
Table 183–8—800GBASE-FR4 and 800GBASE-LR4 illustrative link power budgets

Parameter	800GBASE-FR4	800GBASE-LR4	Unit
Power budget (for maximum TDECQ)	TBD	11.3	dB
Operating distance	2	10	km
Channel insertion loss ^a	4	6.3	dB
Maximum discrete reflectance ^b	-35 ^c	-35 ^d	dB
Allocation for penalties ^e (for maximum TDECQ)	TBD ^f	5 ^g	dB
Additional insertion loss allowedh	0		dB

^g This value includes an allocation of 0.7dB for DGD penalties, and 0.4dB for MPI penalties.

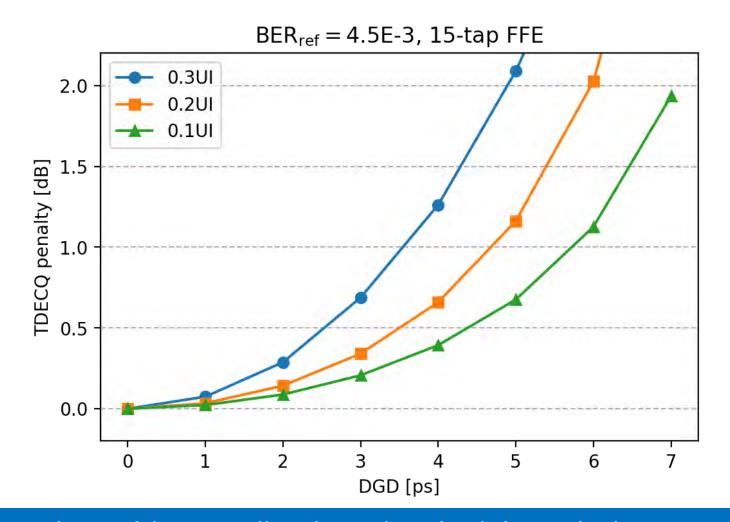
Updated PMD penalty in 800G-LR4

 \checkmark <0.7 dB penalty can be expected, even with the simple FFE.


Discussion (1): Reasons for the reduced PMD penalty

- In <u>ferretti 3dj optx 01b 240829</u> [3], based on ITU-T G.691's DGD penalty curve, the DGD_{max} allowed for a penalty of 0.7dB is 0.26UI, or 2.3ps for 800GBASE-LR4 at 113Gbaud.
- However, the DGD_{max} from the updated ITU-T PMD model is 3.13ps (as shown in slide 6), which is more than the above tolerance of 2.3ps.
- Fortunately, IEEE 800GBASE-LR4 uses

(i) higher reference BER (4.5E-3 instead of 1E-12 in G.691) and (ii) receiver-side equalization,


so that even with $DGD_{max}=3.13ps$, the PMD penalty is well within 0.7dB (as shown in the last slide).

Discussion (2): Dependence of DGD tolerance on reference BER

✓ Higher reference BER leads to higher DGD tolerance.

Discussion (3): Dependence of DGD tolerance on decision window

✓ With receiver-side equalization, the decision window can be more precise (or narrower) and thus improves the DGD tolerance.

Concluding remarks

- The updated ITU-T G.652 fiber PMD spec is discussed
- The new PMD spec leads to a maximum DGD of 3.13 ps for LR4 with M=4, which causes a small penalty of <0.7 dB for IEEE 800GBASE-LR4.
- The updated ITU-T G.652 fiber PMD spec is thus very helpful to IEEE 800GBASE-LR4 to close the link.