# 800GBASE-LR1 Optical Specifications

Supporting contribution for D1.1 comments 353 & 354

Eric Maniloff - Ciena

IEEE P802.3dj

September 2024, Hamburg, Germany

## Comments



Optical specs for the 800GBASE-LR1 Tx and Rx are required

Intent is to reach agreement on approach for Tx, Rx specs will follow

# **Background on IMDD Transmit Quality Metric (TQM) usage**

IMDD clauses use a per-lane TECQ & TDECQ, based on measurements of each lane's performance

• An example from 802.3cu is shown

Each physical lane's OMA (min) depends on its TDECQ

For TDECQ < 1.4dB, OMA (min) is fixed

Table 151-7—400GBASE-FR4 and 400GBASE-LR4-6 transmit characteristics

| Description                                                                                                                            | 400GBASE-FR4                                                                 | 400GBASE-LR4-6      | Unit       |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------|------------|
| Signaling rate, each lane (range)                                                                                                      | 53.125 ± 100 ppm                                                             |                     | GBd        |
| Modulation format                                                                                                                      | PAM4                                                                         |                     | _          |
| Lane wavelengths (range)                                                                                                               | 1264.5 to 1277.5<br>1284.5 to 1297.5<br>1304.5 to 1317.5<br>1324.5 to 1337.5 |                     | nm         |
| Side-mode suppression ratio (SMSR), (min)                                                                                              | 30                                                                           |                     | dB         |
| Total average launch power (max)                                                                                                       | 10.4                                                                         | 11.1                | dBm        |
| Average launch power, each lane (max)                                                                                                  | 4.4                                                                          | 5.1                 | dBm        |
| Average launch power, each lane <sup>a</sup> (min)                                                                                     | -3.2                                                                         | -2.7                | dBm        |
| Outer Optical Modulation Amplitude (OMA <sub>outer</sub> ), each lane (max)                                                            | 3.7                                                                          | 4.4                 | dBm        |
| Outer Optical Modulation Amplitude (OMA <sub>outer</sub> ), each lane (min) for TDECQ $<$ 1.4 dB for 1.4 dB $\leq$ TDECQ $\leq$ 3.4 dB | -0.2<br>-1.6 + TDECQ                                                         | 0.3<br>-1.1 + TDECQ | dBm<br>dBm |
| Difference in launch power between any two lanes (OMA <sub>outer</sub> ) (max)                                                         | 3.9                                                                          | 4                   | dВ         |
| Transmitter and dispersion eye closure for PAM4 (TDECQ), each lane (max)                                                               | 3.4                                                                          | 3.4                 | dB         |

## **Coherent TQM Approach**

## Extended Transmitter Constellation Closure (ETCC) has been proposed as a TQM

- ETCC measures Tx quality by ∆RSNR: The Tx-induced penalty in required SNR
- As presented in (maniloff\_3dj\_02\_2405.pdf) ETCC specifies the SNR penalty between a theoretical (perfect) signal and a practical signal.
- Since ETCC specifies an SNR penalty, Tx power can be used to compensate for larger ETCC values
- Based on experience with coherent optics:
  - A Minimum ISNR for a modem of 15 dB is assumed
  - A Maximum Eye closure of 0.4 dB is assumed
- These values define both Tx and Rx
- Allocations to Tx of 1/3 to 1/2 of the total are assumed

Note: ETCC is based on the correctable BER. As such it should be referenced to the BER being used, in this case ETCC(1.1E-2)



## Tx Power relationship to ETCC

## **Spec for a 'good' transmitter:**

- overall implementation noise of 16.5dB with 1/3 allocated to Tx
- 0.1 dB Eye Closure
- → 1.0 dB ETCC (RSNR Penalty) from the Transmitter

## Potential Spec for a worst-case transmitter

- overall implementation noise of 15 dB with 1/2 allocated to Tx
- 0.2dB Tx Eye Closure
- → 2.5 dB ETCC (RSNR Penalty)

Note: In discussions there was concern that a larger value for ETCC should be allowed, based on analysis of data from interop events.  $ETCC(1.1E-2)_{max} = 3.4dB$  is recommended.

$$ETCC_{max} = 3.4 dB$$

# **Laser Accuracy**

# Laser Accuracy is intended to allow acquisition for worst case offset between the Rx signal and LO Laser

 Unlocked lasers with a larger frequency range than can be compensated digitally are supported, as discussed in maniloff\_3dj\_01\_2405.pdf

## A larger allowed inaccuracy reduces calibration requirements

Rx needs to be able to measure the sign of any frequency error to allow tuning

# A value of ± 20 GHz for the laser accuracy is measurable to allow acquisition, while relaxing laser frequency spec



### shared laser



## **Tx laser Slew Rates**

## Out of service slew rate target to meet ≤ 2 second acquisition

Based on a worst case 40GHz offset → 20GHz/s minimum slew rate for acquisition

#### In service slew rate

• When the Rx frequency exceeds the dead-zone of ±400MHz, a 1 THz/s rate allows fast tracking

#### The dead zone ensures a laser offset of ≤ 900MHz

# **SOP Tracking rate**

## Previous standards have specified a 50kRad/s SOP tracking rate

Published data on DWDM links shows a wide range of SOP evolution rates, up to multiple Mrad/s

Limited data exists for SOP evolution for shorter/non CD compensated links

## Measurements on a 40km and 7 km link reported maximum rates of 32kRad/s:

 Misha Boroditsky et al, "Polarization Dynamics in Installed Fiberoptic Systems", 2005 IEEE LEOS Annual Meeting Conference Proceedings

Based on this, maintaining a 50kRad/s rate is recommended

# **Tx Specifications**

New items highlighted

Items highlighted in green are proposed to include in 1.2

Note: ETCC refers to ETCC(1.1E-2)

| Description                                                | Value          | Unit        |
|------------------------------------------------------------|----------------|-------------|
| Signalling rate                                            | 123.7±50 ppm   | Gbaud       |
| Modulation Format                                          | DP-16QAM       |             |
| Average Launch Power (Max)                                 | -6             | dBm         |
| Average Launch Power (Min)                                 |                |             |
| for ETCC ≤ 1.0 dB                                          | -11.2          |             |
| for 1.0 > ETCC ≤ 3.4 dB                                    | -12.2+ETCC     | dBm         |
| Carrier Frequency (range)                                  | 228.5 ± 20 GHz | THz         |
| Optical Frequency Accuracy                                 | ±20            | GHz         |
| Laser Linewidth                                            | 1              | MHz         |
| Power difference between X and Y polarizations (max)       | 1.5            | dB          |
| Skew between X and Y polarizations (max)                   | 5              | ps          |
| ETCC (Max)                                                 | 3.4            | dB          |
| Instantaneous I-Q offset per polarization (max)            | -20            | dB          |
| Mean I-Q offset per polarization (max)                     | -26            | dB          |
| I-Q amplitude imbalance (mean)                             | 1              | dB          |
| I-Q phase error magnitude (max)                            | 5              | deg         |
| I-Q quadrature skew (max)                                  | 0.75           | ps          |
| Transmitter In Band OSNR                                   | 36             | dB/12.5 GHz |
| Average launch power of OFF transmitter (max)              | -20            | dBm         |
| Transmitter reflectance (max)                              | -20            | dB          |
| RIN average (max)                                          | -145           | dB/Hz       |
| RIN peak (max)                                             | -140           | dB/Hz       |
| Tx laser frequency slew rate: pre acquisition (max)        | 20             | GHz/s       |
| Tx laser frequency slew rate: post acquisition (max)       | 1              | THz/s       |
| Laser relative frequency tracking accuracy                 | ±0.9           | GHz         |
| Tx clock phase noise (PN): Maximum PN mask                 |                |             |
| Frequency (Hz):                                            |                |             |
| 1E4                                                        | -100           |             |
| 4E5                                                        | -132           |             |
| 1E6                                                        | -136           |             |
| ≥1E7                                                       | -146           | dBc/Hz      |
| Tx clock phase noise (PN); Maximum total integrated random |                |             |
| jitter                                                     | 0.015          | UI_rms      |
| Tx clock phase noise (PN); Maximum total periodic jitter   | 0.03           | UI_pp       |

# **Rx Specifications**

| Description                                         | Value         | Unit   |
|-----------------------------------------------------|---------------|--------|
| Signalling rate                                     | 123.7±50 ppm  | GBd    |
| Modulation Format                                   | DP-16QAM      |        |
| Optical Frequency                                   | 228.5 ± 20GHz | THz    |
| Damage Threshold                                    | -4            | dBm    |
| Average Receive Power (Max)                         | -6            | dBm    |
| Average Receive Power (Min)                         |               | dBm    |
| For ETCC(1.1E-2)< 1.0 dB                            | -17.5         |        |
| For 1.0 ≤ ETCC(1.1E-2) ≤ 3.4 dB                     | -18.5+ETCC    |        |
| Receiver reflectance (max)                          | 20            | dB     |
| Frequency offset between received carrier and local | 40            | GHz    |
| oscillator (max)                                    |               |        |
| Polarization dependent loss (max)                   | TBD           | dB     |
| State of polarization (max)                         | 50            | kRad/s |

## **Link Parameters**

| Description                       | Value | Unit |
|-----------------------------------|-------|------|
|                                   |       |      |
| Power Budget                      | 6.8   | dB   |
| Operating distance                | 10    | km   |
| Channel Insertion Loss            | 6.3   | dB   |
| Maximum discrete reflectance      | -27   | dB   |
| Allocation for Penalties          | 0.5   | dB   |
| Additional insertion loss allowed | 0     | dB   |

Parameters from 802.3dj D1.1 are unchanged

# **Summary**

Proposed values for optical parameters for 800GBASE-LR1 are shown

Tx Power is coupled to the ETCC TQM

A similar approach can be adopted for 800GBASE-ER1

Laser frequency accuracy specifications and slew rates are presented

SOP evolution is maintained at 50krad/s

Proposed values for clock phase noise are presented

# Thanks!

IEEE 802.3dj | 13