802.3dj D1.1 Comment Resolution Electrical Topics

Adee Ran (Cisco), 802.3dj Electrical Lead Editor <others>

Eta0, Reference Rx FFE parameters

eta0 Comments 377, 35

C/ 178 SC 178.10.1

P311

L46

eta0

Ran, Adee

Cisco Systems, Inc.

Comment Type TR Comment Status D

eta0 is TBD in Table 178-13.

A value of 1e-8 has been adopted for C2M in Table 176E-6 (in the resolution of comment #72 against D1.0).

There is no reason to have different values in other interfaces; eta0 represents physical noise that comes from the same sources in all interfaces.

Also applies to eta0 in 179.11.7, Table 179-16, and in 176D.4.1, Table 176D-7.

SuggestedRemedy

Change the TBDs for eta0 to 1e-8 in Table 178-13, Table 179-16, and Table 176D-7.

The same value of eta0 is suggested by

- Comments 377 and 35
- Comments 545, 546, and 547 (which also address reference Rx FFE parameters)
- Comments 1, 2, 37, and 142 (by reference to <u>heck 3dj 01a 2407</u> and <u>lusted 3dj 06b 2407</u>)

Straw Poll #TF-3 from July 2024 shows support for this value:

I would support putting the COM parameter values and the editors note for CR and KR (per lusted_3dj_06b_2407, slides 6-7) into the P802.3dj draft specification Results (all): Y: 73, N: 2, A: 20

Note that eta0 appears twice in Table 176D–7.

Editors' recommendation: ACCEPT IN PRINCIPLE, Implement the suggested remedy, and remove the duplicate row in Table 176D–7. (include a reference to this slide)

Reference Rx FFE parameters Comments 2, 1, 545, 546, 547, 37, 142

C/ 178 SC 178.10.1 P311

L46

Reference FFE

2

Lusted, Kent

Intel Corporation Comment Type TR Comment Status D

The COM parameter values for the 200GBASE-KR1, 400GBASE-KR2, 800GBASE-KR4 and 1.6TBASE-KR8 PMDs are TBDs

SuggestedRemedv

In table 178-12, use the COM parameter values and the editors note for KR (per lusted_3dj_06b_2407, slides 6-7), which are:

```
d w = 6
Nfix = 15
N_g = 2
N f = 4
N max = 80
```

Use MLSE per Annex 178A.1.11 the MLSD implementation allowance is TBD

Set COM = 3dB

The values in the suggested remedy are also suggested by

- Comments 1 (clause 179) and 2 (clause 178) -
- Comments 546 (clause 179) and 545 (clause 178), which also address eta0, and reference lit 3dj 01a 2407

Comment 547 and comments 37 and 142 (by reference to heck 3di 01a 2407) suggest similar values for AUI-C2C except for

- N fix=14 and d w=5 (5 pre, 8 post instead of 6 pre, 8 post)
- N max=50

Straw Poll #TF-3 from July 2024 (see previous slide) indicates support for the d w and N fix values, while other values were TBD

Editors' recommendation: ACCEPT IN PRINCIPLE

- Use the proposed values in comment #2 for clause 178 for clause 179.
- Use the proposed values in comment 547 for annex 176D. _
- Add editor's notes below the COM tables in 178, 179, 176D, and 176E: "The parameters values in this table are to be confirmed and may change based on further analysis. Contributions in this area are encouraged."

(include a reference to this slide)

eta0 Comments 377, 35

C/ 178 SC 178.10.1

P311

L46

eta0

Ran, Adee

Cisco Systems, Inc.

Comment Type TR Comment Status D

eta0 is TBD in Table 178-13.

A value of 1e-8 has been adopted for C2M in Table 176E-6 (in the resolution of comment #72 against D1.0).

There is no reason to have different values in other interfaces; eta0 represents physical noise that comes from the same sources in all interfaces.

Also applies to eta0 in 179.11.7, Table 179-16, and in 176D.4.1, Table 176D-7.

SuggestedRemedy

Change the TBDs for eta0 to 1e-8 in Table 178-13, Table 179-16, and Table 176D-7.

The same value of eta0 is suggested by

- Comment 35

- Comments 545, 546, and 547 (which also address several other parameters)
- Comments 1, 2, 37, and 142 (by reference to <u>heck 3dj 01a 2407</u> and <u>lusted 3dj 06b 2407</u>)

Straw Poll #TF-3 from July 2024 shows support for this value:

I would support putting the COM parameter values and the editors note for CR and KR (per lusted_3dj_06b_2407, slides 6-7) into the P802.3dj draft specification Results (all): Y: 73, N: 2, A: 20

Editors' recommendation: ACCEPT IN PRINCIPLE, Implement the suggested remedy (include a reference to this slide)

ERL

Comments 540, 531, 541, 539, 444, 543

Nbx Comments 540, 531, 541, 539, 444

C/ 178	SC 178.9.2.2	P3	04	L14	# 540	0
Li, Mike		Intel				_
Comment Ty Nbx TBD	pe TR	Comment Status	D			ERL

SuggestedRemedy

Based on the 8 post tap, and 2x4 floating per straw-polls (#TF-3, #TF-4, https://www.ieee802.org/3/dj/public/24 07/motions 3dj 2407.pdf), change it to 16.

C/ 179B	SC 179B.4.2	P749	L 20	# 444
Ran, Adee		Cisco System	ms, Inc.	
Comment Tv	ne TR	Comment Status D		FRI

Comment Type TR Comment Status D

Reflections in the mated test fixtures should not be eliminated from the measurement.

Thus, in Table 179B-1, N_bx and T_fx should both be set to 0, consistent with Table 162B-1 (802.3ck) and the NOTE in this table.

The note is not TBD

SuggestedRemedy

Replace both TBDs with value 0.

Delete "(TBD)" from the NOTE.

The value 16 is suggested by:

- Comment #540 for Table 178–8—Transmitter and receiver
- Comment #531 for Table 178–14—Channel
- Comment #541 for both tables above
- Comment #539 for Table 176D-8-Channel

The value 0 is suggested by:

Comment #444 for Table 179B-1-Mated test fixture

For reference, the corresponding values in 802.3ck are:

- 21 in Clause 163 (Tx, Rx, and channel)
- 6 in Annex 120F (Tx, Rx, and channel) -[These numbers are equal to the total (fixed+floating) number of DFE taps in the reference receiver for each case]
- 0 in Annex 162B (Mated test fixture)

There has been no discussion of Nbx in 802.3dj so far. However, based on precedence, we may be able to adopt these values.

Editors' recommendation: ACCEPT IN PRINCIPLE

Use Nbx=16 in all ERL tables in Clause 178 and Annex 176D. Add/change editorial notes to state that the value of Nbx is to be confirmed and contributions in this area are encouraged. Use Nbx=0 in Table 179B-1.

(include a reference to this slide)

Min channel ERL Comment 543

01 470	CC 470 40	0.000	1.04	# [540
C/ 1/8	50 178.10	P 309	L 21	# 543
Li, Tobey		MediaTek		
Comment	Type TR	Comment Status D		ER
Minim	um channel ERL	is TBD		
Suggested	Remedy			
Repla	ce TBD with 11d	B, see response to commer	nt #29,	

8023dj_D1p0_closedcomments_id_240612.

The suggested remedy refers to closed comment #29 against D1.0. The response (see <u>Final comment report</u>) indicates that the value of 11 dB was indeed accepted. However, in D1.1 it still appears as TBD.

Editors' recommendation: ACCEPT.

dERL Comment 526, 542

Resolve using the response to comment #526.

C/ 178	SC	178.9.3	P3	05	L 25	# 526	- 1
Li, Mike			Intel				-
Comment dERL	<i>Type</i> (min) i	TR s TBD	Comment Status	D			ERL
Suggested chang	Reme e it to	dy -3 dB, sam	e as TX				
Proposed PROP [Editor	Respo POSED r's note	nse ACCEPT e: TBD, P3	Response Status 05 L25]	w			
C/ 178	SC	178.9.3	P3	05	L26	# 542	
Li, Tobey			Medi	aTek			
Comment dERL	Type is TBD	TR	Comment Status	D			ERL
Suggested Repla	Reme ce TBI	dy D with -3 dl	B to be consistent wi	th TX EF	RL spec.		
Proposed PROP [Editor	Respo POSED	nse ACCEPT e: TBD, P3	Response Status IN PRINCIPLE. 05 L25]	w			

Both comments propose a value of -3 dB, which is consistent with the transmit dERL requirement on D1.1. It is also consistent with the requirement in 802.3ck.

Editors' recommendation: ACCEPT.

MLSD

Comments 327, 4, 529, 530, 3, 535, 536

MLSD receiver noise Comment 327

C/ 178A	SC	178A.1.11	P737	L4	# 327
Healey, Ad	dam		Broadcom	n Inc.	
Comment	Туре	т	Comment Status D		MLSD
For the noise a not exp margin	at the c plicitly in repres	lation of C output of th included in sented by	OM using the MLSD-bas be feed-forward filter shou the calculation of COM the minimum COM limit.	ed reference receiv Ild be adjusted to a but considered to b	ver, COM_DFE and the account for impairments be consumed by the

SuggestedRemedy

Implement the "scale receiver noise" option from

<https://www.ieee802.org/3/dj/public/24_07/healey_3dj_01a_2407.pdf>. Specific changes to 178A.1.11 will be provided in a separate contribution.

The presentation referenced in the comment is <u>healey_3dj_01a_2407</u>.

The following straw poll from the July 2024 meeting indicates support for the suggested remedy:

Straw Poll #E-2

I would support the direction of modifying the calculation of COM for an MLSD reference receiver to add a method of receiver impairments per healey_3dj_01a_2407 Results (all): Y: 36, , N: 7, A: 15

The detailed contribution for implementing the proposed changes is <u>healey 3dj 01 2409</u>.

Editors' recommendation:

Implement the changes on slides 11-15 of healey 3dj 01 2409.

MLSD and its Q Comments 529, 530, 4, 535, 536, 3, 208

C/ 178	SC 178.10.1	P 312	L17	# 529
Li, Mike		Intel		
Comment MLSD	<i>Type</i> TR is not enabled	Comment Status D		MLSD
Suggested Add N	dRemedy ILSD usage para	meter, and set it to 1		
C/ 178	SC 178.10.1	P 312	L17	# 530
Li, Mike		Intel		
Comment T MLSD i	<i>ype</i> TR mplementation p	Comment Status D enalty Q is missing		MLSD

SuggestedRemedy

Add MLSD implemtentation penalty Q parameter and set it as zero in magenta or TBD.

Comment #4 is similar to #529. #535, #536, and #3 are the corresponding comments for Clause 179.

Based on straw poll #TF-3 from the July 2024 plenary (which addressed slides 6-7 of <u>lusted_3dj_06b_2407</u>) there is consensus to add MLSD implementation allowance parameter Q, and the value in the slide is TBD (as in the suggested remedy).

Note that in <u>healey_3dj_01_2409</u> it is suggested to remove the parameter Q, in conjunction with using a more detailed calculation of the expected MLSD effect.

Also note that there is no "MLSD usage" parameter defined in Annex 178A. The reference receiver can be specified by either referring to the subclause that defines it or by defining the new parameter and subclause mapping in Annex 178A. It seems more efficient to point directly to the subclause.

Comment #208 suggests adding MLSD to the recommendation for CR TP0d-TP5d COM (179A.7). However, 179A.7 refers to Table 178–13, and if this table specifies using MLSD then no additional change is required.

Editors' recommendation:

- In 178.10.1 and 179.11.7, specify that the maximum likelihood sequence detection defined in 178A.1.11 is to be used for the calculation of COM.
- In 176D.4.1 and 176E.5.2., specify that the maximum likelihood sequence detection defined in 178A.1.11 is not included in the calculation of COM.
- Implement with editorial license

(include a reference to this slide)

RX Test

Comments 334, 371, 372

RX Test Comment 334

1	178	SC 178.9.3.3	

P 306

16

334

Healey, Adam

Broadcom Inc.

Comment Type T Comment Status D

Rx tests, multi-lane

The following note is included in 179.9.5.4.2 and 176E.6.12. "NOTE--If noise is applied to each of the n lanes one at a time, results of the n measurements are summed to yield the block error ratio. The result may need to be corrected based on the block error ratio with no noise added on any lane." This statement should be true for any interference (or jitter) tolerance test but it only appears in Clause 179 and Annex 176E. This consideration should be repeated here, or moved to a centralized location (which is referenced from here).

SuggestedRemedy

Add this note, or equivalent content, to 178.9.3.3. Alternatively, define considerations for lane-by-lane testing in a central location (Annex 174A?) and ensure it is referenced by these test procedures. See also 176D.3.4.4.

Proposed Response

Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

[Editor's note: technically incomplete, missing required note in 178] Add this note quoted in the comment to 178.9.3.3. Implement the suggested remedy with editorial license.

D1.1, 179.9.5.4.2

Table 179-12-Receiver jitter tolerance parameters

Parameter	Case A	Case B	Case C	Case D	Case E	Case F	Units
Jitter frequency	0.04	0.4	1.333	4	12	40	MHz
Jitter amplitude (pk-pk)	5	0.5	0.15	0.05	0.05	0.05	UI

54

2

349 Copyright © 2024 IEEE. All rights reserved. This is an unapproved IEEE Standards draft, subject to change.

Draft Amendment to IEEE Std 802.3-2022 IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force	IEEE Draft P802.3dj/D1.1 11 July 2024
NOTE 1—If jitter is applied to each of the n lanes one at a time, results of the n meas block error ratio. The result may need to be corrected based on the block error ratio with	urements are summed to yield the th no jitter applied on any lane

D1.1, 178.9.3.3, p. 307

Table 178–10—Receiver interference tolerance parameters

	Test 1 (low loss)			Test 2 (high loss)			0.01	
Parameter	Min	Max	Target	Min	Max	Target	Units	
Block error ratio ^a			< 1.45	× 10 ⁻¹¹			_	
Insertion loss, <i>ILdd</i> , at 53.125 GHz ^b Receiver package class A Receiver package class B	14.5 14.5	15.5 15.5	-	33.5 30	34.5 31	-	dB	
COM including effects of broadband noise ^c The block error ratio (see 178.2) is measured	instead of	the FEC s	3 ymbol error	ratio in st		3 he receiver	dB	

RX Test Comment 371, 372

CI 178	SC 178.9.3.3	P 307	L 30	
Ran, Adee		Cisco System	ns, Inc.	

Comment Type

Comment Status D

Rx tests

371

Footnote b of table 178-10 says "ILdd measured between TPt and TP5 (see Figure 93C–4) minus ILdd of the specific package used by the test transmitter." and the value of the "hight loss" is 40 dB minus the DUT's package loss.

If TPt is a measurable point then the test channel does not include the package used by test transmitter.

In order to calibrate the test channel to "40 dB minus the DUT package" the transmitter package's ILdd should be added to the measured ILdd, not subtracted from it.

The footnote is missing from the table in 176D.

SuggestedRemedy

Change "minus" to "plus".

Use the same footnote in 176D.

т

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

[Editor's note: incomplete - incorrect calculation]

It is assumed that the goal of test 2 is to verify operation over an die-to-die channel with IL of 40 dB.

The table sets targets of 34 dB for receiver package class A and 30.5 dB for receiver package class B. These are effectively 40 dB minus the reference IL of the DUT (TP5 to TP5d). These values therefore represent the IL from the transmitter to TP5. Figure 93C-4 shows the test channel from TPt to TP5 replica, including from TP0-to-TP0a replica, but not including a transmitter package. If a packaged transmitter is used, its IL (TP0d to TP0) should be added to that of the measured TPt to TP5 replica channel. The existing footnote says "ILdd measured between TPt and TP5 (see Figure 93C-4) minus ILdd of the specific package used by the test transmitter" which seems contrary to the rationale above. The value in the table should be the IL of the combined TPt-TP5 (measured) and TP0d-TP0 (packaged transmitter) channel.

Implement the suggested remedy in alignment with comment #372.

Comment 371 proposes to change "minus" to "plus" in footnote b).

 Doing so gives 40dB insertion loss from Tpt-to-Tp5 and the specific package used by the test transmitter for Test 2.

Table 178–10—Receiver interference tolerance parameters

	Test 1 (low loss)			Test 2 (high loss)			
Parameter	Min	Max	Target	Min	Max	Target	Units
Block error ratio ^a			< 1.45	× 10 ⁻¹¹			
Insertion loss, <i>ILdd</i> , at 53.125 GHz ^b Receiver package class A Receiver package class B	14.5 14.5	15.5 15.5	-	33.5 30	34.5 31	-	dB
COM including effects of broadband noise ^c	-	-	3	-		3	dB

^aThe block error ratio (see 178.2) is measured instead of the FEC symbol error ratio in step 10) of the receiver interference tolerance method defined in 93C.2.

^b ILdd measured between TPt and TP5 (see Figure 93C-4) ^{plus}/_{minus} ILdd of the specific package used by the test transmitter.

^c The COM value is the target for the receiver noise level calibration defined in 93C.2 step 7). The channel noise voltage applied in 93C.2 step 8) should be as close as practical to the value needed to produce the target COM. If higher amplitude values are used, this would demonstrate margin to the specification but this is not required for compliance.

Editors' recommendation: ACCEPT IN PRINCIPLE Implement the suggested remedy in alignment with comment #372.

RX Test Comment 371, 372

C/ 178 SC 178.9.3.3

P 307 L 39

Ran, Adee

Cisco Systems, Inc. Comment Status D

372

Rx tests

Comment Type Т

The editor's note highlights a problem in footnote b that should be addressed The insertion loss of the test channel should be calculated differently for each of the cases listed in list item e).

SuggestedRemedy

Add an item to the list to address the calculation of the required test channel ILdd. Change the "Parameter" in the second row of Table 178-10 to "Test channel ILdd at 53.125" and refer to the new list item in the footnote instead of the current footnote.

Also apply in 176D as appropriate

Proposed Response

Response Status W PROPOSED ACCEPT IN PRINCIPLE.

[Editor's note: This comment proposes an update to a technically complete area in the draft] The suggested remedy seems to refer to the dashed list in item e) of 178.9.3.3. The test channel ILdd calculation are different for each of the cases in the dashed list:

- in the first case, the TP0d-TP0 IL should be taken from s-parameters.
- in the second case, the transmitter IL should be omitted from the calculation,

- in the third case, the device should comply with either Tx class A or Tx class B, and the IL of the corresponding package model should be used

Implement the suggested remedy with the additional considerations above, with editorial license, and with consideration of the response to comment #371.

Editor's note (to be removed after D1.1): Test channel ILdd and table footnote b are based on the response to comment #247 against D1.0. However, the term "the specific package used by the test transmitter" seems to be applicable only for the first transmitter model listed in item e). Contributions in this area are encouraged.

D1.1, 179.3.3.3, P. 306

- For the calculation of test channel COM, the transmitter model is determined in one of the following e) ways.
 - If the transmitter is a device with known S-parameters and transition time T_{rr} these parameters _ should be used instead of the transmitter package model in 93A.1.2. T, should be provided as the value at the input of the device S-parameters network, as defined in 120G.3.1.4 but with no observation filter.
 - If a calibrated instrument-grade transmitter is used, the TP0 to TP0a trace in Figure 93C-2 and Figure 93C-3 and TP0 to TP0a replica trace in Figure 93C-4 are omitted and the transmitter device package model S^(tp) is omitted from Equation (93A-3). The filtered voltage transfer function $H^{(k)}(f)$ calculated in Equation (93A-24) uses the filter $H_{i}(f)$ defined by Equation (93A-46), where T_e is the measured transmitter transition time (see 120G.3.1.4).
 - If the transmitter is composed of a device with unknown S-parameters or unknown transition time, then the transmitter device package model $S^{(tp)}$ in 93A.1.2 is used, and T_r is determined from measurement at TPOv and the TPO to TPOv S-parameters. The transmitter transition time (see 120G.3.1.4) is measured at TPOv with transmit equalization turned off by setting coefficients to preset 1 values (see 179.9.4.1.3). T_r is set as the value in Equation (93A-46) that would result in the reference transition time $T_r^{(ref)}$, determined according to 163A.3.1.3 with f_b and A_{y} equal to values in Table 178–13, being equal to the measured transition time.

Table 178-10—Receiver interference tolerance parameters

	Te	st 1 (low l	oss)	Te	st 2 (high	loss)	-
Parameter	Min	Max	Target	Min	Max	Target	Units
Block error ratioa			< 1.45	× 10 ⁻¹¹			-
Insertion loss, <i>ILdd</i> , at 53.125 GHz ^b Receiver package class A Receiver package class B	14.5 14.5	15.5 15.5	-	33,5 30	34.5 31	-	dB
COM including effects of broadband noise ^c	-	-	3	-		3	dB

"The block error ratio (see 178.2) is measured instead of the FEC symbol error ratio in step 10) of the receiver interference tolerance method defined in 93C.2.

^b ILdd measured between TPt and TP5 (see Figure 93C-4) minus ILdd of the specific package used by the test transmitter

TX Jitter

Comments 174, 176

TX Jitter Comment 174, 176

C/ 178	SC	178.9.2	P 301	L47	# 174
Hidaka, Ya	asuo		Credo Semico	onductor, Inc.	
Comment	Туре	TR	Comment Status D		Tx jitter
J3u03 Since jitter s or imp calvin	for Tx the los pec val rove th _3dj_0	package C s to the me lue to take e jitter mea 1b_2407.	lass A is specified as 0.106 asurement point is higher th account of larger measurem surement methodology, for	UI that is same an clause 163, ent errors due to example by UP0	as clause 163.9.2. we need to relax the b higher insertion loss OJ in
Suggested	Reme	dy			
Relax 0.140	J3u03 UI, or e	for Tx pack	age Class A to 0.138 UI and apply UPOJ method in calvi	d J3u03 for Tx p n_3dj_01b_240	ackage Class B to 7 to J3u03.
Proposed	Respon	nse	Response Status W		
not ye The U https:/ detail.	t define POJ m /www.ie A more	ed. ethod is mo eee802.org e complete	entioned on slide 8 of /3/dj/public/24_07/calvin_3d proposal is required to impl	j_01b_2407.pdf ement it into a s	but isn't described in tandard.
Lidaka V	Jacus Vacus	5 1/00.3.3	P 010		# 170
Common	t Tuno	TD	Commont Status D	onductor, inc.	Ty iitto
J4u0 Sinc jitter or im calvi	3 for T. e the lo spec v prove n_3dj_	x package of ass to the malue to take the jitter me 01b_2407.	Class A is specified as 0.118 easurement point is higher t account of larger measurer asurement methodology, for	UI that is same han annex 120F nent errors due t r example by UP	as annex 120F.3.1. , we need to relax the o higher insertion loss OJ in
Suggeste	dRem	edy			
Rela or ex	x J4u0: tend a	3 for Tx pac nd apply UF	kage Class A to 0.153 UI ar OJ method in calvin_3dj_01	d for Tx package b_2407 to J4u0	e Class B to 0.156 UI, 3.
Proposed	d Resp	onse	Response Status W		
PRO [Edit Reso	POSE or's not	D REJECT. te: This con ing the resp	nment proposes an update to onse to comment #174.	o a technically co	omplete area in the draft]

September 2024

The comments propose to either

- 1) adjust J3u03 to account for higher package loss in .dj relative to .ck.
 - However, loss to TP0v is not defined.
- Apply the UPOJ method from 2) calvin_3dj_01b_2407.
 - More complete proposal is needed to implement in the standard.

Editors' recommendation: REJECT.

$A_v, A_{ne}, A_{fe} and v_f$

Comments 528, 534, 160, 161, 376, 573, 563, 162, 163, 410, 538

A_v, A_ne, A_fe vs. R_d Comments 528, 534, 160, 161

C/ 178	SC	178.10.1	P3	11	L 10	# 528
Li, Mike			Intel			
Comment Av, Af	Type le, Ane	TR TBDs	Comment Status	D		A_v, A_fe, A_n
Suggested	Remea	iy				
Repla 0.413 see lir	ce them , 0.413, n_3dj_0	0.608 V (0.1a_2407.	Av, Afe, Ane) pdf, slide 4			
Proposed	Respon	ise	Response Status	w		
PROF [Edito Resol	POSED r's note: ve using	ACCEPT : TBD, P3 g the resp	IN PRINCIPLE. 11 L10-12] onse to comment #3	76.		
178	SC 17	8.10.1	P311	1	L10	# [160
udek, Mike			Marvell			
omment Ty	pe 1	TR	Comment Status	D		A_v, A_fe, A_ne
With the into a 50	change Ohm k	e of Rd fro bad increa	om 50 Ohm to 46.25 ased resulting in a re	Ohm in equirem	n COM the effect ent for approxim	tive output amplitude ately 4% larger steady

into a 50 Ohm load increased resulting in a requirement for approximately 4% larger steady state output amplitude from the transmitter than for 100G per lane if Av is the same as for 100GBASE-KR1.

SuggestedRemedy

Make Av and Afe equal to 400mV and Ane to 585mV.

```
Proposed Response Response Status W
```

```
PROPOSED ACCEPT IN PRINCIPLE.
```

[Editor's note: This comment proposes an update to a technically complete area in the draft] Resolve using the response to comment #376.

C/ 179	SC	179.11.7	P3	58	L10	# 534
Li, Mike			Intel			(1) (1) (1) (1)
Comment 7 Av, Afe	ype Ane	TR TBDs	Comment Status	D		A_v, A_fe, A_ne
Suggested Replace 0.413, 0 see lim	Remea e them 0.413, _3dj_0	ly 0.608 V (A 01a_2407.p	v, Afe, Ane) df, slide 4			
Proposed R PROPC [Editor's	OSED . s note:	ACCEPT IN TBD P35	Response Status N PRINCIPLE. 8 L10-121	w		
Resolve [Editor's	e using s note:	the responses the the responses to the test of	nse to comment #3 subclause from 179	76. 0.11.11 to	179.11.7]	
Resolve [Editor's	e using s note: SC	the respondence of the responden	nse to comment #3 subclause from 179	76. 0.11.11 to 356	179.11.7] <i>L</i> 10	# 161
Resolve [Editor's C/ 179 Dudek, Mil	e using s note: SC ke	the respondence of the responden	nse to comment #3 subclause from 179 P: Man	76. 0.11.11 to 356 well	179.11.7] L 10	# [161
Resolve [Editor's Cl 179 Dudek, Mil Comment	e using s note: SC ke Type	the respondence of the responden	nse to comment #3 subclause from 179 P: Man Comment Status	76. 0.11.11 to 356 vell s D	179.11.7] L 10	# [<u>161</u> A_v, A_fe, A_n
Resolve [Editor? C/ 179 Dudek, Mil Comment With th into a state of 100GE	e using s note: SC ke Type he cha 50 Oh output 3ASE-	179.11.7 TR nge of Rd f m load incr amplitude f CR1.	nse to comment #3 subclause from 179 Pr Man Comment Status from 50 Ohm to 46 eased resulting in a from the transmitter	76. 0.11.11 to 356 vell s D .25 Ohm a requirer r than for	L 179.11.7] L 10 in COM the effe nent for approxi 100G per lane i	# 161 A_v, A_fe, A_m botive output amplitude imately 4% larger steady if Av is the same as for
Resolve [Editor? C/ 179 Dudek, Mil Comment With ti into a state of 100GE Suggested Make	e using s note: SC ke Type he cha 50 Oh butput 3ASE- IReme Av and	179.11.7 TR Inge of Rd I m load incr amplitude f CR1. dy d Afe equal	nse to comment #3 subclause from 179 P: Man Comment Status from 50 Ohm to 46 eased resulting in a rom the transmitter to 400mV and Ane	76. 0.11.11 to 356 vell s D .25 Ohm a requirer r than for a to 585m	179.11.7] L10 in COM the efferent for approxi 100G per lane i IV.	# [<u>161</u> A_v, A_fe, A_m ctive output amplitude inately 4%, larger steady if Av is the same as for

[Editor's note: This comment proposes an update to a technically complete area in the draft] Resolve using the response to comment #376. [Editor: Page changed from 356 to 358] Comments 528 and 534 propose using the values from 802.3ck for the COM parameters A_v , A_{fe} , and A_{ne} .

Comments 160 and 161, as well as 376 (next slide), propose modified values to account for the change in R_d from 50 Ω to 46.25 Ω .

These parameters are related to the minimum and maximum values of transmitter parameter v_f , divided by a factor calculated as $2*R_0/(R_0+R_d)=1.04$, giving:

- $A_v = A_{fe} = 0.385 V$ (corresponding to min $v_f = 0.4$)
- $A_{ne} = 0.578 V$ (corresponding to max $v_f = 0.6$)

The proposed relationship assumes that the value of $1.04*A_v$ is achieved at the measurement point TP0v/TP2 with the specified v_f measurement method (despite loss effects that might reduce the measured value). It is suggested to add an editor's note stating that this needs confirmation.

A_v, A_ne, A_fe vs. R_d, increased minimum Comment 376

C/ 178	SC	178.10.1	P311	L 10	# 376
Ran, Adee			Cisco Syste	ems, Inc.	
Comment Ty	pe	TR	Comment Status D		A_v, A_fe, A_ne
The valu	e of	A_v and A_	fe in Table 178-13 is TBD).	

In previous PMD clauses it was assumed that a transmitter can have a minimum output voltage of A_v=0.413 V with a reference die impedance Rd=50 Ohm. This somewhat matches the specification of min V_f=0.387 V as measured on a 50 Ohm load (although since the reference was equal to the load, these should be the same; the difference is due to a historic definition of v_f).

However, in this project we changed the reference Rd to 45.25 Ohm, so to get 0.413 V on a 50 Ohm load the A_v should be increased by at least a factor of 2*50/(45.25+50)=1.05, resulting in 0.434 V.

In addition, experience shows that devices typically have higher than the minimum output voltage allowed in by previous specifications. This improves the reach by providing larger signal to the link partner. Increasing the minimum output will improve COM for high loss channels targeted by KR and CR PMDs, and from design point of view it is preferable over assuming more capable receivers.

It is therefore suggested that A_v is increased from 0.434 V (which would create the same output voltage) to 0.525 V (which would create 500 mV on a 50 Ohm load).

Note that this change would directly affect the Tx output requirements for KR because the spec parameter is $d_{\perp}f$, where the reference is calculated with $A_{\perp}v$. For CR, the minimum $v_{\perp}f$ needs to be set correspondingly (ideally 0.5 V but may be lower for high-loss hosts). Since host channels have not been adopted, a change in $v_{\perp}f$ is not proposed at this time.

This should be applied in KR and CR, but not in C2C and C2M, which target lower loss channels.

SuggestedRemedy

Change A_v and A_fe in Table 178-13 and Table 179-16 from TBD to 0.525 V.

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE. [Editor's note: This comment proposes an update to a technically complete area in the draft]

The comment suggests that A_v should be increased by a factor 1.05 due to the change in R_d, but that is incorrect. As noted by Comment #160 on the same topic, the correct factor is 2°50/(46.25+50)=80/77*1.04, and A_v should actually be decreased by that factor. Assuming that v_f (measured on 50 Ohm load) is specified as 0.4 V (min) and 0.6 V (max), A_v and A_fe should be changed to 0.385 V, and A_ne should be changed to 0.578. This should be applied in Clauses 178 and 179 and Annexes 176D and 176E.

The values above assume that the value corresponding to A_v (with the 1.04 factor) is achieved in measurement of v_f. An editor's note should state that this needs confirmation.

September 2024

Comment #376 suggests a correction based on the change in R_d . The suggested remedy incorrectly suggests multiplying by the correction factor 1.04 in the previous slide, instead of dividing by it. The proposed response shows the correct values.

In addition, this comment proposes that, for the CR and KR PMDs only, A_v and A_{fe} be increased to a value corresponding to v_f (min) = 0.5 V instead of 0.4 V, to enable operation with the higher loss channels assumed for these PMDs. With a division by the factor 1.04, this would result in $A_v = A_{fe} = 0.481$ V.

Note that v_f (min) is currently TBD in clause 179 for all 3 host designations. In clause 178 the specification is dvf (min), where the reference value is based on A_v .

Increasing A_v and A_{fe} as suggested is expected to improve COM, but no data has been provided. In addition, it is unclear if this increase can be supported by a wide range of PMD implementations.

A_v, A_ne, A_fe, reduced maximum Comment 573, 563

CI 176E	SC 176E.5.2	P704	L8	# 573	
Dawe, Pier	s	Nvidia			
Comment 1	ype TR	Comment Status D		A_v, A_fe, A	ne
These reduce 178 an	voltages Av Afe d even for CR a d 179, so it's ha	Ane look like old style backp nd KR, and should be reduct rd to see why they are not T	plane-style value ed further for C2 BD here also.	es, which should be M. They are TBD in	
Suggested	Remedy				
Reduce	e Av Afe Ane. A eta0 in proporti	ssuming this COM table pas	sses and fails the	e right scenarios,	
Proposed P	Response	Response Status W			
The va and lon https:// comme consen	lues in the table og consensus bi www.ieee802.o ent #72 against isus to change t	were adopted based on ana uilding, summarized in rg/3/dj/public/24_06/lusted_3 D1.0. The comment does no these values.	alysis made in nu dj_01a_2406.pd t provide justifica	imerous contributions f, as a result of ation or indication of	
C/ 179	SC 179.9.4	P 334	L 53	# 563	
Dawe, Pier	5	Nvidia			
Comment T	ype TR	Comment Status D		Tx diff PtP	, vf
Supply has not mV, an	voltages and vo changed since d other C2M ha	Itage swing trend downwards 10GBASE-KR, a long time a d 900 mV. A high max is har nup to the max, causing the	s over the years. ago. In 3ck and I rmful when a rec	This 1200 mV max D1.0, C2M had 750 reiver can ask someor	ne

NEXT in its receiver.

SuggestedRemedy

Reduce 1200 mV to e.g. 1000 mV, here, in the receiver Table 179-10 and in the text in 179.9.5.2. Reduce the steady-state voltage vf max from 0.6 V to 0.5 V. Make appropriate adjustments to Av Afe Ane and eta0 in COM tables. Similarly for KR and C2C. See another comment for C2M. Comment #573 suggests a reduction of A_v , A_{fe} , and A_{ne} for C2M, and possibly also for KR and CR, without specific values. However, based on comment #563 (which is mentioned in simms 3dj 01 0924 along with 523, 524, and 570), it is assumed that a value of 0.5 V is suggested for v_f (max) in CR, KR, and C2C, without changing the minimum. (#570 suggests 0.45 for C2M)

Justification for changing the *maximum* and not the minimum seems to be based on COM results, but COM uses an extreme assumption of maximum swing for NEXT, and devices are not required to reach that maximum. It is likely that reducing the *minimum* would be more beneficial for transmitter implementations than reducing the maximum.

A possible set of values for this comment (as understood by the editors) is shown as option C below.

Interim summary: possible directions are

A. $A_v = A_{fe} = 0.385$ V and $A_{ne} = 0.578$ V, consistent with v_f range of 0.4 V to 0.6 V.

- B. $A_v = A_{fe} = 0.481$ V and $A_{ne} = 0.578$ V, consistent with v_f range of 0.5 V to 0.6 V.
- C. $A_v = A_{fe} = 0.385$ V and $A_{ne} = 0.481$ V, consistent with v_f range of 0.4 V to 0.5 V.

Editors' recommendations:

- In 178 and 179, use $A_v = A_{fe} = 0.385$ V and $A_{ne} = 0.578$ V (option A).
- In 176D and 176E, use the same values for A_v , A_{fe} , but for A_{ne} use the response to comment #162 (next slide).
- In 179 and 176E, set $v_{\rm f}$ min and max to values corresponding to $\rm A_v$ and $\rm A_{ne},$ for all host designations.
- Add an editor's note on v_f as suggested on a previous slide.

A v, A ne, A fe vs. R d Comments 162, 163, 410, 538

C/ 176D SC Dudek, Mike	TR	P686 Marvell Comment Status D	L8	# [162	C/ 176D Li, Mike	SC	176D.4.1	P6 Intel	86	L9	
With the ch into a 50 Of state output	ange of Rd fr hm load incre t amplitude fr	om 50 Ohm to 46.25 Ohm ased resulting in a require om the transmitter than for	n in COM the effe ament for approxit or 100G per lane.	ctive output amplitude mately 4% larger steady	Comment 1 Ane of Suggested	Type 0.45 is Remed	TR inconsiste	Comment Status ant with the TX Vdiff	D max		
SuggestedRem	edy				Chano	e it to (6 to be co	onsistent			
Change the the Test tra	values of Av	and Afe to 400mV and A straint on page 682 line 31	ne to 585mV. It should be increa	f that is not done then used from 800mV to	Proposed F	Respon	Se IECT	Response Status	w		
Proposed Resp PROPOSEI [Editor's not The values https://www	onse D REJECT. te: technically for A_v, A_n .ieee802.org	Response Status W v incomplete - mismatch o e, A_fe were adopted bas (3/di/public/24_06/lusted_	of specifications ai ed on 3dj_01a_2406.pd	nd COM parameters] f along with an editorial	Résolv	s note: e using	the respo	ment proposes an u inse to comment #1	pdate to a 62.	a technically	co
note stating	that the value	es are to be confirmed an	id may change ba	ised upon further	C/ 176D	SC	176D.4.1	1	°686	L9	
For CRG di	scussion				Ran, Adee			Cis	co Syste	ems, Inc.	
T OF OF CO O	000001011				Comment 7	ype	TR	Comment Stat	us D		
C/ 176E SC Dudek, Mike	176E.5.2	P704 Marvell	L 8	# 163	The val The ma 1200 m The loc	lue of a aximum V. al dev	A_ne in T n allowed ice's trans	able 176D-7 is 0.4 differential peak-to smitter (which crea	5. o-peak v	oltage for a NEXT) can	tra

With the change of Rd from 50 Ohm to 46.25 Ohm in COM the effective output amplitude into a 50 Ohm load increased resulting in a requirement for approximately 4% larger steady state output amplitude from the transmitter than for 100G per lane.

SuggestedRemedy

Change the values of Av and Afe to 400mV and Ane to 585mV. If that is not done then the Transmitter steady-state Voltage Vf(min) in Table 176E-1 needs to be increased to 400mV and the steady state output voltage Vf (min) in Table 176E-2 increased to 415mV

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE

[Editor's note: This comment proposes an update to a technically complete area in the draft] Resolve using the response to comment #162.

sn sc	1760 4	1	P 696	10	# 1410
ROPOSED Editor's note tesolve usin	REJECT This co g the res	r. mment proposes an u ponse to comment #1	pdate 62.	to a technically o	complete area in the draft
osed Respon	nse	Response Status	w		
hange it to	0.6 to be	consistent			
estedRemed	dy				
ne of 0.45 is	s inconsis	stent with the TX Vdiff	max		
nent Type	TR	Comment Status	D		A_v, A_fe, A_ne
ĸe		Inter			

C/ 176D	SC	176D.4.1	P6	86	L9	# 410
Ran, Adee			Cisco	System	ns, Inc.	
Comment 7	Гуре	TR	Comment Status	D		A_v, A_fe
The va	lue of /	A_ne in Tal	ble 176D-7 is 0.45.	1.		

nsmitter in Table 176D-1 is

e this maximum, so its should be at least 600 mV to match. In 802.3ck, the value 0.608 V was used, but since the maximum differential applies to any signal (not just PRBS13Q) there is no need to exceed 600 mV.

Alternatively the max diff ptp voltage in the Tx could be reduced to 900 mV, but it is likely that this would reduce reach in practical implementations, so it is not desired.

This also applies to A ne in Table 176E-6 (currently 0.45 V) and in Table 178-13 and 179-16, (currently TBD).

SuggestedRemedy

Change A ne to 0.6 V in Table 176D-7, Table 176E-6, Table 178-13, and Table 179-16.

Proposed Response Response Status W

PROPOSED REJECT.

[Editor's note: This comment proposes an update to a technically complete area in the draft] Resolve using the response to comment #162

Comments 162 and 163 propose changes to the values for A_a, A_{re}, and A_{ne} in Annexes 176D and 176E to account for the reduced R_d.

The values for A₁ and A₂ are expected to be resolved by the response to comment #376.

Comments #538 and #410 ask to set the value of A_{ne} to correspond to the maximum v, which is currently 0.6 V in 176E and 179. As shown on the previous slide, this would result in A_{ne} = 0.578 V.

The value of 0.45 V for A_{ne} in 176D and 176E of D1.1 was adopted by consensus, see lusted 3dj 01a 2406. Based on the previous slide, this value corresponds to maximum v_{ϵ} of 0.433 V.

Thus: A_ne

- If the value of A_{ne} for AUI-C2M and AUI-C2C is Α. retained, then $v_{f}(max)$ in Table 176E–1 should be reduced from 0.6 V to 0.468 V.
- Β. If v_f (max) is retained, then A_{ne} for AUI-C2M and AUI-C2C should be set to 0.578 V (option A in the previous slide).
- C. Or, as middle ground, v_f (max) can be set to 0.5 and A₂₀ to 0.481 (option C in the previous slide).

Note that for AUI-C2C the parameter is dv, which is addressed by comment #139.

Editors' recommendation: Choose one of the options above; based on the choice, set A_{no} in 176D and 176E and set maximum v, in 176E.

538

C2M ILdd budget

Comments 422, 115, 418, 420

C2M ILdd budget and host model **Comments 422, 115**

P703

Comment Type TR

Ran, Adee

Cisco Systems, Inc.

Comment Status D

L41

422

C2M Host channel

Host PCB channel is TBD.

In addition, there are two package models with different parameters; we need to choose the package model as part of the host model.

A set of possible C2M host models was presented in

https://www.ieee802.org/3/di/public/24_07/ran_3di_01b_2407.pdf, slide 16, using PCB parameters on slide 8, which result in 1.7 dB/inch (same as those used in clause 162).

With a host channel IL of 27.3 dB, option 2, with 45-mm class B package trace and 217mm PCB zp, represents a reasonable high-radix host design.

Note that the zp is not the actual PCB trace length but only TP0-TP1 (see slide 7).

SuggestedRemedy

Use the parameters on slide 8 with PCB zp=217, C0=C1=0, as the host PCB model for C2M in Table 176E-5.

Delete the "Class A package model" row and set "Transmission line 1 length" in the "Class B package model" row to 45 mm (one value).

Refer to this model in "Host channel parameters" in Table 176E-9 (interference tolerance) and in 176F 6 12 2

Change TBDs in "Test channel insertion loss at 53,125 GHz" row to: Low loss: min=9 dB, max:10 dB (a mated test fixture) High loss: min=33.5 dB, max=34.5 dB (maximum TP0d-TP1a loss)

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

[Editor's note: TBD, P703 L41]

Based on the comment it is assumed that the suggested remedy refers to option 2 on slide 16 in the referenced presentation, and specifically proposed the values Pkg zp=45, PCB zp=217, C0=C1=0. The resulting IL of the mathematical channel added in COM calculation at 53,125 GHz would be 24.62. The "total host channel channel" and "Tp0d-TP1a IL" are informative, and may need to be adjusted based on the responses to comments #566 and #520.

Note that comment #537 suggests a different PCB model for CR host.

Pending CRG discussion.

C/ 176E	SC 17	6E.2	P6	95	L 40	# 115
Ghiasi, Ali			Ghias	si Quantum	/Marvell	1.
Comment 7 Figure	ype TBDs	TR Co	omment Status	D	'k diagram,	C2M Host channel
Suggested	Remedy					
See Gh Conneo Module Host Ilo	tor IIdd= IIdd=3.8 Id=23.75	supporting pr =2.45 dB 3 dB 5 dB	esentation fron	n July-24		

These two comments effectively suggest values for the host channel insertion loss

- #422 suggests using host model option 2 on slide 16 of ran 3dj 01b 2407, which results in 34 dB from TP0d to TP1a
- #115 suggests a budget of 2.45+3.8+23.75=30 dB die-to-die (from TP0d to TP1d).

There is an apparent difference of 4 dB, but note that the bookends (TP1a and TP1d) are not the same.

C2M ILdd budget and host model Comments 422, 115

Possible parameters for C2M (X=27.3 dB)

Using class B package with zp of either 30 or 45 mm, with/without CO

Option	pkg zp [mm]	C0 [fF]	PCB zp [mm]	C1 [fF]	COM channel IL [dB]	Total host channel IL [dB]	TpOd-TP1a IL [dB]
1	30	0	258	0	24.58	27.28	33.98
2	45	0	217	0	24.62	27.32	34.02
3	30	29	249	Û	24.62	27.32	34.02
4	45	29	205	0	24.61	27.31	34.01

Note that <u>ghiasi 3dj 03 2409</u> slide 7 updates the proposal in #115 to 25.75+2.45+3.8=32 dB (TP0d-TP1d).

#422 suggests using host model option 2 on slide 16 of <u>ran_3di_01b_2407</u>

C2M ILdd budget and host model Comments 422, 115

Recall an illustration of the two test points TP1d and TP1a in <u>ran_3dj_elec_01a_240801</u> slide 11...

Creating C2M module specifications (cont)

- Even if we had a reference model for the module... deriving input/output specifications is more complicated than the host case
- We need reference models of the TP1-TP1d and TP4d-TP4 channels
 - These are shorter than TP1-TP1a and TP4a-TP4 in a mated test fixture
 - We can't start with measured MTF S-parameters and add some mathematical model, as in the host case...
- Contributions in this area are encouraged
 - Mathematical expressions
 - Explicit S-parameters
 - Combinations
 - Other ideas

With an allocation of 3.8 dB to the HCB, The insertion loss between TP1d and TP1a is likely about 3 dB (it may be lower if the DSP in the module is packaged).

This means

- TP0d-TP1d is **~31** dB in #422 vs. **30 or 32** dB in #115
- TP0d-TP1a is 34 dB in #422 vs.
 ~33 or ~35 dB in #115
- The host model suggested by #422 is close to what is assumed in #115

There seems to be agreement between the two comments.

2024-08-01

IEEE P802,3d) electrical ad hoc

C2M ILdd budget and host model Comments 418, 420

C/ 176E	SC	176E.5	P7	01	L30	# 418	
Ran, Adee			Cisco	System	ns, Inc.		
Comment	Туре	т	Comment Status	D		C2M Host cha	annel
The sta single	andard design	d does not her, so no s	recommend a chann such recommendation	nel - and on can b	the full channel e made.	is not owned by a	
The co	ntent	of this sub	clause would be bett	ter desc	ribed as "Expected	ed channel propertie	es".
Suggested	Reme	dy					
Chang	e the I	heading of	176E.5 to "Expecte	d chann	nel properties".		
Add th "The fo two C2 176E-2	e follo ollowin M cor 2. The	wing parag ng subclaus mponents, n se test poir	raph after the existing es describe the exp from TP0a to TP1d a tts are typically not a	ng parag ected pr and fron accessit	graph: roperties of the c n TP5d to TP5d, ble in an impleme	hannels between the as depicted in Figur ented system."	e
Proposed I	Respo	nse	Response Status	w			
PROP	OSED	ACCEPT	IN PRINCIPLE.				
[Editor	's note	e: This com	ment proposes an u	update to	o a technically co	mplete area in the o	draft]
Implen	nent th	ne suggeste comments	ed remedy with edito #148, #196, and #4	orial lice	nse and with con	sideration of the	

Note that the TP0d-TP1d insertion loss is not normative and is not even a recommendation, as this path is divided between the host and the module.

Comment #418 suggests rephrasing the text in 176E.5 to clarify that.

Comment #420 suggests using a table for the ILdd values of subsections of the path, instead of having numbers in the figure. The related contribution <u>ran_3dj_03_2409</u> discusses this comment and proposes the table format.

Editors' recommendation:

- Adopt 34 dB as the reference max ILdd between TP0d and TP1a.
- Adopt the COM channel model parameters of "option 2" on slide 16 of ran_3dj_01b_2407. Use these parameters for the host PCB model for C2M in Table 176E-5. Delete the "Class A package model" row and set "Transmission line 1 length" in the "Class B package model" row to 45 mm (one value).
- In Table 176E-9, change TBDs in "Test channel insertion loss at 53.125 GHz" row (module test) to: Low loss: min=9 dB, max:10 dB (a mated test fixture), High loss: min=33.5 dB, max=34.5 dB (reference TP0d-TP1a loss +/- 0.5 dB)
- Use the table format suggested in slide in ran_3dj_03_2409 instead of having ILdd values in the figure. Fill in the following values:
 - For module ILdd: 3.8 dB, for host channel including connector: 28.2 dB (as in slide 7 of ghiasi_3dj_03_2409).
 - For module + connector + MCB use 2.8+2.45+3.5=8.75 dB (as in slide 7 of ghiasi_3dj_03_2409 and Figure 179A-3)
 - For MCB use 3.5 dB (based on Figure 179A–3)
 - For HCB use 3.8 dB (based on Figure 179A–3).

C2M ILdd budget and host model Comments 422, 115, 418, 420

Table 176E-5—Host device, package, and PCB model parameters

TBD

Tabla	176E (Intort	aranaa	toloropoo	toot n	aramatora
able		2—Intern	erence	Tolerance	Iesi D	arameters

Host PCB model, Host designation Host-Low

	Host test	Module test 1 (low loss)		Module test 2 (high loss)		
Parameter		Min	Max	Min	Max	Units
Test channel insertion loss at 53.125 GHz	N/A	9	10	33.5	34.5	dB
Host channel parameters	Table 176E-5	N	/A	1	N/A	

ran 3dj 01b 2407

C2M ILdd budget and host model Comments 422, 115, 418, 420

Table 176E–5—Reference ILdd values for the C2M channel

Path	Reference ILdd	<u>Units</u>
Host channel 1 Including package and connector		dB
Host connector	28.2	dB
Module channel, between paddle card edge and TP1d/TP4d	3.8	<u>dB</u>
Host and HCB, between TP0d/TP5d and TP1a/TP4a	34	dB
Module and MCB, between TP1d/TP4d and TP1/TP4	8.75	<u>dB</u>
HCB, between paddle card edge and TP1a/TP4a	3.5	dB
MCB, between the connector pads and TP1/TP4	3.8	dB

C2C channel

Comment 33

The comment proposes to replace a the TBD for approximate interconnect length. The referenced contribution, <u>heck_3dj_01a_2407</u>, contains COM results as a function of die-die insertion loss, but not PCB length. The commenter indicated that the ILdd values that meet 3 dB COM correspond to up to 11.5-12 inches of PCB from the channels contributed in Heck_3dj_02_2405 and mellitz_3dj_elec_03_230504. However, this information was not included in the presentation.

Since the interconnect length is stated as approximate value in the overview section, this information may be sufficient to replace a TBD with a value, provided as a limit. The alternative is to delete the sentence.

Editors' recommendation: change "with electrical interconnect of approximately TBD cm in length" to "with electrical interconnect of up to approximately 30 cm in length".

DC common mode

Comment 147

DC common mode Comment #147

Host generates CM

Table 176E-1-Summary of host output specifications at TP1a

Parameter	Reference	Value	Units
Signaling rate, each lane (range)		$106.25\pm50\ ppm^a$	GBd
Differential peak-to-peak voltage (max) ^b Output enabled Output disabled	176E.6.1	1200 30	mV mV
DC common-mode voltage (max) ^b	176E.6.1	1.9	v

Missing min; do we need max to be 1.9?

Table 176E-3—Summary of host input specifications at TP4a

Common-mode voltage*	176E.6.1		
Min		-0.3	V
Max		2.8	V

^a Generated by host, referred to host ground.

Range should be the same as host output

Module has to tolerate CM

Table 176E-4-Summary of module input specifications at TP1a

Parameter	Reference	Value	Units
Signaling rate, each lane (range) 200GAUI-1 and 400GAUI-2 800GAUI-4 and 1.6TAUI-8		106.25 ± 100 ppm 106.25 ± 50 ppm	GBd GBd
Single-ended voltage tolerance range (min)	TBD	-0.4 to 3.3	v
DC common-mode voltage tolerance (range) Upper limit Lower limit	176E.6.10	2.85 -0.35	v v

Table 176E–2—Summary of module output specifications at TP4

Parameter	Reference	Value	Units
Signaling rate, each lane (range) ^a 200GAUI-1, 400GAUI-2 800GAUI-4, 1.6TAUI-8		106.25 ± 100 ppm 106.25 ± 50 ppm	GBd GBd
Differential pk-pk voltage (max) Output enabled Output disabled	176E.6.1	1200 30	mV mV
DC common-mode voltage (max)	176E.6.1	1.9	v
			-

Ranges should be the same as host input and output respectively, expanded by 0.05 V (both min and max)