802.3dj D1.2 Comment Resolution Logic Track

Gary Nicholl (Cisco), Logic Track Lead Editor Eugene Opsasnick (Broadcom), Logic Editor Tom Huber (Nokia), Logic Editor Xiang He (Huawei), Logic Editor Matt Brown (Alphawave Semi), 802.3dj Chief Editor

Introduction

- This slide package was assembled by the 802.3dj editorial team to provide background and detailed resolutions to aid in comment resolution.
- Specifically, these slides are for the logic track comments

Time Sync

Comments: 364, 365, 366, 367, 368, 369, 370

TimeSync Comments 364, 365

C/ 177 SC 177.10

Slavick, Jeff

P306 Broadcom

Comment Type T Comment Status D

TimeSync

Support of the "optional" path delay information should be presented as the first information of this section not the last.

L47

SuggestedRemedy

Change 177.10 to be:

177.10 Path data delay (optional)

Support for the optional path data delay information is indicated by the status variables Inner_FEC_delay_ns_TX_ability, Inner_FEC_delay_subns_TX_ability, Inner_FEC_delay_ns_RX_ability, and Inner_FEC_delay_subns_RX_ability. Path delay information is utilized by protocols such as time synchronization (see Clause 90).

When path delay information is supported, the transmit and receive path data delay values are reported as if the DDMP (data delay measurement point) occurs on the first symbol on FEC flow 0 after the 1024-bit pad insertion (see 177.4.7), corresponding to the longest delay for transmit and the shortest delay for receive. See 90.7 for more information.

Four separate delays are reported in the following eight path data delay status variables:

- Inner_FEC_delay_ns_TX_max, Inner_FEC_delay_subns_TX_max
- Inner_FEC_delay_ns_TX_min, Inner_FEC_delay_subns_TX_min
- Inner_FEC_delay_ns_RX_max, Inner_FEC_delay_subns_RX_max
- Inner_FEC_delay_ns_RX_min, Inner_FEC_delay_subns_RX_min

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE. Pending task force discussion. [Editor's note: CC 171, 175, 176, 177, 184, 186]

C/ 184	SC 18	4.8	P516	L31	# 365
Slavick, Je	eff		Broadcom		1.1.1
Comment	Type 1	Г	Comment Status D		TimeSync
0		A	and the state of the second terms of the second		and the Bart information

Support of the "optional" path delay information should be presented as the first information of this section not the last.

SuggestedRemedy

Change 184.8 to be:

184.8 Path data delay (optional)

Support for the optional path data delay information is indicated by the status variables Inner_FEC_delay_ns_TX_ability, Inner_FEC_delay_subns_TX_ability, Inner_FEC_delay_ns_RX_ability, and Inner_FEC_delay_subns_RX_ability. Path delay information is utilized by protocols such as time synchronization (see Clause 90).

When path delay information is supported, the transmit and receive path data delay values are reported as if the DDMP (data delay measurement point) occurs on dspfo[3,1894] (see 184.4.10), corresponding to the longest delay for transmit and the shortest delay for receive. See 90.7 for more information.

Four separate delays are reported in the following eight path data delay status variables: — Inner FEC delay ns TX max, Inner FEC delay subns TX max

- Inner FEC delay ns TX min, Inner FEC delay subns TX min
- Inner_FEC_delay_ns_RX_max, Inner_FEC_delay_subns_RX_max
- Inner_FEC_delay_ns_RX_min, Inner_FEC_delay_subns_RX_min

Proposed Response Response Status W PROPOSED ACCEPT IN PRINCIPLE. Pending task force discussion. [Editor's note: CC 171, 175, 176, 177, 184, 186]

TimeSync Comments 366, 367

C/ 186 SC 186.6.1

Slavick, Jeff

P586

Broadcom

L5

Comment Type T Comment Status D

TimeSync

Support of the "optional" path delay information should be presented as the first information of this section not the last.

SuggestedRemedy

Change 186.6.1 to be: 186.6.1 PCS path data delay (optional) Support for the optional path data delay information is indicated by the PCS status

variables PCS delay ns TX ability, PCS delay subns TX ability,

PCS_delay_ns_RX_ability, and PCS_delay_subns_RX_ability. Path delay information is utilized by protocols such as time synchronization (see Clause 90).

When path delay information is supported, the transmit and receive path data delay values are reported as if the DDMP (data delay measurement point) occurs on the start of the first non-fixed-stuff 257-bit GMP word of the tributary 0 multi-frame, where the start of the 800GBASE-ER1 tributary frame is also the start of a FEC frame, taking into account the maximum (transmit) and minimum (recieve) data delay through the GMP mechanism. This corresponds to the PCS's longest delay for transmit and the shortest delay for receive. See 90.7 for more information.

Four separate delays are reported in the following eight path data delay status variables:

- PCS_delay_ns_TX_max, PCS_delay_subns_TX_max
- PCS_delay_ns_TX_min, PCS_delay_subns_TX_min
- PCS_delay_ns_RX_max, PCS_delay_subns_RX_max
- PCS_delay_ns_RX_min, PCS_delay_subns_RX_min

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE. Pending task force discussion. [Editor's note: CC 171, 175, 176, 177, 184, 186]

C/ 186	SC	186.6.2	P586	L25	#	367
Slavick, Jel	ff		Broadcom			100.000
Comment 1	Туре	т	Comment Status D			TimeSyn
0		- Handlinson - I	and the states of the second second second	the second s		and the second street

Support of the "optional" path delay information should be presented as the first information of this section not the last.

SuggestedRemedy

- Change 186.6.2 to be:
- 186.6.2 PMA path data delay (optional)

Support for the optional path data delay information is indicated by the PMA status variables PMA_delay_ns_TX_ability, PMA_delay_subns_TX_ability, PMA_delay_ns_RX_ability, and PMA_delay_subns_RX_ability. Path delay information is utilized by protocols such as time synchronization (see Clause 90).

When path delay information is supported, the transmit and receive path data delay values are reported as if the DDMP (data delay measurement point) occurs on the first data symbol of the PMA frame S<0>, corresponding to the longest delay for transmit and the shortest delay for receive. See 90.7 for more information.

Four separate delays are reported in the following eight path data delay status variables:

- PMA_delay_ns_TX_max, PMA_delay_subns_TX_max
- PMA_delay_ns_TX_min, PMA_delay_subns_TX_min
- PMA_delay_ns_RX_max, PMA_delay_subns_RX_max
- PMA_delay_ns_RX_min, PMA_delay_subns_RX_min

Proposed Response Response Status W PROPOSED ACCEPT IN PRINCIPLE. Pending task force discussion. [Editor's note: CC 171, 175, 176, 177, 184, 186]

TimeSync Comments 368, 369, 370

C/ 171	SC 171.6b	P184	L47	# [
Slavick, Jef	Ŧ	Broadcom		
Comment 7	vpe T	Comment Status D		

TimeSync

Support of the "optional" path delay information should be presented as the first information of this section not the last

SuggestedRemedy

Change 171.6b to be:

171.6b Path data delay (optional)

171.6b.1 PHY XS path data delay

Support for the optional path data delay information is indicated by the PHY XS status variables PHY XS delay ns TX ability, PHY XS delay subns TX ability. PHY XS delay ns RX_ability, and PHY_XS_delay_subns_RX_ability. Path delay information is utilized by protocols such as time synchronization (see Clause 90).

When path delay information is supported and the PCS timesvnc multilane ability variableis true (see 90.7.1), the transmit and receive path data delay values are reported as if the DDMP (data delay measurement point) is the start of the set of interleaved RS-FEC codewords, corresponding to the longest delay for transmit and the shortest delay for receive See 90.7 for more information

Four separate delays are reported in the following eight path data delay status variables: - PHY XS delay ns TX max PHY XS delay subns TX max - PHY XS delay ns TX min, PHY XS delay subns TX min - PHY XS delay ns RX max, PHY XS delay subns RX max - PHY XS delay ns RX min, PHY XS delay subns RX min

171.6b.2 DTE XS path data delay

Support for the optional path data delay information is indicated by the DTE XS status variables DTE XS delay ns TX ability. DTE XS delay subns TX ability. DTE XS delay ns RX ability, and DTE XS delay subns RX ability. Path delay information is utilized by protocols such as time synchronization (see Clause 90).

When path delay information is supported and the PCS timesvnc multilane ability variable is true (see 90.7.1), the transmit and receive path data delay values are reported as if the DDMP (data delay measurement point) is the start of the set of interleaved RS-FEC codewords, corresponding to the longest delay for transmit and the shortest delay for receive. See 90.7 for more information.

Four separate delays are reported in the following eight path data delay status variables: - DTE XS delay ns TX max DTE XS delay subns TX max - DTE_XS_delay_ns_TX_min, DTE_XS_delay_subns_TX_min - DTE XS delay ns RX max, DTE XS delay subns RX max - DTE XS delay ns RX min, DTE XS delay subns RX min

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE Pending task force discussion.

C/ 175	SC 175.6	P244	L10	#]
Slavick, J	eff	Broadcom		

Comment Type T

Comment Status D Support of the "optional" path delay information should be presented as the first information

of this section not the last.

Suggested Remedy

Change 175.6 to be:

175 6 Path data delay (optional)

Support for the optional path data delay information is indicated by the status variables PCS delay ns TX ability PCS delay subns TX ability PCS delay ns RX ability and PCS delay subns RX ability. Path delay information is utilized by protocols such as time synchronization (see Clause 90)

When path delay information is supported and the PCS timesvnc multilane ability variableis true (see 90.7.1), the transmit and receive path data delay values are reported as if the DDMP (data delay measurement point) is at the start of the set of four interleaved RS-FEC codewords, longest delay for transmit and the shortest delay for receive. See 90.7 for more information

Four separate delays are reported in the following eight path data delay status variables:

-PCS delay ns TX max, PCS delay subns TX max - PCS delay ns TX min, PCS delay subns TX min

- -PCS delay_ns_RX_max, PCS_delay_subns_RX_max
- PCS delay ns RX min, PCS delay subns RX min

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE Pending task force discussion. [Editor's note: CC 171, 175, 176, 177, 184, 186]

CI 176	SC 176.10	P281	L60	# 370
Slavick, Je	eff	Broadcom		1.
Comment	Туре Т	Comment Status D		TimeSync

Support of the "optional" path delay information should be presented as the first information of this section not the last

SuggestedRemedy

TimeSync

Change 176.10 to be:

176.10 Path data delay (optional)

Support for the optional path data delay information is indicated by the PMA status variables PMA delay ns TX ability, PMA delay subns TX ability. PMA delay ns RX ability, and PMA delay subns RX ability. Path delay information is utilized by protocols such as time synchronization (see Clause 90).

When path delay information is supported, the transmit and receive path data delay values are reported as if the DDMP (data delay measurement point) occurs on an odd PCS lane. corresponding to the longest delay for transmit and the shortest delay for receive. See 90.7 for more information

Four separate delays are reported in the following eight path data delay status variables:

- PMA delay ns TX max, PMA delay subns TX max
- PMA delay ns TX min, PMA delay subns TX min
- PMA delay ns RX max, PMA delay subns RX max
- PMA delay ns RX min, PMA delay subns RX min

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE. Pending task force discussion. [Editor's note: CC 171, 175, 176, 177, 184, 186]

TimeSync Subclause 177.10

Comment 364 - Suggest Remedy

177.10 Path data delay for time synchronization	Change 177 10 to be: 177 10 Path data delay (optional)
When the Inner FEC is part of a Physical Layer that supports time synchronization (see Clause 90), transmit and receive path data delay values are reported as if the DDMP (data delay measurement point) occurs on the first symbol on FEC flow 0 after the 1024-bit pad insertion, corresponding to the longest delay for transmit and the shortest delay for receive	Support for the optional path data delay information is indicated by the status variables Inner_FEC_delay_ns_TX_ability, Inner_FEC_delay_subns_TX_ability, Inner_FEC_delay_ns_RX_ability, and Inner_FEC_delay_subns_RX_ability Path delay Innormation is unized by protocols such as time synchronization (see clause 90).
 Four separate delays are reported in the following eight path data delay status variables: Inner_FEC_delay_ns_TX_max, Inner_FEC_delay_subns_TX_max Inner_FEC_delay_ns_TX_min, Inner_FEC_delay_subns_TX_min Inner_FEC_delay_ns_RX_max, Inner_FEC_delay_subns_RX_max Inner_FEC_delay_ns_RX_min, Inner_FEC_delay_subns_RX_min 	When path delay information is supported, the transmit and receive path data delay values are reported as if the DDMP (data delay measurement point) occurs on the first symbol on FEC flow 0 after the 1024-bit pad insertion (see 177.4.7) corresponding to the longest delay for transmit and the shortest delay for receive. See 90.7 for more information.
Support for the optional path data delay information is indicated by the status variables Inner_FEC_delay_ns_TX_ability, Inner_FEC_delay_subns_TX_ability, Inner_FEC_delay_ns_RX_ability, and Inner_FEC_delay_subns_RX_ability. See 90.6 for more information	 Inner_FEC_delay_ns_TX_max, Inner_FEC_delay_subns_TX_max Inner_FEC_delay_ns_TX_min, Inner_FEC_delay_subns_TX_min Inner_FEC_delay_ns_RX_max, Inner_FEC_delay_subns_RX_max Inner_FEC_delay_ns_RX_min, Inner_FEC_delay_subns_RX_max

Suggested remedy:

- 1. Change to the subclause title emphasis on optional
- 2. Move the last paragraph to the beginning and add one sentence with reference to Clause 90.
- 3. Next paragraph adds cross-references to 177.4.7 and 90.7

Comment # 364 Suggested Changes to 177.10

177.10 Path data delay for time synchronization

The InnerFEC sublayer optionally provides path data delay information for time synchronization (see Clause 90).

InnerFEC path data delays are available when the variables Inner_FEC_delay_ns_TX_ability, Inner_FEC_delay_subns_TX_ability, Inner_FEC_delay_ns_RX_ability, and Inner_FEC_delay_subns_RX_ability are asserted as defined in 45.2.1.175.

The transmit and receive path data delay values are reported as if the DDMP (data delay measurement point) occurs on the first symbol on FEC flow 0 after the 1024-bit pad insertion (see 177.4.7), corresponding to the longest delay for transmit and the shortest delay for receive (see 90.7)

Four separate delays are reported in the following eight path data delay status variables:

- --- Inner_FEC_delay_ns_TX_max and Inner_FEC_delay_subns_TX_max
- -- Inner_FEC_delay_ns_TX_min and Inner_FEC_delay_subns_TX_min
- $-- Inner_FEC_delay_ns_RX_max \ and \ Inner_FEC_delay_subns_RX_max \\$
- --- Inner_FEC_delay_ns_RX_min and Inner_FEC_delay_subns_RX_min

Suggested changes:

- Keep title the same
 - Path data delay is only used for time sync.
- Add an introductory sentence
 - Emphasize time sync support is optional, and link to CL 90.
- Move last paragraph with ability bits up to beginning of subclause and add link to the the definition of ability bits.
- Clean up some wording and add informative cross-refs (from suggested remedy and new ones)

Comment # 365 Suggested Changes to 184.8

184.8 Path data delay for time synchronization

The InnerFEC sublayer optionally provides path data delay information for time synchronization (see Clause 90).

InnerFEC path data delays are available when the variables Inner_FEC_delay_ns_TX_ability, Inner_FEC_delay_subns_TX_ability, Inner_FEC_delay_ns_RX_ability, and Inner_FEC_delay_subns_RX_ability are asserted as defined in 45.2.1.175.

The transmit and receive path data delay values are reported as if the DDMP (data delay measurement point) occurs on dspfo[3,1894] (see 184.4.10), corresponding to the longest delay for transmit and the shortest delay for receive (see 90.7).

- --- Inner_FEC_delay_ns_TX_max and Inner_FEC_delay_subns_TX_max
- --- Inner_FEC_delay_ns_TX_min and Inner_FEC_delay_subns_TX_min
- $-- Inner_FEC_delay_ns_RX_max \ and \ Inner_FEC_delay_subns_RX_max \\$
- --- Inner_FEC_delay_ns_RX_min and Inner_FEC_delay_subns_RX_min

Comment # 366 Suggested Changes to 186.6.1

186.6.1 PCS path data delay for time synchronization

The PCS sublayer optionally provides path data delay information for time synchronization (see Clause 90).

PCS path data delays are available when the variables PCS_delay_ns_TX_ability, PCS_delay_subns_TX_ability, PCS_delay_ns_RX_ability, and PCS_delay_subns_RX_ability are asserted as defined in 45.2.3.67.

The transmit and receive path data delay values are reported as if the data delay measurement point (DDMP) occurs on the start of the first non-fixed-stuff 257-bit GMP word of the tributary 0 multi-frame, where the start of the 800GBASEER1 tributary frame is also the start of a FEC frame, taking into account the maximum (transmit) and minimum (receive) data delay through the GMP mechanism. This corresponds to the longest delay through the transmit PCS and shortest delay through the receive PCS (see 90.7).

- --- PCS_delay_ns_TX_max and PCS_delay_subns_TX_max
- --- PCS_delay_ns_TX_min and PCS_delay_subns_TX_min
- --- PCS_delay_ns_RX_max and PCS_delay_subns_RX_max
- --- PCS_delay_ns_RX_min and PCS_delay_subns_RX_min

Comment # 367 Suggested Changes to 186.6.2

186.6.2 PMA path data delay for time synchronization

The PMA sublayer optionally provides path data delay information for time synchronization (see Clause 90).

PMA path data delays are available when the variables PMA_delay_ns_TX_ability, PMA_delay_subns_TX_ability, PMA_delay_ns_RX_ability, and PMA_delay_subns_RX_ability are asserted as defined in 45.2.1.175.

The transmit and receive path data delay values are reported as if the DDMP occurs on the first data symbol of the PMA frame S<0>, corresponding to the maximum delay for transmit and minimum delay for receive (See 90.7).

- $-- PMA_delay_ns_TX_max \ and \ PMA_delay_subns_TX_max \\$
- --- PMA_delay_ns_TX_min and PMA_delay_subns_TX_min
- -- PMA_delay_ns_RX_max and PMA_delay_subns_RX_max
- $-- \mathsf{PMA_delay_ns_RX_min} \text{ and } \mathsf{PMA_delay_subns_RX_min}$

Comment # 368 Suggested Changes to 171.6b

171.6b Path data delay for time synchronization

The PHY XS sublayer optionally provides path data delay information for time synchronization (see Clause 90).

PHY XS path data delays are available when the variables PHY_XS_delay_ns_TX_ability, PHY_XS_delay_subns_TX_ability, PHY_XS_delay_ns_RX_ability, and PHY_XS_delay_subns_RX_ability are asserted as defined in 45.2.4.28.

The PHY XS transmit and receive path data delay values are reported as if the DDMP (data delay measurement point) is at the start of the set of interleaved RS-FEC codewords (see 90.7).

- PHY_XS_delay_ns_TX_max and PHY_XS_delay_subns_TX_max
- --- PHY_XS_delay_ns_TX_min and PHY_XS_delay_subns_TX_min
- --- PHY_XS_delay_ns_RX_max and PHY_XS_delay_subns_RX_max
- --- PHY_XS_delay_ns_RX_min and PHY_XS_delay_subns_RX_min

Comment # 368 Suggested Changes to 171.6b (continued)

The DTE XS sublayer optionally provides path data delay information for time synchronization (see Clause 90).

DTE XS path data delays are available when the variables DTE_XS_delay_ns_TX_ability, DTE_XS_delay_subns_TX_ability, DTE_XS_delay_ns_RX_ability, and DTE_XS_delay_subns_RX_ability are asserted as defined in 45.2.5.28.

The DTE XS transmit and receive path data delay values are reported as if the DDMP (data delay measurement point) is at the start of the set of interleaved RS-FEC codewords (see 90.7).

- -- DTE_XS_delay_ns_TX_max and DTE_XS_delay_subns_TX_max
- -- DTE_XS_delay_ns_TX_min and DTE_XS_delay_subns_TX_min
- $-- {\rm DTE}_{\rm XS}_delay_ns_RX_max \ and \ {\rm DTE}_{\rm XS}_delay_subns_RX_max$
- DTE_XS_delay_ns_RX_min and DTE_XS_delay_subns_RX_min

Comment # 369 Suggested Changes to 175.6

175.6 Path data delay for time synchronization

The PCS sublayer optionally provides path data delay information for time synchronization (see Clause 90).

PCS path data delays are available when the variables PCS_delay_ns_TX_ability, PCS_delay_subns_TX_ability, PCS_delay_ns_RX_ability, and PCS_delay_subns_RX_ability are asserted as defined in 45.2.3.67.

The transmit and receive path data delay values are reported as if the DDMP (data delay measurement point) is at the start of the set of four interleaved RS-FEC codewords (see 90.7), and the PCS_timesync_multilane_ability variable is asserted.

- --- PCS_delay_ns_TX_max and PCS_delay_subns_TX_max
- --- PCS_delay_ns_TX_min and PCS_delay_subns_TX_min
- -- PCS_delay_ns_RX_max and PCS_delay_subns_RX_max
- -- PCS_delay_ns_RX_min and PCS_delay_subns_RX_min

Comment # 370 Suggested Changes to 176.10

176.10 Path data delay for time synchronization

The SM-PMA sublayer optionally provides path data delay information for time synchronization (see Clause 90).

SM-PMA path data delays are available when the variables PMA_delay_ns_TX_ability, PMA_delay_subns_TX_ability, PMA_delay_ns_RX_ability, and PMA_delay_subns_RX_ability are asserted as defined in 45.2.1.175.

The transmit and receive path data delay values are reported as if the DDMP (data delay measurement point) occurs on an odd PCS lane (see 90.7).

- -- PMA_delay_ns_TX_max and PMA_delay_subns_TX_max
- --- PMA_delay_ns_TX_min and PMA_delay_subns_TX_min
- $-- PMA_delay_ns_RX_max \ and \ PMA_delay_subns_RX_max \\$
- --- PMA_delay_ns_RX_min and PMA_delay_subns_RX_min

PTP Accuracy

Comments: 12, 167, 382

Enhanced PTP accuracy AML field Comment 12

C/ 186 SC	186.2.3.6.10	P 55	6	L 26	# 12	
Bruckman, Leon		Nvidia				
Comment Type	TR	Comment Status	х			
Pointers like	the AML are p	prone to wrong inte	erpretation			
SuggestedRemed	dy					
Add an exam removed AM the value of t	ple of the AM was located i he AML will b	L value. It can eith mmediately before e 0xXX''	ner be a fig e the Nth 60	ure, or just te 6B block in th	xt that says: "If the e GMP payload, th	en
Proposed Respon	nse F	Response Status	0			

The example text in the suggested remedy is misunderstanding the intended behavior. The intent is that the PCS maintains a counter that counts 66b blocks between AMs. The TAML signal (indicating where AMs were) resets that counter. The AML overhead in each GMP frame contains the value of the counter corresponding to the first non-stuff block in the payload area of the frame (indicating how far it is from the last AM/until the next AM), as the highlighted text from 186.2.3.6.10 says:

... the TAML signal in the PCS service interface indicates that 800GBASE-R PCS alignment markers were removed by an adjacent PHY 800G XS sublayer immediately before the MII transaction for which TAML is asserted. The 800GBASE-ER1 PCS uses this indication to reset a counter of 66B blocks between consecutive sets of 800GBASE-R PCS alignment markers, with the first 66B block after the 800GBASE-R PCS alignment markers in flow 0 being block 1. The value of this counter corresponding to the first 66B block that is mapped into the payload area of the 800GBASE-ER1 tributary multi-frame is encoded into the AML field.

September 2024

Editor's view:

Enhanced PTP accuracy AML field Comment 12 - Proposal

Editor's proposal:

Add a sentence with an example to the end of the text in 186.2.3.6.10, as shown in the highlighted text:

... the TAML signal in the PCS service interface indicates that 800GBASE-R PCS alignment markers were removed by an adjacent PHY 800G XS sublayer immediately before the MII transaction for which TAML is asserted. The 800GBASE-ER1 PCS uses this indication to reset a counter of 66B blocks between consecutive sets of 800GBASE-R PCS alignment markers, with the first 66B block after the 800GBASE-R PCS alignment markers in flow 0 being block 1. The value of this counter corresponding to the first 66B block that is mapped into the payload area of the 800GBASE-ER1 tributary multi-frame is encoded into the AML field. For example, if the first non-stuff block in the GMP frame happens to be the tenth block after AMs were removed, the AML field would contain the value 10.

Delay constraints

Comment: #165

Delay Constraints for Inner FEC

Inner FEC delay estimation:

• Convolutional interleaver:

Rate	d (RS symbol)	P	Q	Depth	Latency ns
1.6TE	4	3	24	12x RS	27.1
800GE	4	3	48	12x RS	54.2
400GE	4*	3	96	12x RS	108.4
200GE	4*	3	192	12x RS	216.8

ieee802.org/3/dj/public/23_07/he_3dj_01_2307.pdf

- SD decoder: 51.2ns as a conservative estimation.
- Misc.: 5ns
 - 120-b distribution, circular shift, 8:1 interleaving...

• Adding them together:

Rate	Est. Delay	In pause_quanta, rounding up	Proposed value (pause_quanta)
1.6TE	83.3	261	270
800GE	110.4	173	190
400GE	164.6	129	150
200GE	273	107	130

Proposed changes to draft

177.8 Delay constraints

The maximum delay contributed by the Inner FEC (sum of transmit and receive delays at one end of the link) shall be no more than the values provided in Table 177–5. A description of overall system delay constraints and the definitions for bit times and pause quanta can be found in 169.4 and its references.

Remove the editor's note

Editor's Note (to be removed prior to D2.0 or if updated with proposed values): Need proposal for delay constraints.

Table 177-5-Delay constraints

Update TBDs in Table 177-5 as below:

Sublayer	Maximum (bit time)	Maximum (pause_quanta)	Maximum (ns)
200GBASE-R Inner FEC	TBD	TBD	TBD
400GBASE-R Inner FEC	TBD	TBD	TBD
800GBASE-R Inner FEC	TBD	TBD	TBD
1.6TBASE-R Inner FEC	TBD	TBD	TBD

Sublayer	Maximum (bit time)	Maximum (pause_quanta)	Maximum (ns)
200GBASE-R Inner FEC	66560	130	332.8
400GBASE-R Inner FEC	76800	150	192
800GBASE-R Inner FEC	97280	190	121.6
1.6TBASE-R Inner FEC	138240	270	86.4

Inner FEC sync

Comments: #363, #389

Frame Sequence Checking: Optional or Mandatory? Comments #363

The dotted box continuously checks for valid frame sequence payloads at the correct location after the initial fs_lock is set in state 3_GOOD.

Why optional? Why not make it mandatory?

Editors recommendation: ACCEPT IN PRINCIPLE. Pending task force discussion.

CL 177 Inner FEC state diagram restart condition reset Comments #389

11 12

restart_inner_fec_sync is set true in FS_LOCK_BAD state

It forces Fig. 177-9 to restart. Note there are 8 of these, one per inner fec flow.

restart_inner_fec_sync is reset
in two (actually 9) places.

Suggested remedy is to remove < the reset (set to false) in INNER_FEC_SYNC_INIT.

Reset of fs_lock in INNER_FEC_SYNC_INIT should cause Fig.177-10 go to FS_LOCK_INIT, but only after all 8 flows again achieve sync and all_synced is true. However, this won't happen immediately and Fig. 177-9 gets stuck in INNER_FEC_SYNC_INIT state.

Editors recommendation: ACCEPT IN PRINCIPLE. Implement suggested remedy with editorial license

CL 177 Inner FEC state machine interaction Comments #389 - full fix.

11 12

800GBASE-ER1 PCS/PMA

Comments: #10, 17

Alignment Mechanism field Comment 10

C/ 186	SC	186.2.3.5.1	P5	53	L31	# 10	
Bruckman	, Leon		Nvidia	a		10.0	
Comment	Туре	TR	Comment Status	X			
The a	cronym	AM is ovrel	oaded and creates	confus	ion		
Suggested	Remed	dy					
Chang	e the r	ame of the	AM field to: GMP A	lignme	nt Marker, abrevia	ated as GAM	
Proposed	Respon	nse	Response Status	0			

Editor's proposal:

The PCS frame format is reusing a frame structure that is defined in Recommendation ITU-T G.709.1 and reused in OIF 800ZR, both of which call the field "AM", which G.709.1 defines as "Alignment Mechanism" to differentiate it from "Alignment Marker" as 802.3 uses. For consistency with the base documents, it is better to retain the field name as is. However, it would be beneficial to spell out the name of the field in the text:

In 186.2.3.5: Change the title to "Alignment Mechanism and Pad", change the text to "This clause specifies the Alignment Mechanism (AM) and Pad fields..."

In 186.2.3.5.1: "The Alignment Mechanism (AM) field is used to provide..."

Note that in 186.2.3.6.10, where Ethernet AMs are mentioned, the existing text uses "800GBASE-R PCS alignment markers" to refer to the actual Ethernet AMs to avoid ambiguity.

September 2024

Handling overhead when the FEC frame CRC check fails Comment 17

C/ 186	SC	186.2.4.4	P5	61	L 19	# 17	1
Bruckman, Leon			Nvidi	a			2
Comment	Туре	TR	Comment Status	x			
it is no	ot clear	how shall t	he OH fields be har	ndled if (CRC-32 erros are	detected in their	row
Suggested	Reme	dy					
Add s	pecifica	ation that O	H fields shall be ing	ored if a	CRC32 error wa	is detected in thei	r row.
Proposed Response			Response Status	0			

Editor's view:

The intended behavior is indeed not clear, and the existing text stating that all payload blocks in the GMP frame should be replaced with /E/ blocks is not correct. The GMP overhead has to be processed whether or not there are CRC32 errors, since that is what differentiates stuff blocks from payload blocks. The GMP encoding of the GMP overhead takes advantage of the fact that the number of data blocks changes in small increments to provide additional resilience against transmission errors. The intent of the CRC-32 in the OFEC frame is to enable error marking of the Ethernet data, not the entire GMP frame.

Proposal: Revise 186.2.4.4 to state that the blocks that correspond to payload blocks in the GMP frame are replaced with /E/ blocks when the CRC32 is failed.