PHY transmitter block error ratio

Draft 1.3 comment #8

Matt Brown, Alphawave Semi

Supporters

Introduction

- In Draft 1.3, test methods and limits are provided to measure and constrain the block error ratio for a PHY receiver.
- This method takes into account errors that might be added by the PHY transmitter at the other end of a link.
- An analogous method is not provided to test and constrain a PHY transmitter.
- This contribution proposes a methodology and constraints for a PHY transmitter
- Addresses Draft 1.3 comment #8.

Comment

C/ 174A SC 174A.6.2 P739 / 15 Brown, Matt Alphawave Semi Comment Type Comment Status X т Residual errors are permitted at a C2M component output or PMD transmit output when part of a PHY. This residual error ratio must be constrained in the same way errors generated by a PHY transmitter are constrained. SuggestedRemedy Add frame loss error ratio and block error ratio constraints for the transmitter output of a complete PHY. Methodology may need to be added in 174A. A contribution will provide more details. New specifications are need in each of PMD clauses: 178 through 183. Proposed Response Response Status 0 The transmit path on an PHY has errors due to the AUIs as follows:

For electrical PHYs a single C2C AUI is permitted up to 0.08E-4.

For optical PHYs a combination of C2C and C2M AUI is permitted up to 0.32E-4 combined.

There are no normative specifications to mandate this nor a related test method.

Table 174A-1—Error ratio allocations for optical PHYs

Sublayer or interface	Frame loss ratio for entire PHV	Codeword error ratio for entire	BER for entire PHV (BER)	BER per sublayer in a PHV
		PHY		
xAUI-n C2C ^a				0.08 × 10 ⁻⁴
xAUI-n C2M				0.24 × 10 ⁻⁴
PMD-to-PMD	6 × 10 ⁻¹¹	1.45 × 10 ⁻¹¹	2.92×10^{-4}	2.28 × 10 ⁻⁴
xAUI-n C2M				0.24 × 10 ⁻⁴
xAUI-n C2C				0.08×10^{-4}

^a If the PMD is a type defined in Clause 180, Clause 181, Clause 182, or Clause 183 (i.e., 200 Gb/s per lane), and xAUI-n C2C is a type defined in Annex 120D (i.e., 50 Gb/s per lane) or Annex 120F (i.e., 100 Gb/s per lane), the xAUI-n C2C is expected to meet at the BER allocations in this table.

Table 174A-2—Error ratio allocations for electrical PHYs

	Sublayer or interface	Frame loss ratio for entire PHY	Codeword error ratio for entire PHV	BER for entire PHY (BER _{total})	BER per sublayer in a PHY	
	xAIII-n C2Ca		11		0.08×10^{-4}	
	ARDI-II C2C				0.00 ^ 10	ł
	PMD-10-PMD	0 ~ 10	1.43 ^ 10	2.92 × 10	2.76 ~ 10	
	xAUI-n C2C				0.08×10^{-4}	I

^a If the PMD is a type defined in Clause 178 or Clause 179 (i.e., 200 Gb/s per lane) and xAUI-n C2C is a type defined in Annex 120D (i.e., 50 Gb/s per lane) or Annex 120F (i.e., 100 Gb/s per lane), the xAUI-n C2C is expected to meet the BER allocations in this table.

Test for PHY Rx

174A.7 provides a test methodology to constrain the error contributions from a PHY receiver.

A similar approach can be adopted for measuring and constraining the error ratio at the PHY transmitter.

Figure 174A-4—Test configuration for a PHY using PCS counters

180.2 Error ratio allocation

BER_{added} equal to 3.2×10^{-5} .

the PMD, with BER_{added} equal to 6.4 × 10⁻⁵.

A complete PHY is expected to meet the frame loss ratio specifications in 174A.5.

A PMD is expected to meet the block error ratio specifications in 174A.6, measured at the PMA adjacent to

A PHY is expected to meet the block error ratio specifications in 174A.7, measured at the PCS, with

178.2 Error ratio allocation

A complete PHY is expected to meet the frame loss ratio specifications in 174A.5.

A PMD is expected to meet the block error ratio specifications in 174A.6, measured at the PMA adjacent to the PMD, with BER_{added} equal to 1.6×10^{-5} .

A PHY is expected to meet the block error ratio specifications in 174A.7, measured at the PCS, with BER_{added} equal to 8×10^{-6} .

This is specifically for the PHY receive path

174A.7 Error ratio tests for a PCS-to-PCS path and PHY

This subclause defines a test method for a PCS-to-PCS path which includes 200 Gb/s per lane signaling on one or more ISLs.

The test method may be used to verify that the error ratio over the PCS-to-PCS path is within the error ratio allocation for the PHY. This method utilizes the term BER_{added} defined in 174A.6.

174A.7.1 Block error ratio method using PCS-based measurements

This test method permits measurement of the performance of all physical lanes in a PHY as a group using FEC error counters in the PCS. If this test passes, then PHY will meet the expected codeword error ratio.

174A.7.1.1 Test configuration

The configuration for a PHY test using the PCS is illustrated in Figure 174A-4.

174A.7.1.2 PCS Error Counters 174A.7.1.3 PCS error histogram measurement

The following defined PCS counters are utilized An error histogram using PCS counters is measured using the following method:

- FEC_cw_counter: total codewords
 At the transmitting device generate a scrambled idle test pattern in the PCS
 FEC codeword error bin k: codewords
 At the receiving PCS measure symbol errors using the defined PCS count
- FEC_codeword_error_bin_k: codewords b
- FEC_uncorrected_cw_counter: codeword
- FEC_corrected_cw_counter: codewords

A counter for codewords with no symbol errors FEC_cw_counter – FEC_corrected_cw_counter

- b) At the receiving PCS measure symbol errors using the defined PCS counters. The total number of codewords analyzed, FEC_cw_counter, should be sufficiently large to reliably verify that the
- expected block error ratio is met, either by direct measurement or statistical projection. The projection should provide an accurate prediction of the value of $H_{\rm m}(k)$ that would be observed over longer-term testing or at least provide an upper bound on the value.
- c) Calculate the measured histogram $H_{\rm m}(k)$.

A measured error histogram $H_{\rm m}(k)$ is calculated as follows:

- For k in the range 0 to 15, H_m(k) = FEC_codeword_error_bin_k / FEC_cw_counter
- -- H_m(16) = FEC_uncorrected_cw_counter / FEC_cw_counter

174A.7.1.4 PCS block error ratio method

The following method is used to calculate the block error ratio using FEC bin counters provided in the PCS.

- a) Measure the error histogram $H_{mu}(k)$ with no stress applied to any lane.
- b) Measure the error histogram $H_{ms}^{(i)}(k)$ for each lane *i* with stress applied only to lane *i*.
- c) Calculate the composite error histogram $H_{ms}(k)$ as follows.
- d) Initialize $H_{ms}(k)$ to $H_{ms}^{(0)}(k)$.
- e) Iteratively, for each lane i > 0, assign the result of Equation (174A–5) and Equation (174A–6) to $H_{\rm ms}(k)$ substituting $H_{\rm ms}(k)$ for $H_{\rm x}(k)$ for $H_{\rm ms}^{(i)}(k)$ for $H_{\rm y}(k)$, and optionally (for better accuracy) deconvolve $H_{\rm mu}(k)$ from $H_{\rm ms}(k)$.
- f) Calculate the error histogram $H_a(k)$ for the added BER using Equation (174A–3) with BER = BER_{added}.
- g) Assign the result of Equation (174A–5) and Equation (174A–6) to $H_{\rm ms}(k)$ substituting $H_{\rm ms}(k)$ for $H_{\rm x}(k)$ and $H_{\rm a}(k)$ for $H_{\rm v}(k)$.
- h) The measured block error ratio is equal to $H_{\rm ms}(16)$.

The measured codeword error ratio is expected be less than 1.45×10^{-11} .

Proposed updates to Annex 174A

A test for a PHY transmitter can be defined largely based upon the test for the PHY receiver.

The figure to the left may be added to represent the test configuration for a PHY transmitter. The method below can be added for measurement of block error ratio for a PHY transmitter.

174A.7.1.5 PCS block error ratio test method for PHY transmitter

The following method is used to calculate the block error ratio for a PHY transmitter using FEC bin counters provided in the PCS.

a) Measure the error histogram $H_m(k)$ using the method defined in 174A.7.1.3. b) Calculate the histogram $H_a(k)$ for the added BER using Equation (174A–3) with BER = BER_{added}. g) Assign the result of Equation (174A–5) and Equation (174A–6) to $H_m(k)$ substituting $H_m(k)$ for $H_x(k)$ and $H_a(k)$ for $H_y(k)$. h) The measured block error ratio is equal to $H_m(16)$.

The measured block error ratio is expected be less than 1.45×10^{-11} .

Proposed updates to PMD clauses

Change 178.2 and 179.2 as follows:

178.2 Error ratio allocation

•••

A PHY <u>receiver</u> is expected to meet the block error ratio specifications in 174A.7, measured at the PCS, with BER_{added} equal to 8×10^{-6} . A PHY transmitter is expected to meet the block error ratio specifications in 174A.7, measured at the PCS, with BER_{added} equal to 2.84×10^{-4} .

Change 180.2, 181.2, 182.2, 183.2, and 185.2 as follows:

180.2 Error ratio allocation

•••

A PHY <u>receiver</u> is expected to meet the block error ratio specifications in 174A.7, measured at the PCS, with BER_{added} equal to 3.2×10^{-5} . <u>A PHY transmitter is expected to meet the block error ratio specifications in 174A.7, measured at the PCS, with BER_{added} equal to 2.6×10^{-4} .</u>

Thanks