Addition of Quantization Noise in COM

Supporting Document for Comments #360-370 Against Draft 1.3

Hossein Shakiba Huawei Technologies Canada January 2025

Background

- In contribution <u>shakiba 3dj 02 2405.pdf</u> effects of quantization noise in COM channel compliance verification was analyzed and significance of its inclusion was demonstrated
- Contribution <u>healey 3dj 01b 2405.pdf</u> considered using existing means (e.g. scaling eta_0) as a proxy to represent quantization noise
- At the time, there was more support for using the simpler proxy method
 - * Still considerable Y's and a lot of undecideds
- The "N" outcome was mostly motivated by the argument of "reference receiver trap"
- While I generally understand the argument and agree with it where applicable, in my view the quantization noise is too important to be ignored or represented through a simple proxy
- Also, it would have helped if the theoretical basis of the modeling approach and its calculation overhead were better understood, justified, and quantified

May 2024
Straw Poll #1
I support adding a new noise term (such as 'eta_1' in healey_3dj_01a_2405, slide 6) to the COM reference receiver.
Results (all) Y: 13, , N: 37 , A: 31

Facts to Consider

- A big part of the "reference receiver trap" was to avoid features that are implementationspecific and could cause unacceptable complication for the purpose
- Vast majority to almost all receiver implementations nowadays use ADC, making this architecture generic and de-facto, and the natural baseline for the reference receiver
- Shift in paradigm to consider the non-ADC-based receiver implementation-specific
- Quantization noise modeling stands on a solid theoretical foundation and can be simply embedded with very little overhead
- Quantization noise has some unique and specific attributes that makes it not a good candidate to be replaced by a proxy as simple as a fix scaled and uncorrelated eta_0 noise term
- Several other attributes of the current reference receiver and existing noise terms are likely less important and arguably more implementation-specific

Motivation

- Some observations and developments since then:
 - There was a lack of enough data and clarity on the extend of the overhead of adding the quantization noise model to the COM flow
 - * Noticeable ongoing interests and requests to further follow up on this topic
 - ✤ Several direct requests for having access to the COM Matlab function with the capability
 - * More data have been generated and some presented by others since then
 - * The latest beta version (480beta2) of the COM Matlab function incorporates the feature
 - Clearly quantifies a very reasonable calculation overhead for the added value
 - Provides a wider access
 - There will be a COM change request follow-up in the next COM ad hoc meeting
- Comments #360-370 along with this contribution is another effort to bring more awareness and the importance of the quantization noise to the audience's attention
- Hopefully consensus will be built and a move in the right direction will be made

Quantization Noise Model

• Quantization noise is a new noise term added between CTLE and RxFFE

Quantization Noise

• It is modeled by a white random noise with uniform distribution over –LSB/2 to +LSB/2 at the injection point

- Quantization clip level is calculated from the desired probability of signal clipping
- LSB, the quantization step size, is calculated from the desired number of bits and clip level
- Note that modeling quantization functionality is outside the scope, it is only its noise January 2025 IEEE 802.3 Interim

Impact of Quantization Noise on Equalization

• Quantization noise has a prominent impact on the equalizer distribution and optimization

• CTLE high-frequency gain (gDC) utilization increases with increasing quantization noise

- * CTLE search range can not be generally reduced (fixing gDC to speed up optimization is not a choice)
- CTLE high-frequency utilization is unrealistically minimal when eta_0 is used as a proxy
- As expected, CTLE low-frequency boost (gDC2) utilization does not change January 2025 IEEE 802.3 Interim

Impact of Quantization Noise on COM

 Impact of quantization noise on COM is quantified more accurately, predictively, and realistically

• For the test channels, at least 6 bits is recommended to contain the quantization noise

• With 6 bits, the test channels suffer anywhere between 0.44dB to 1.07dB of COM penalty

The Issue with eta_0 Proxy Approach

• Mapping COM data from when eta_0 is scaled (proxy) to COM data from sweeping number of bits (previous slide) reveals the number of bits that scaling represents for each channel

- For the test channels, correlation is weak January 2025 IEEE 802.3 Interim

		eta_0 x2	eta_0 x3	eta_0 x4		
Equivalent Number	of Bits	5.62	4.97	4.65		
	min	-1.03	-1.49	-1.64		
COM Error [dB]	max	0.87	1.53	2.17		
	std	0.36	0.55	0.69		
Less Accurate						

8

• Comment #360:

- ✤ Page 757, after Section 178A.1.7.5
- * Add a new sub-section "178A.1.7.6 Quantization noise"

178A.1.7.6 Quantization noise

The power spectral density of the quantization noise at the input of the quantized time receiver equalizer is defined by Equation (178A-X0).

$$S_{qn}(\theta) = \sigma_q^2 / f_b \tag{178A-X0}$$

where σ_q^2 is the power of the quantization noise at the output of the quantizer defined by Equation (178A-X1).

$$\sigma_q^2 = LSB^2/12 \tag{178A} - X1$$

where *LSB* is the quantization step size defined by Equation (178A-X2).

 $LSB = 2 CL/(2^{N_{qb}} - 1)$ (178A - X2)

where CL is the quantization clip level defined by Equation (178A-X3).

$$CL = -P^{-1}(P_{qc}/2)$$
 (178A - X3)

where P is the cumulative distribution function of the signal prior to quantization defined by Equation (178A-X4).

$$P(y) = \int_{-\infty}^{y} p(u) du \qquad (178A - X4)$$

where p is the probability density function of the signal prior to quantization defined by Equation (178A-X5).

$$p(y) = p_{sig}(y) * p_{noise}(y)$$
(178A - X5)

where

 p_{sig} is the probability density function of the noiseless signal prior to quantization obtained by following the procedure defined in 93A.1.7.1 with pulse response h(n) replaced by the pulse response from the input of the transmitter FFE to the input of the quantizer.

 p_{noise} is the probability density function of the noise prior to quantization estimated by a Gaussian distribution^{*} defined by Equation (178A-X6).

$$p_{noise}(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2\sigma_{noise}^2}}$$
 (178A - X6)

where σ_{noise}^2 is the power of the noise prior to quantization defined by Equation (178A-X7).

$$\sigma_{noise}^{2} = \sigma_{rn}^{2} + \sum_{k=1}^{K-1} \sigma_{xn}^{(k)^{2}} + \sigma_{tn}^{2} + \sigma_{jn}^{2} + \sigma_{in}^{2}$$
(178A - X7)

where each of the terms in the Equation (178A-X7) is calculated from the general Equation (178A-X8) using their corresponding power spectral densities obtained from sections 178A.1.7.1 to 178A.1.7.5.

$$\sigma^2 = \int_{-\pi}^{\pi} S(\theta) d\theta \tag{178A-X8}$$

* The actual noise probability distribution is not necessarily Gaussian. However, for the purpose of equalizer optimization a Gaussian assumption helps optimization algorithm run time by avoiding to calculate the noise PDF every time. The final COM will be based on the actual noise PDF.

January 2025

IEEE 802.3 Interim

• Comment #361:

- ✤ Page 754, Section 178A.1.7, Figure 178A-7
- * Add quantization noise to the figure

Figure 178A–7—Sources of noise considered in calculation of COM

• Comment #362:

- ✤ Page 755, Section 178A.1.7, Table 178A-9
- * Add number of quantization bits and clipping rate to the table

Parameter	Symbol	Units
Number of signal levels	L	
One-sided noise spectral density at receiver input	η ₀	V ² /GHz
Transmitter signal-to-noise ratio	SNR _{TX}	dB
Random jitter, RMS	σ_{RJ}	UI
Dual-Dirac jitter, peak	A _{DD}	UI
Number of quantization bits	N _{qb}	—
Quantization clip rate	P _{qc}	—

Table 170A-3-Summary of holse parameters	Table 178A-9-	-Summary	of noise	parameters
--	---------------	----------	----------	------------

• Comment #363:

✤ Page 755, Section 178A.1.7, Equation (178A-14)

Add Quantization Noise PSD

$$S_{n}(\theta) = S_{rn}(\theta) + \sum_{k=1}^{K-1} S_{xn}^{(k)}(\theta) + S_{in}(\theta) + S_{in}(\theta) + S_{in}(\theta) + S_{qn}(\theta)$$
(178A–14)

where

θ	is normalized frequency in the range $[-\pi, \pi)$ where $\pi = f_b / 2$
$S_{rn}(\theta)$	is the receiver input-referred noise power spectral density defined in 178A.1.7.
$S_{xn}^{(k)}(\theta)$	is the crosstalk power spectral density for signal path k defined in 178A.1.7.2
$S_{tn}(\theta)$	is the transmitter output noise power spectral density defined in 178A.1.7.3
$S_{jn}(\theta)$	is the power spectral density of the noise due to jitter defined in 178A.1.7.4
$S_{in}(\theta)$	is the interference noise power spectral density defined in 178A.1.7.5
$S_{qn}(\theta)$	is the quantization noise power spectral density defined in 178A.1.7.6

1

- Comment #364:
 - ✤ Page 754, Section 178A.1.7, Line 32
 - Change "sampler" to "quantizer"
- Comment #365:
 - ✤ Page 755, Section 178A.1.7, Line 15
 - Change "sampler" to "quantizer"
- Comment #366:
 - ✤ Page 757, Section 178A.1.8.1, Line 43
 - Change "sampler" to "quantizer"

• Comment #367:

- ✤ Page 758, Section 178A.1.8.1, Figure 178A-9
- Add quantization noise after sampler

Figure 178A–9—Receiver discrete-time equalizer

• Comment #368:

- ✤ Page 761, Section 178A.1.9, Equation (178A-34)
- Add Quantization Noise PSD

$$\sigma_G^2 = f_b \int_{-\pi}^{\pi} \left[S_{tn}(\theta) + S_{jn}^{(RJ)}(\theta) + S_{rn}(\theta) + S_{in}(\theta) + S_{qn}(\theta) \right] \left| H_{rxffe}(\theta) \right|^2 d\theta$$
(178A-34)

• Comment #369:

- ✤ Page 761, Section 178A.1.10.2, Line 51
- Add the following before the last sentence

178A.1.9. The corresponding cumulative distribution function is defined by Equation (178A–38).

Add quantization noise by convolving the resulting probability density function with the quantization noise probability distribution function defined by evaluating Equation (178A-X9) sequentially for integer values j = 1 to $j = N_w$ with p_{qn} initialized to a Dirac delta function.

$$p_{qn}(y) = p_{qn}(y) * \frac{1}{w_{lim}(j)} p_{qi}\left(\frac{y}{w_{lim}(j)}\right)$$
(178A - X9)

where

 N_w is the total number of taps in the feed-forward filter of the receiver equalizer defined in 178A.1.8.1.

 w_{lim} is the optimized vector of taps in the feed-forward filter of the receiver equalizer defined in 178A.1.8.1.

January 2025

IEEE 802.3 Interim

 p_{qi} is the probability density function of the quantization noise at its injection point defined by Equation (178A-X10).

$$p_{qi}(y) = \begin{cases} 1/LSB & -LSB/2 \le y < LSB/2 \\ 0 & Otherwise \end{cases}$$
(178A - X10)

where *LSB* is defined by Equation (178A-X2) with replacing p_{noise} with the actual probability density function of the noise prior to quantization and after optimization during execution of the equation.

• Comment #370:

- * Page 762, Section 178A.1.11, Figure 178A-10
- Add quantization noise after sampler

Figure 178A–10—Receiver discrete-time equalizer with MLSD

Thank You ©

Hossein Shakiba Huawei Technologies Canada

COM Info

• Version

- COM version 480beta2_hs1p0
- * Customization <u>hs1p0</u> applies changes for which a follow-up request will be presented in the next COM ad hoc

• Configuration

	Table 93A-1 parameters				I/O control			Table	93A-3 parameters		SAVE_CONFIG2MAT	0	
Parameter	Setting	Units	Information	DIAGNOSTICS	0	logical	Parameter	Setting	Units	Information		Receiver testing	-
f_b	106.25	GBd		DISPLAY_WINDOW	0	logical	package_tl_gamma0_a1_a2	[5e-4 0.00065 0.0003	3]		RX_CALIBRATION	0	logical
f_min	0.05	GHz		CSV_REPORT	0	logical	package_tl_tau	0.006141	ns/mm		Sigma BBN step	5.00E-03	V
Delta_f	0.01	GHz		RESULT_DIR	.\results\C2 M_{date}\		package_Z_c	92;7070;8080;100	D > Ohm			ICN parameters	
C_d	[0.4e-4 0.9e-4 1.1e-4;0.4e-4 0.9e-4 1.1e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical	z_p (TX)	1 1 1 1; 11 1 1; 0.	5• mm	[test cases to run]	f_v	0.278	Fb
L_s	[0.13 0.15 0.14; 0.13 0.15 0.14]	nH	[TX RX]	Port Order	[1324]		z_p (NEXT)	1 1 1 1; 11 1 1; 0.	5• mm	[test cases]	f_f	0.278	Fb
C_b	[0.3e-4 0.3e-4]	nF	[TX RX]	RUNTAG	C2MTP1a_COM_model		z_p (FEXT)	1 1 11; 11 11; 0.5	5• mm	[test cases]	f_n	0.278	Fb
R_0	5.00E+01	Ohm		COM_CONTRIBUTION	1	logical	z_p (RX)	1 1 11; 11 11; 0.5	5• mm	[test cases]	f_2	61.625	GHz
R_d	[50 50]	Ohm	[TX RX]				C_p	[0.4e-4 0.4e-4]	nF	[test cases]	A_ft	0.450	V
PKG_NAME	PKG_HiR_CLASSB_PKG_Module		TX RX	TDR	and ERL options			Operational			A_nt	0.450	V
A_v	0.413	V		TDR	1	logical	ERL Passth reshold	10	dB				
Afe	0.413	V		ERL	1	logical	COM Pass threshold	3	db		Parameter	Setting	
A_ne	0.608	V		ERL ONLY	0	ns					board ti gamma0 a1 a2	[0 6.44084e-4 3.6036e-05]	1.4 db/in @ 53.125G
z_p select	[4]			TR_TDR	0.01		DER_0	2.50E-05			board_tl_tau	5.790E-03	ns/m m
L	4			N	4000	logical	Ť_r	4.00E-03	ns		board_Z_c	100	Ohm
M	32			TDR_Butterworth	1		FORCE_TR	1	logical		z_bp (TX)	32	mm
	filter and Eq			beta_x	0						z_bp (NEXT)	32	mm
f_r 📕	0.58	*fb		rho_x	0.618		PMD_type	C2C			z_bp (FEXT)	32	mm
c(0)	0.55	<u> </u>	min	TDR W TXPKG	0	UI	0.000				z bp (RX)	32	mm
c(-1)	0		[min:step:max]	N bx	20	<u> </u>					C O	[0.2e-4 0]	nF
c(-2)	0		[min:step:max]	fixture delay time	[00]		ΤO	0	mUI		C 1	[0.2e-4 0]	nE
c(-3)	0		[min:step:max]	Tukey Window	1		samples for C2M	100	samples/UI		Include PCB	0	logical
c(-4)	0		[min:step:max]	Nois	e, jitter	UI	EW	0			Seletions (re	ctangle, gaussian dual rayleigh	n triangle
c(1)	0		[min:step:max]	sigma RJ	0.01	Û	MLSE	3	logical		Histogram Window Weigh	t gaussian	selection
Nb	1	UI		A DD	0.02	V^2/GHz	ts anchor	1			Qr	0.02	UI
b_max(1)	0.85	-	As/dffe1	eta_0	1.25E-08	dB	sample_adjustment	[-3232]					
b_max(2N_b)	0.3		As/dfe2N_b	SNR_TX	33		Local Search	0					
b_min(1)	0		As/dffe1	R_LM	0.95			Filter: RxFFE	•				
b_min(2N_b)	-0.15	S	As/dfe2N_b				ffe_pre_tap_len	5	<u>Vi</u>				
g_DC	[-20:1:0]	dB	[min:step:max]	DER_CDR	1.00E-02		ffe_post_tap_len	12	<u>Vi</u>				
f_z	42.50	GHz		ENOB	0		ffe_pre_tap1_max	1	(normalized)				
f_p1	42.50	GHz		adc_clip_rate	5.00E-05		ffe_post_tap 1_max	1	(normalized)				
t_p2	106.25	GHz		trunc	128		the tapn_max	1	(normalized)	EV-LMSor MMSE			
g_DC_HP	[-0:1:0]	CUI-	[min:step:max]	N_tc	128		FFE_OPI_METHOD	MMSE		FOM - ISI			
T_HP_PZ	1.328125	GHZ	include in fr	DREAD CRUMPS	1	Inginal		2048		FUMIO ISI			
Butterworth	1	logical	IncludeIIIII	BRDAD_CROMBS	1	logical	IN THE FLOAR CIT	Floating Tap Contr	2				
							N br	2	0.1.2 or 2 mount				
				bacolino			N bf	4	tons por group	+		+	
				Dasenne			N f	50	Lill soon for floating toos	+		+	
				relevent for PyFFF			hmar	0.2	may DEE volue for fleating tags			+	
				relevant for KXFFE			D floot DCC MAY	0.2	max pre value or floating taps			+	
		1		aujusted in experiment			B_TIDAL_KSS_MAX	12	(III) dract of tail tage limit				
							N_tall_start	13	(O) start of tail taps limit				
uarv 2025					IE	EE 8	02.3 Interim	ו					۲.

January 2025

Test Channels Info

Channel #	Channel Source
1	https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_03_230629.zip
2	https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_04_230629.zip
3 – 7	https://www.ieee802.org/3/dj/public/tools/CR/kocsis_3dj_02_2305.zip
8 – 34	https://www.ieee802.org/3/dj/public/tools/KR/mellitz_3dj_02_elec_230504.zip
35 – 40	https://www.ieee802.org/3/dj/public/tools/CR/shanbhag_3dj_01_2305.zip
41 - 44	https://www.ieee802.org/3/dj/public/tools/KR/shanbhag_3dj_02_2305.zip
45 – 80	https://www.ieee802.org/3/dj/public/tools/KR/weaver_3dj_02_2305.zip
81 - 88	https://www.ieee802.org/3/dj/public/tools/KR/weaver_3dj_elec_01_230622.zip
89	https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_07_2309.zip
90 - 96	https://www.ieee802.org/3/dj/public/tools/KR/akinwale_3dj_01_2310.zip
97 – 100	https://www.ieee802.org/3/dj/public/tools/CR/akinwale_3dj_02_2311.zip
101 – 112	https://www.ieee802.org/3/dj/public/tools/CR/weaver_3dj_02_2311.zip