Benefit of Adding DFE to TDECQ

(Comments 381, 382, 383, 384)

Ali Ghiasi - Ghiasi Quantum/Marvell

IEEE 802.3dj Plenary Meeting Madrid Spain

July 28, 2025

Supporter

- Marco Mazzini Cisco
- Roberto Rodes Coherent
- **Chris Cole Coherent**
- Ahmad El-Chayeb Keysight Technologies
- ☐ Mike Dudek Marvell

Special thanks and credit to Ahmad El-Chayeb of Keysight Technologies for TDECQ with DFE analysis support!

Overview

- Background
- **TECQ correlation with receiver sensitivity**
- **200G TDECQ with addition of 1T DFE**
- **Summary.**

Background

Most optical DSP implementations include a 1T DFE and optional MLSE

- To save power MLSE by default will be off to save power

□ The benefit of enabling 1T DFE in TDECQ

- Reduces reliance on transmitter overshoot to reduce TDECQ where it may degrade link BER as TDECQ doesn't incorporate any compression or ADC ENOB penalties
- Enabling 1T DFE reduces TDECQ ~0.5 dB on complaint TDECQ transmitter
 - For transmitter with low overshoot and high TDECQ >5 dB there is ~1.5 dB reduction
- Allow passing slower more linear waveforms with better link BER
- Improved correlation of TDECQ penalty with receive sensitivity
- Scope supplier already have implemented 1T DFE to EECQ which is based on TDECQ for electrical penalty

The drawback of enabling 1T DFE in TDECQ

- Burst error will be the main drawback but we do have ILT for optics and DFE Bmax can be limited to 0.4
- Shift some margin from receiver to transmitter.

Receiver Sensitivity

- Assumed receiver sensitivity as shown in Figure 180-4 show 1:1 relationship between TDECQ and receive sensitivity but actual data from <u>he_3dj_01_2505</u> 1:0.4 relationship
 - The reason for shallow slope is that the HW receiver is that hardware receiver is more capable compared to TDECQ equalizer
 - Adding 1T DFE to the TDECQ equalizer will improve TECQ penalty with receive sensitivity penalty.

Adding 1T DFE to the TDECQ Equalizer

Add 1T DFE to the TDECQ equalizer

Table 180-15, 181-15, 182-15, and 183-15.

		Value	
Parameter	Symbol	Minimum	Maximum
Feed-forward equalizer (FFE) length	N _b	15	
Number of equalizer pre-cursor taps		0	3
Main tap coefficient limit	<i>c</i> (0)	0.9	2.5
Normalized equalizer coefficient limits: ^a i = -3 i = -2 i = -1 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 $i \ge 7$	c(i)	$\begin{array}{c} -0.15 \\ -0.1 \\ -0.5 \\ -0.6 \\ -0.2 \\ -0.15 \\ -0.15 \\ -0.15 \\ -0.15 \\ -0.15 \\ -0.1 \end{array}$	0.1 0.25 0.1 0.2 0.3 0.15 0.15 0.15 0.15 0.1
Equalizer gain ^b		1	

Table 180–15—Reference equalizer tap coefficients

^a The main tap is marked by i = 0. The minimum and maximum values are relative to this tap's coefficient. ^b The sum of the equalizer coefficients.

Parameter	Symbol	Minimum	Maximum
Number of feedback taps	B(1)	0	0.35

Configuring TDECQ with DFE

Keysight Scope FlexDCA A.07.81.6 already supports TDECQ with 1T DFE

- Instead of using TDECQ equalizer generic
 Reference Rx is selected
- Then under Linear Equalizer TDECQ Equalizer is selected
 - Then set SER and other TDECQ parameters.

200G MZM TDECQ with Addition of DFE

TDECQ reduction with 1T DFE for TX with low TECQ

- TDECQ with 15T FFE is 2.84 dB
 - FFE Taps -0.017081, 0.078124, -0.275357,
 1.490161, -0.321593, 0.124306, 0.092210, 0.044500, -0.074899,
 0.056275, -0.028502, 0.021386, 0.014024, 0.012652, -0.003738
- TDECQ with 15T FFE + 1T DFE is 2.59 dB
 - FFE Tap -0.008442, 0.045556, -0.166764,
 0.995970, 0.181786, -0.000968, 0.031856, 0.005959, -0.042369,
 0.019865, -0.005469, 0.007087, 0.004892, 0.005041, -0.000504
 - DFE Tap 0.283636.

200G MZM TDECQ with Addition of DFE

TDECQ reduction with 1T DFE for TX with high TECQ

- TDECQ with 15T FFE is 5.76 dB
 - FFE Taps -0.060232, 0.182759, -0.506969,
 1.818684, -0.532089, 0.157879, 0.044774, 0.005974, -0.044100,
 0.035797, -0.010159, 0.003285,
 0.018303, 0.004811, -0.029168
- TDECQ with 15T FFE + 1T DFE is 4.13 dB
 - FFE taps -0.017394, 0.073976, -0.226514,
 0.979468, 0.253183, -0.073706,
 0.026715, -0.012512, -0.023035,
 0.008908, 0.006088, -0.000323,
 0.013989, 0.010717, -0.019560
 - DFE Tap 0.343287

IEEE 802.3dJ Task Force

Benefit of Adding DFE to TDECQ

Adding 1T DFE to current 15T FFE TDECQ offer more gain than even a 25T FFE

Adding 1T DFE also improves TDECQ to Receiver sensitivity penalty

- Receive OMA sensitivity 2.4E-4 PreFEC are:
 - TX1 OMA Sensitivity -6.1 dB
 - TX2 OMA Sensitivity -4.6 dB
- Delta sensitivity = 1.5 dB
- Delta TDECQ with 15T FFE = 2.92 dB
- Delta TDECQ with 15T FFE + 1T DFE = 1.54 dB
- TDECQ with 15T FFE + 1T DFE the transmitter penalty matches receive sensitivity penalty 1:1!

- With FFE receiver transmitter are set with high overshoot in order to improve TDECQ which often results in inferior block BER
 - Another issue with FFE only TDECQ given that receiver has a DFE the TECQ penalty doesn't correlate with receiver sensitivity

□ The current 15T FFE is a good compromise between complexity, power, and benefit

- Adding 1T DFE to the 15T FFE offer much better performance than even a 25T FFE
- Adding 1T DFE to TDECQ/EECQ with Bmax≤0.35 penalty due to burst error is negligible and provide following benefits
 - Reduces TDECQ by ~0.5 dB for compliant (≤3.4) transmitters
 - Reduces TDECQ by ~1.5 dB for slow high TDECQ (≥5.0) transmitters

Another key benefit of adding 1T DFE to the TDECQ equalize is the significant improvement of TDECQ penalty correlation with receive sensitivity penalty!

Thank You!