802.3dj D2.0 Comment Resolution Electrical Track

Adee Ran (Cisco), 802.3dj Electrical Lead Editor Adam Healey (Broadcom) Howard Heck (TE Connectivity) Sam Kocsis (Amphenol) Matt Brown (Alphawave Semi), Chief Editor

AC common mode

Comments 506, 504, 354, 507

AC common mode Comments 506, 504, 354, 507

C/ 176D	SC 176D.6.3	P745	L16	# 506	and the second second second	CONTRACTOR AND A CONTRACTOR AND A	2000-00-00-00	20.0000	Sector States and a
Dudok Mit		Marvell	210	# 500	C/ 176C	SC 176C.6.3	P723	L 39	# 504
Dudek, Mik					Dudek, Mik	(e	Marvell		
low free (and 30 the mo tolerate Suggested Change	odule AC commor quency. The allow OmV max for the lo odule input toleran e more than the ho <i>Remedy</i> the the full band AC	Comment Status X n-mode input tolerance is 80 wed host output AC commo ow frequency). The host o ice full band, and there isn't ost outputs at low frequency common-mode output volt the low frequency from 30m	n-mode full band utput value shou a reason why th y. age for the host	d is however 85mV max uld not be higher than ie module should from 85mV to 80mV.	C2C wi this diff Suggested	ax value of Low F ith a tighter Block ference. <i>Remedy</i>	Comment Status X requency AC common mo Error ratio requirement. 1 to 30mV in table 176C-2.		
toleran		P747	L12	# 354					
Ghiasi, Ali		Ghiasi Qunati	m/Marvell						
		official garace							
Comment 7 In 802.3	and the second se	Comment Status X 32 mV which is more than		mit in the DJ draft at					
Comment 7 In 802. TP4 wit SuggestedF	3ck VCM(LF) was th only 15 mV Remedy	Comment Status X	2x larger than lir						
Comment 7 In 802. TP4 wit Suggested Given t 20 mV	3ck VCM(LF) was th only 15 mV Remedy	Comment Status X 32 mV which is more than	2x larger than lir						
Comment 7 In 802.3 TP4 wit Suggested/ Given t 20 mV	3ck VCM(LF) was th only 15 mV <i>Remedy</i> that Module/TP4 w SC 176D.6.5	Comment Status X s 32 mV which is more than would be the larget source o	2x larger than lir of VCM(LF), reco	mmend increasing to					
Comment 7 In 802.1 TP4 wit Suggested Given t 20 mV C/ 176D Dudek, Mike	3ck VCM(LF) was th only 15 mV Remedy that Module/TP4 w SC 176D.6.5 e	Comment Status X 32 mV which is more than would be the larget source of P747	2x larger than lir of VCM(LF), reco	mmend increasing to					
Comment 7 In 802.3 TP4 wit Suggested/ Given t 20 mV 2/ 176D Dudek, Mike Comment 7) The Hos output A	3ck VCM(LF) was th only 15 mV <i>Remedy</i> that Module/TP4 w SC 176D.6.5 e ype T st AC common-mode	Comment Status X s 32 mV which is more than would be the larget source o P 747 Marvell	2x larger than lin of VCM(LF), reco <u>L13</u> / max full band . 50mV max . The	mmend increasing to # [507					
Comment 7 In 802.3 TP4 wit Suggested/ Given t 20 mV C/ 176D Dudek, Mike Comment 7) The Hos output A	3ck VCM(LF) was th only 15 mV Remedy that Module/TP4 w SC 176D.6.5 e ype T st AC common-mode t should tolerate m	Comment Status X 32 mV which is more than would be the larget source of P747 Marvell Comment Status X ode input tolerance is 80mV e full band is however only 6	2x larger than lin of VCM(LF), reco <u>L13</u> / max full band . 50mV max . The	mmend increasing to # [507					

AC common mode Comments 506, 504, 354, 507

VCM_{IF} values:

- In clauses 178 & 179 same as those of 802.3ck (162 & 163).
- In Annex 176C same as 802.3ck (120F)

In Annex 176D –

Host output modified from 802.3ck (it was 32 mV) to match 179

Module input is the same as 802.3ck (does not match host output)

VCM_{ER} values were all 80 mV in 802.3ck

• For C2M host output, 85 mV adopted by <u>ran_3dj_02_2405</u> (comment 186 against D1.0), but module input was not updated to match

Table 178–6—Summary of transmitter specifications at TP0v

Low-frequency peak-to-peak AC common-mode voltage, U79.9.4.1 0.03 V

Table 179–7—Summary of transmitter specifications at TP2

|--|

Table 176C–2—Transmitter electrical characteristics at TP0v

Low-frequency peak-to-peak AC common-mode voltage, $VCM_{\rm LF}~({\rm max})$	176C.6.3.2	0.032	V
---	------------	-------	---

(There are no AC CM tolerance specifications for the above)

Table 176D–2—Summary of host output specifications at TP1a

176D.8.1		
	0.03	V
	0.085	V
	176D.8.1	0.03

Table 176D–5—Summary of module input specifications at TP1a

Peak-to-peak AC common-mode voltage tolerance (min)	176D.8.10		
Low-frequency, VCM _{LF}		0.032	V
Full-band, VCM _{FB}		0.08	V

AC con -Comme

AC common mode	C/ 176D	SC	176D.5.4	P701	L23	# 399
	Dawe, Pier	S		Nvidia		
Comments 506, 504, 354, 507	Comment 1	Type	т	Comment Status A		AC common mode
Comment #354 suggest increasing the VCM _{LF} limit to 0.02 V noting	that wh	ile the which	e full-band V	ges are not as large as this /CM is lower than for host o stic; a module does not have	utput, the low-f	frequency VCM is the
the decrease from the 802.3ck value.	Suggested	Reme	dv			
 VCM_{LF} values were modified from 802.3ck by comment #399, against D1.2, with a detailed justification. 	Halve t measu	he LF red in	ACCM limi	t for module output (Table 1 hich should have a clean po ost input ACCM tolerance.		se the module output is
Comment #507 addresses VCM _{FB} mismatch between C2M module output and host input.	We ma	y nee	d a sentend	e of explanation: the host m Il as any that it generates it		is much module-
 VCM_{ER} reduction from 80 mV to 60 mV adopted by 	Response			Response Status C		
ran <u>3di 02 2405</u> (comment 186 against D1.0)	ACCEF	TIN	PRINCIPLE			
Host input was not updated to match.The suggested remedy is to use 60 mV for both.				mit for module output (Table change in Table 176D-3, h		

Table 176D–3—Summary of module output specifications at TP4

AC common-mode peak-to-peak voltage (max)	176D.8.1		
Low-frequency, VCM _{LF}		0.015	V
Full-band, VCMFB		0.06	V

Table 176D-4—Summary of host input specifications at TP4a

Peak-to-peak AC common-mode voltage tolerance (min)	176D.8.10		
Low-frequency, VCMLF	and the second second second	0.015	V
Full-band, VCMFB		0.08	V

AC common mode Comments 506, 504, 354, 507

Observations

- C2M host specifications are based on CR assumptions with some modifications due to the higher host channel loss.
- For VCM_{FB}:
- Host output increase to 85 mV was adopted by <u>ran_3dj_02_2405</u>, the rationale was "Higher AC common-mode noise can be allowed, since there is no additional contribution from the cable and remote host". Also, longer host channel can have increased mode conversion.
- Module input tolerance should match; Either increase module input tolerance to 85 mV, or decrease host output maximum back to 80 mV
- Module output decrease to 60 mV was adopted by <u>ran_3dj_02_2405</u>, the rationale was "it is measured closer to the transmitter, and the host channel can cause large conversion to differential noise"
- Host input tolerance should match; Either decrease host input tolerance to 60 mV, or increase module output maximum back to 80 mV
- For VCM_{LF} the different values for PMDs (30 mV) and AUIs (32 mV) originate from 802.3ck
- The values were finalized by comments R1-29 (PMDs and host output), R2-20 (module output). The rationale was the different probabilities at which the peak-to-peak is defined: 1e-4 for PMDs, 1e-5 for AUIs.
- In 802.3dj we specify VCM_{1 F} to a probability of 1e-7 for both PMDs and AUIs, so there should be no difference.
- Recommend increasing to 32 mV everywhere
- The reference for VCM_{LE} in Table 178-6 is stale it should be 179D.8.1 as in all other tables.
- Except for C2M, there are no receiver tolerance specifications. This is not new, but we may consider adding explicit specifications.

Editor's recommendations:

- For C2M module input, change VCM_{FB} tolerance to 0.085 V (aligning with host output)
- For C2M host input, change VCM_{FB} tolerance to 0.06 V (aligning with module output)
- Change VCM_{IF} maximum output to 0.032 V for KR and CR (aligning with C2C and C2M)
- Change VCM⁻_{LF} tolerance to 0.032 V for C2M host and module inputs (aligning with outputs)
- In Table 178–6, change the reference from 179.9.4.1 to 179D.8.1

Reference impedance

Comments 59-62, <u>63</u>, 64-66, 235, 236-239, 514, 595-599, 606-618, 620-624

Reference Impedance Comments 59-62, 595-599, 606-608, 615-617, 620, 622, 624

ERL	C#	Clause	SC
(21)	59, 595, 616	178	178.9.2.1.2
	617	178	178.9.2.2
	596, 615	178	178.10.3
	60, 597, 620	179	179.9.4.7
	598	179	179.5.5
	61, 599, 622	179	179.11.3
	62, 606	176C	176C.6.3.5
	607	176C	176C.7.3
	608	176D	176D.8.2
	624	179B	179B.4.2

These comments all propose changing the reference impedance R_0 for ERL to 92.5 Ω differential.

Reference Impedance Comments 63-66, 514, 609-614, 618, 621, 623

Measurement (11)

C#	Clause	SC
63, 611	178	178.9.1
618	178	178.10
64, 612	179	179.9.3
623	179	179.9.5.3
621	179	179.11
65, 613	179	179.11.1
66, 614	176C	176C.6.2
609	176D	17D.7.2
610	178A	178A.1.3
514	179B	179B.1

These comments all propose changing the reference impedance to 92.5 Ω differential (**for non-ERL measurements**).

Reference Impedance

D2.0 values:

- $R_0 = 50 \Omega$ adopted during D1.0 comment resolution
 - COM parameter table in all clauses
- $R_d = 46.25 \Omega$ adopted during D1.0 comment resolution
 - COM parameter table in all clauses
- Reference impedance for differential specifications is 100 Ω since D1.0
 - Exists in PMDs: 178.9.1, 179.9.3; cable assembly: 179.11.1; C2C: 176C.6.2
 - Not mentioned for KR channel (178.10) nor anywhere in Annex 176D
- Refer to slides 8-10 of

ran_3dj_01f_2406-comment_resolution_electrical.

The numerous comments on this topic indicate a trend to change the reference impedance (R_0) to 46.25 Ω .

- This would make all RL/ERL measurements refer to the **intended** characteristic impedance (which R_d is equal to).
- IL will show lower ILD for impedance-matched channels.

C/ 178	SC 17	8.9.1	P 27	5	L39	# 395	
Kocsis, Sar	n		Amphe	nol			
Comment T	ype 1	г	Comment Status	R			R_
The ref spreads		npedance	should match the s	system in	npedance, Rd a	as defined in COM	
Suggested	Remedy						
92-ohm contribu		or straw pol	based on propose	ed values	presented in T	ask Force	
Response		F	Response Status	С			
request referen	ggested i ed chang ce imped	ges, e.g., v dance.	es not provide suffi vhich specifications	s and me	asurements sh	ould use the propo	sed
	no cons uraged.	ensus to m	nake changes. Fur	ther work	and consensu	s building on this to	opic
C/ 178	SC	178.10.1	P2	285	L40	# 396	_
Kocsis,	Sam		Ampl	henol		2.	
Comme	nt Type	Т	Comment Status	A		COM	
Rd(t) = "TBD)"					
Sugges	tedReme	dy					
		D" to "92-of definition in	nm" to match majori n package	ity of con	tributions to the	Task Force, and be	tter
Respon	se		Response Status	С			
The	re are se		E. nents on this topic. /w.ieee802.org/3/dj/				on
Cha 176	ange Rdt D) from 1						
(17) imp loss	BA.1.3, 1 edance c s, and ER	78.9.1, 179 of X Ohm fo RL, and addi	is consensus on ha .9.3, 179.11.1, and r all frequency-dom ing a similar statem prescribe any chan	176D.3.2 ain speci ent in 17) define a refere fications, e.g., ir 6E. The value of	nce single-ended sertion loss, return	
The	following	g straw poll	s were taken:				
l wo Tab imp	ould supp le 179-15	5, Table 176 of X Ohm fo	n) g Rdt and Rdr in C(6D) from TBD to X (r all frequency-dom	Ohm (san	ne as the refere		
l wo Tab	ould supp	5, Table 176	n) g Rdt and Rdr in C(5D) from TBD to 46			bles (Table 178-12,	

Reference Impedance Comments 236-239

COM differential output amplitude (4)

C#	Clause	SC
236	178	178.10
237	179	179.11.7.1
238	176C	176C.7.1
239	176D	176D.7.2

These comments propose changing COM differential output amplitudes to account for changing to 46.25 Ω reference impedance.

- A_v from 0.385 V to 0.415 V
- A_{fe} from 0.385 V to 0.415 V
- A_{ne} from 0.481 V to 0.608-0.611 V

The current values were calculated (see <u>ran_3dj_04a_2409</u> slide 20) as:

 $\begin{array}{l} A_{v}: 2^{*}V_{f(min)}^{*}R_{d}^{\prime}(R_{d}^{+}R_{L}^{-})=2^{*}\textbf{0.4 V} * 46.25^{\prime}(46.25+50)=0.385 V\\ A_{fe}: Same as A_{v} \\ A_{ne}: 2^{*}V_{f(max)}^{*}R_{d}^{\prime}(R_{d}^{+}R_{L}^{-})=2^{*}\textbf{0.5 V} * 46.25^{\prime}(46.25+50)=0.481 V \end{array}$

Where R_1 is the **load** impedance (50 Ω for scopes, where v_f is measured).

The calculation for the proposed values is unclear. Note also that there are no comments proposing to change the scope termination impedance, and it seems unlikely that this will happen.

Comments #235 and #610

Comment #610 suggests changing the reference impedance defined in 178A.1.3 from 100 Ω to 92.5 Ω

Comment #235 suggests adding to Annex 178A equations that change the s-parameter port reference impedance. No justification is provided.

However, it is observed that:

- The reference impedance for the measured channel s-parameters must agree with the value of the single-ended reference resistance parameter R₀
- Equations proposed in #235, or their equivalent, would be useful to describe how to convert the s-parameter reference impedance to a value that agrees with R₀
- This would allow a clause or annex to define whatever reference impedance is desired without requiring changes to Annex 178A

Editor's recommendation:

- Response to comment #235: Implement the changes shown with editorial license.
- Resolve comment #610 with the response to comment #235.

178A.1.3 Measurement of the channel under test

The S-parameters for each signal path are measured between the test points specified by the clause or annex that utilizes this calculation. It is recommended that the scattering parameters be measured with a uniform frequency step from a start frequency no greater than 10 MHz to a stop frequency of at least 67 GHz. The measurement frequency step corresponds to the time span of the pulse response derived from the S-parameters (see 178A.1.6). The frequency step should be chosen to be small enough so that all significant components of the pulse response are included.

The reference impedance for the differential-mode S-parameters must be twice the single-ended reference resistance R_0 specified for the calculation of COM. When the single-ended reference impedance for the measurement R_m differs from R_0 , the measured differential-mode S-parameters $S^{(m)}$ can be transformed using Equation (178A–4) where *n* is 2, Z_0 is $2R_0$, and Z_m is $2R_m$.

$$S = A^{-1} (S^{(m)} - \rho) (I - \rho S^{(m)})^{-1} A$$
(178A-4)

where A

P

is an $n \times n$ diagonal matrix with diagonal values $\sqrt{Z_0/Z_m}/(Z_0 + Z_m)$
is an $n \times n$ identity matrix
is an $n \times n$ diagonal matrix with diagonal values $(Z_0 - Z_m)/(Z_0 + Z_m)$

Note that Equation (178A–4) can be used to transform the reference impedance of any $n \times n$ S-parameter matrix from any real Z_m to any real Z_0 .

The reference impedance for the measurement of differential-mode S-parameters is 100 Ω .

Reference Impedance

Comments 59-66, 236-239, 514, 595-599, 606-609, 611-618, 620-624

Editorial team recommendation:

- Change reference impedance for <u>all</u> ERL measurements to 92.5 Ω differential (add explicit statement in the ERL subclauses).
- Change reference impedance for frequency-domain measurements (IL, RLCD, RLDC, RLCC) to 92.5 Ω diff., 23.125 Ω CM. Specify for both PMDs and channels/cable assemblies.
- Specify that transmitter time-domain measurements are made with a 50 Ω single-ended load.
- Change R_0 in all COM tables to 46.25 Ω . No change in A_v , A_{ne} , A_{fe} .
- Implement in 178, 179, 176C, 176D, as appropriate.

SNDR

Comments 481, 351, 736, 737, 355, 356, 414, 542

dSNDR/Reference SNDR Comments 351, 736, 737, 355, 356, 414

P 365

L12

351

Ghiasi, Ali	Ghiasi Qunatur	m/Marvell	
Comment Type TR	Comment Status X		
The reference pacakge	A and B SDNR are known sp	ecific value	
SuggestedRemedy			
	alue in g/3/dj/public/24_11/healey_3d to community reference SNDF		
Proposed Response	Response Status O		
C/ 179 SC 179.9.4	P 394	L37	# 736
	Nvidia		
Dawe, Piers			
Dawe, Piers Comment Type TR	Comment Status X		
Comment Type TR Difference signal-to-no			
Comment Type TR Difference signal-to-no	Comment Status X		
Comment Type TR Difference signal-to-no where the compliance	Comment Status X bise-and-distortion ratio, dSNI board is properly defined and		
Comment Type TR Difference signal-to-no where the compliance SuggestedRemedy	Comment Status X bise-and-distortion ratio, dSNI board is properly defined and		
Comment Type TR Difference signal-to-no where the compliance SuggestedRemedy Change to SNDR, or d	Comment Status X bise-and-distortion ratio, dSNI board is properly defined and lelete and use EECQ Response Status O		ts deviation is allowe
Comment Type TR Difference signal-to-no where the compliance SuggestedRemedy Change to SNDR, or of Proposed Response Cl 179 SC 179.9.4.5	Comment Status X bise-and-distortion ratio, dSNI board is properly defined and lelete and use EECQ Response Status O	d adjustment for i	ts deviation is allowe
Comment Type TR Difference signal-to-no where the compliance SuggestedRemedy Change to SNDR, or of Proposed Response Cl 179 SC 179.9.4.5 Dawe, Piers	Comment Status X bise-and-distortion ratio, dSNI board is properly defined and lelete and use EECQ Response Status O 5 P 399 Nvidia	d adjustment for i	ts deviation is allowe
Comment Type TR Difference signal-to-no where the compliance SuggestedRemedy Change to SNDR, or of Proposed Response Cl 179 SC 179.9.4.5 Dawe, Piers Comment Type TR Difference signal-to-no	Comment Status X bise-and-distortion ratio, dSNI board is properly defined and lelete and use EECQ Response Status O 5 P 399	L 1	ts deviation is allowe # [<u>737</u> nd not justified for CR
Comment Type TR Difference signal-to-no where the compliance SuggestedRemedy Change to SNDR, or of Proposed Response Cl 179 SC 179.9.4.5 Dawe, Piers Comment Type TR Difference signal-to-no	Comment Status X bise-and-distortion ratio, dSNI board is properly defined and lelete and use EECQ Response Status 0 5 P 399 Nvidia Comment Status X bise-and-distortion ratio, dSNI	L 1	ts deviation is allowe # [<u>737</u> nd not justified for CR
Comment Type TR Difference signal-to-no where the compliance SuggestedRemedy Change to SNDR, or of Proposed Response CI 179 SC 179.9.4.5 Dawe, Piers Comment Type TR Difference signal-to-no where the compliance	Comment Status X bise-and-distortion ratio, dSNI board is properly defined and lelete and use EECQ Response Status 0 5 P 399 Nvidia Comment Status X bise-and-distortion ratio, dSNI board is properly defined and	L 1	ts deviation is allowe # [<u>737</u> nd not justified for CR

C/ 176D	SC	176D.8.7	PT	54	L20	# 355
Ghiasi, Ali			Ghia	si Quna	atum/Marvell	
Comment T	ype	TR	Comment Status	x		
			for host is not clear nce SNDR but the la			aragraph are for al measurement of DUT
SuggestedF	Reme	dy				
- Please DUT SN - After - In the sentens - Then I	e sep NDR defini 2nd p ie " ast s	ition of refe part clarly id of 6 ps is u tep is dSNI	rence SNDR "calcu dentify this procedu sed for measureme DR=DUT SNDR - R	late ref re is for nt of D ef SND	erence SNDR" measurement o UT SNDR"	om measurement of f DUT SNDR add to
Proposed R	espo	nse	Response Status	0		
C/ 176D	SC	176D.8.7	Pī	54	/ 34	# 356
Ghiasi, Ali	00				atum/Marvell	
Comment T	inno	TR	Comment Status			
						e paragraph are for al measurement of DUT
SuggestedF	Reme	dy				
- Please DUT SN - After - In the	e sep NDR defini 2nd p ast s	ition of refe part clarly io tep is dSNI	rence SNDR "calcu dentify this procedu DR=DUT SNDR - R	late ref re is for ef SND	erence SNDR" measurement o	om measurement of f DUT SNDR
- Toposeu A	•		Response Status	to house Vy	5.429542.V	and all some
C/ 176D	S	C 176D.6.4	4 F	746	L 34	# 414
Mi, Guang	can		Hua	wei Te	chnologies Co., I	Ltd
Comment	Туре	TR	Comment Statu	s D		(Electrical) SNDI
			hiasi_3dj_02b_2505 oposed to set a set			ed parameter. Rich's
						ed, and dependent on the t for all the IL variations.
Suggested	Rem	edy				
The A	UI C2	2M method	ology affects both th	ne SER	DES/euqipment	and the optical module

community. The newly introduced parameters need to be open for consideration from both

sides, and find consensus in simplfying the measurements.

C/ 178

SC 178.9.2.7

dSNDR/Reference SNDR Comments 481, 542

SC 179.9.4.5.3

т

P400 L30

481

Healey, Adam Comment Type Broadcom, Inc. Comment Status D

(Electrical) SNDR

It has been demonstrated that the reference SNDR is a weak function of the test fixture sparameters. This suggests that the SNDR test can be greatly simplified by specifying a fixed set of reference values that are a function of the preset. The reference values should be derived from the equivalent SNDR produced by the COM transmitter model under similar conditions.

SuggestedRemedy

Replace the dSNDR procedure with a comparison of the measured SNDR to a limit that is a function of the preset. Set the limits to the SNDR^(ref) values on slide 5 of <htps://www.ieee802.org/3/dj/public/24_11/healey_3dj_01_2411.pdF for presets 1 to 5. Set the limit to 31 dB for preset 6. Add a note that the limits are consistent with parameter values in the corresponding COM table. If desired, the subclause defining reference SNDR can be retained as documentation of the procedure used to define the limits.

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

There are several comments related to SNDR/dSNDR.

The editorial team will prepare a proposal for resolving all these comments.

For CRG discussion after reviewing the editorial proposal.

CI 176D SC	176D.8.7	P 754	L 36	# 542
Levin, Itamar		Altera corp.		
Comment Type	т	Comment Status D		(Electrical) SNDR
no reference requirement		test-fixture like in the previ	ous annex 163B, t	hat meets the
SuggestedReme	edy			
		rest-fixture annex for 2000 dVf, dSNR, etc'?	3 similar to 163B	with the COM values to
Proposed Resp	onse	Response Status W		
The test fixt	ures for AUI	N PRINCIPLE. C2M are specified in Anne re given in equations 179E		

Example calculation results

Preset	SNDR ^(ref) , dB	Min. limit, dB
1	33.5	
2	27.5]
3	30.7	33.5
4	30.2]
5	28.7	1

Source: healey_3dj_01_2411, slide 5

If we replace dSNDR with SNDR, there will be no need for an example test fixture.

Reference SNDR Comments 481, 351, 736, 737, 355, 356, 414, 542

CR

- Promote 179.9.4.5.1 (Measured SNDR) into 179.9.4.5 (Difference signal-to-noise-and- distortion ratio), renaming as required.
- In 179.9.4.5, add a table based on <u>healey 3dj 01 2411</u> slide 5, adding preset 6 with a limit of 31 dB. Add text noting that the limits are consistent with the values in Table 179-18.
- Delete 179.9.4.5.2 (Reference channel transfer function) and 179.9.4.5.3 (Reference SNDR).
- Change the specification in Table 179-7 to SNDR with "Value" referring to the new table.

KR/C2C

- Change the specifications in Table 178-6 and Table 176C-2 to SNDR with "Value" referring to the new table.
- In 178.9.2.7, eliminate the dashed list of exceptions, delete the second item and pull the first one into the text paragraph.

AUI C2M

- Change the specifications in Table 176D-2 and Table 176D-3 to SNDR with "Value" referring to the new table.
- In 176D.8.7, delete the second dashed item ("In the calculation of the reference channel transfer function...") from the lists of exceptions for both host output and module output.

Editor's recommendation:

• Implement the changes listed on this slide with editorial license.

ITOL & min channel loss for KR/C2C

Comments

COM Quantization noise

Comments #243-253 (method) Comments #254-261 (parameter values)

COM quantization noise method (comments #244 to #253)

References:

[1] IEEE P802.3dj May 2025 Task Force interim meeting <u>shakiba_3dj_01b_2505</u> [2] Attachment to D2.0 comment #243 <u>8023dj_D2p0_comment_243_attachment</u>

From minutes_3dj 2505_unapproved

Comment #243

Straw Poll #1: For the quantization noise modeling in COM Annex 178A, I prefer the direction of: A. no change B. direct method (e.g. shakiba_3dj_01a_2505, slide 5 & 15) C. need more information/something else D. abstain (choose one)	Cl 178A SC 178A P 777 L2 Shakiba, Hossein Huawei Technologies Comment Type TR Comment Status X Add quantization noise. SuggestedRemedy Add a new section "178A.1.7.6 Quantization noise". Please accompanying document for the proposed sub-section control	Canada refer to slides 3-5 of the
Results: A: 14, <mark>B: 28</mark> , C: 8 , D: 10		

- Support for adding a quantization noise model indicated in May 2025 interim meeting straw poll #1.
- Accompanying document referred to in comment #243 is reference [2].
- Need agreement on values for new parameters.

COM quantization noise parameter values (comments #254-261)

Reference:

[3] 26 June 2025 IEEE P802.3dj Joint Electrical/Logic/Optics ad hoc shakiba 3dj adhoc 01b 250626

Parameter	Draft 2.0 (no change)	[3] Option 1	[3] Option 2	[3] Option 3.a [2] slides 15-18	[3] Option 3.b	[3] Option 4
One-sided noise spectral density, eta_0	1e-8	5e-9	7.4e-9 Cl. 178 7.4e-9 Cl. 179 4.6e-9 An. 176C 2.4e-9 An. 176D	5e-9	7.5e-9	1e-8
Noise-equivalent quantization bits, N_qb	n/a	5.48 Cl. 178 5.48 Cl. 179 6.08 An. 176C 6.37 An. 176D	6	6	6	6
Quantization clip probability, P_qc	n/a	(2 x DER 0) 4e-4 Cl. 178 4e-4 Cl. 179 1.34e-5 An. 176C 4e-5 An. 176D			- -	
rom <u>3dj_adhoc_Straw_P</u> Straw Poll #1: For the modeling of quantization r proposed Option 3.a or Option 3.t hakiba_3dj_adhoc_01b_250626 (: 21 N: 1 NMI: 2 A: 11	noise in COM Annex 1 to eta_0 and N_qb valu		and N_qb values (chicago rules)	of quantization noise ir (CR/KR, C2M, C2C) ir		
luly 2025			202 2di Task Eoroo	,		

COM quantization noise recommendations

Editor's recommendations:

- Resolve comment #243 as follows
 - Implement the changes in 8023dj D2p0 comment 243 attachment slides 3 to 14 with editorial license
 - Add new parameters to, and update existing parameters in, the COM tables in Clause 178, Clause 179, Annex 176C, and Annex 176D with the values from Option 3.b in <u>shakiba 3dj adhoc 01b 250626</u>
- Resolve comments #244 to #261 with the response to comment #243.

KR link diagram

Comments 640, 303, 92, 304, 302

KR Link Diagram Comments 640, 303, 92, 304, 302

CI 178 SC 178.8.1

P 360 Nvidia # 92

Bruckman, Leon

Comment Type TR Comment Status X

The ILT function and SIGNAL_OK handling is missing. In the optical PMDs appears in the block diagram figures

SuggestedRemedy

In Figure 178-2 add the ILT function above the PMD transmit and receive functions. Show the SIGNAL_OK as an input to the ILT function at the left side and as an output to the ILT function in the right side (refer for example to Figure 180-2) Apply also to Figure 179-2.

Proposed Response Response Status O

2	178	S

C 178.8.1

L15

L24

640

Swenson, Norman

P 360 Nokia, Point2

Comment Type ER Comment Status X

The test points in the figure are not the test points at which the OMD is specified. The PMD is specified at TP0v, which is not shown in the figure. The first sentence starting with "The test points" implies that these are the only test points.

SuggestedRemedy

Change the title of the section from "Specified Test Points" to "Referenced Test Points". Delete the word "The" at the beginning of the first sentence. Add a sentence after the first sentence that reads: "The PMD is specified at test points TP0v and TP5v (see 178.9.2.1 and 178.9.3.1)."

Proposed Response

Response Status O

CI 178 SC 178.8.1 P 360 L33 # 302 Alphawaye Semi Brown, Matt Comment Status X Comment Type ER Figure 178-2. The interface at TP0 is helpfully labelled as "package-to-board interface". A similar label would be helpful at TP0d. SuggestedRemedy Add a label at TP0d "die-to-package interface". Apply similar change to Figure 176C-2. Proposed Response Response Status O

C/ 178 SC 178.8.1		178.8.1	P 360	L 23	# 303
Brown, Ma	att		Alphawave Se	emi	
Comment	Туре	TR	Comment Status X		

The PMD ends and the medium begins at the MDI. According to 178.11 the MDI is at TP0 and TP5, not at TP0d and TP5d. Further, in most cases "channel" spans from TP0 to TP5; though there are some cases that reference the TP0d to TP5d channel, e.g., "Maximum insertion loss from Tp0d to Tp5d, ILdd, at 53.125 GHz (recommended)" in Table 178-11.

SuggestedRemedy

In Figure 178-2, make the following changes: Show the PMD ending and "channel" beginning at TP0 and TP5. Add a label at TP0 and TP5 "MDI". Apply similar changes to Figure 176C-2.

Proposed Response Response Status O

C/ 178	SC 178.8.1	P 360	L 32	# 304	
Brown, Ma	att	Alphawave Se	emi	- 171	

Comment Type ER Comment Status X

The die is labelled "device", whereas the "device" is the combination of die and package.

SuggestedRemedy

Change label pointing to the die on the left side of the Figure 178-2 to "Die".

Proposed Response Response Status O

KR Link Diagram

Comments 640, 303, 92, 304, 302

Proposed changes to 178.8.1/Figure 178-2.

- 92: Add the ILT function & SIGNAL_OK above PMD function.
- 302: Label "Die-to-package interface at TP0d. Also apply to Figure 176C-2.
- 303: Show channel going from TP0 to TP5. Add "MDI" at TP0 & TP5. (and in Figure 176C-2)
- 304: Change label on die at left from -'device' to 'die'.
- 640: Change subclause title. Add sentence to 1st paragraph stating that the PMD is specified at TP0v & TP5v.
 - Note: the MDI is specified at TP0 & TP5 (ref 178.11).

NOTE—The source lane (SL) signals SL/ and SL/ and the positive and negative sides of the transmitter's differential signal pair on lane i and the destination lane (DL) signals DL/ and DL/ are the positive and negative sides of the receiver's differential signal pair on lane i.

Figure 178-2-200GBASE-KR1, 400GBASE-KR2, 800GBASE-KR4, or 1.6TBASE-KR8 link

KR SCMR

Comment 48

SCMR Comment #48

The comment proposes to align SCMR (eq 178-1) with SNDR (eq 179-9)

$$SNDR^{(meas)} = 10\log_{10}\left(\frac{P_{Signal}}{\sigma_e^2 + \sigma_n^2}\right) \quad (179-9)$$

$$m_0 = 1 + (k_{peak} - 1) \mod M \qquad (179-7)$$

$$P_{Signal} = \sum_{i=0}^{V_p - 1} p(M \times i + m_0)^2 \qquad (179-8)$$

$$SCMR = 20\log_{10}\left(\frac{V_{peak}}{VCM_{FB}}\right) \qquad (178-1)$$

$$Change to \qquad \downarrow$$

$$SCMR = 10\log_{10}\left(\frac{p_{Signal}^2}{VCM_{FB}^2}\right)$$

Editor's recommendation: Implement the suggested remedy.

-	******	2010/04/04 194-	111000-0-0	and a local
C/ 178	SC 178.9.2.6	P 364	L 53	# 48
Mellitz, Rich	ard	Samtec		
Comment T	ype TR	Comment Status X		
	meas) replaced V meas) (eq 179-9)	_peak^2 with P_signal. S	6CMR should be a	ligned with
SuggestedF	Remedy			
SNDR(i Replace SCMR= In P365 Replace V_peak With	meas) (eq 179-9) e equation 178-1 v = 10*log10(P_sign line 4 e:	al / VCM_FB^2) /9.9.4.1.2	CMR should be a	ligned with
Proposed R	Charles and the second s	Response Status O		
C1 179 SC 179.84.4.1 P 312 L42 Malitz, Rickard Barrise Comment Type Comment Type Strike Reduces with loss and used that way for equation 178.4-1 Strike Reduces with loss and used that way for equation 178.4-1 Strike Reduces with loss and used that way for equation 178.4-1 Strike Reduces with loss and used that way for equation 178.4-1 Strike Reduces with loss and used that way for equation 178.4-1 Strike Reduces with loss and used that way for equation 178.4-1 Strike Reduces with loss and used that way for equation 178.4-1 Program Reduces Response Alegionse Response Alegionse Status		The following presentation was review interactive interaction suggested effectively SNDR as shown in the excerpts below The motivation is that this way the SNI and the measurement point yield cons The presentation suggests a specific v don't change prior standards", but this	05/melitz_3di_02_2405.ndf changing the definition of the DR measurement at different lo istent results. way of writing this definition as a	"signal" component of isses between the source a correction factor "So we
CI 179 SC 179.9.4.6 P315 L17 Melitz, Richard Samtec Comment Type TR Comment Status X SNDR reduces with loss and used that way for equation 1784- Samtec Status X Samtec	# 47	without affecting other standards.		
Suggested/Remedy change The transmitter SNDR is defined by the measurement method to The transmitter SNDR is defined by the measurement method a power loss factor defined in xxx Proposed Resonse Resonse Status 0		□ For the "S" in SNDR use of the signal at the mee follows which is the in t • $\sigma_p^2 = \sum_{1}^{M(N_p - Dp - 1)} p(n)$	surement point as ime and frequency do	main
Proposed Response Status O		Instead of p _{max}		
If the proposal is adopted, implementing this pr broad editorial license.	oposal would preferably done	Consider SNDR as a rat variance Perhaps: SNDR should be		iance to noise power
Other comments (shown on subsequent slides, change.	are based on this proposed		(e · · · · ·	
June 2024	IEE	E P802.3dj Task Force		17
		ran_3	3dj_01f_2	406.pdf

Amplitude tolerance

Comments 410, 667

Amplitude tolerance Comment 410

C/ 176D	SC 17	76D.8.11	P 755	L21	# 410
Mi, Guang	can		Huawei Tech	nologies Co., L	td
Comment	Туре	TR	Comment Status D		Amplitude tolerance
steady In the reques	v state vo same tim sts it.	Itage. In the	the amplitude tolerance is is note, it says the steady eiver is not required to tole	-state voltage is erate preset 1 u	s defined with preset 1.
It is ve	ry confus	sing which	voltage is used and how i	t is defined.	
Suggested	Remedy				
Please	e clarify.				
Proposed	Respons	e .	Response Status W		
The fir require The se clarifie output These the de	st senter ements s econd par s that a r signal. two para finition of	nce continu pecified in ragraph de receiver un graphs tog steady-sta	PRINCIPLE. les with "such that it satisf 176D.2 when it operates i fines the steady-state voli der test can control the ed gether imply that the signa ate voltage. The note mak ified further by some rew	IN DATA mode" tage as being a qualizer setting Il seen by the re es this more e	transmitter metric, and to create a suitable eceiver is different from

In the first paragraph, change "as the maximum steady-state voltage (see 176D.8.4)" to "as the maximum transmitter steady-state voltage".

In the second paragraph, change "The steady-state voltage is measured for the transmitter that is connected that is connected to the input of the receiver under test" to "The transmitter steady-state voltage is measured as specified in 176D.8.4 at the output of the transmitter used in the test".

Proposed change (modified from the original response)

176D.8.11 Amplitude tolerance

Amplitude tolerance of a receiver is defined as the maximum <u>transmitter</u> steady-state voltage (see 176D.8.4) that the receiver can tolerate at its input, such that it satisfies the error ratio allocation requirements specified in 176D.2 when it operates in DATA mode (see Annex 178B).

The <u>transmitter</u> steady-state voltage is measured as specified in 176D.8.4 for the transmitter that is eonnected to the input of the receiver under at the output of the pattern generator used in the test. A receiver under test is allowed to control the transmit equalizer coefficients of the transmitter using the ILT protocol (see 176D.8.6) to create suitable output signal.

NOTE—Steady-state voltage is defined with preset 1. It is not initially generated by a transmitter, due to the initialize setting in Table 176D–9. The receiver is not required to tolerate preset 1 unless it specifically requests it.

The pattern generator is initially configured to transmit training frames as defined in 178B.6. During this initialization period, the device under test (DUT) may configure the pattern generator transmit equalizer to the coefficient settings it would select using the ILT function (see 176D.8.6). The coefficient settings may be communicated via the ILT protocol or by other means. After the transmit equalizer has been configured, the block error ratio is measured as specified in 174A.8.

For a host, the input signal is applied at TP4a and measured at TP4. For a module, the input signal is applied at TP1 and measured at TP1a.

Additional text taken from the ITOL subclause, plus a reference to the test method of 174A.8.

Amplitude tolerance Comment 667

C/ 179	SC 179.9.5.2	P 406	L 10	# 667
Ran, Adee		Cisco Systems		122
Comment Ty	pe TR	Comment Status D		ATOL

As noted in comment #263 against D1.4, the amplitude tolerance required by a receiver (at its input, TP3) is not a swing identical to the output of the transmitter. This is due to both channel attenution and initial Tx equalization (which is addressed by another comment). This is despite the fact that the tolerance is defined using the output of the transmitter (but this value is at TP2).

The comment suggested adding an informative NOTE to highlight this non-trivial fact for readers. SImilar comments exist in Amplitude tolerance subclauses of AUIs, both C2C and C2M.

In https://www.ieee802.org/3/dj/public/25_03/ran_3dj_03_2503.pdf it was referred to as "Change B" (slide 3).

There was consensus to apply this change, as recorded in straw polls #TF-7 and #TF-8 (see minutes_3dj_2503_approved, page 17).

Similar notes should be use for all instances of amplitude tolerance.

SuggestedRemedy

Implement change B as shown on slide 3 in ran_3dj_03_2503, with editorial license.

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

Straw polls #TF-8 and #TF-8 in the March 2025 meeting (see

<htps://www.ieee802.org/3/dj/public/25_03/minutes_3dj_2503_approved.pdf#page=17> and the related presentation

<https://www.ieee802.org/3/dj/public/25_03/ran_3dj_03_2503.pdf#page=3>) indicated strong support of the direction suggested in this comment: in "choose one", options B-D (which include the suggested remedy) had a total of 35, while options A and E (which do not include it) had 24.

Note that a similar informative NOTE appears in the receiver amplitude tolerance definitions of C2C (176C.6.4.2) and C2M (176D.8.11). These notes include "the initialize setting in Table 176D-9" which is currently different from the one in Table 179–8. However, comment #666 suggests to make the initialize settings the same in both tables.

Change the text of the PMD receiver amplitude tolerance subclauses (178.9.3.3 and 179.9.5.2) to align them with the AUI annexes (176C.6.4.2 and 176D.8.11), including the informative NOTEs, with the appropriate wording, values, and references for each clause. Implement with editorial license.

The comment suggests clarifying that **the amplitude tolerance requirement does not mean the receiver has to tolerate the maximum transmitter output voltage at its input** (referring to the presentation <u>ran 3dj 03 2503</u>).

In addition, it suggests aligning the amplitude tolerance text to that of Annex 176D (addressed by comment #667), which is phrased as a specific test (pattern generator, etc.).

Assuming the response to #667 is adopted, such alignment would require some changes due to the existence of a cable assembly between the Tx and Rx.

Existing text in 179.9.5.2:

179.9.5.2 Receiver amplitude tolerance

When a PMD receiver is connected to a compliant transmitter that has a steady-state voltage (see 179.9.4.1.2) equal to the Amplitude tolerance value in Table 179–10, using a compliant cable assembly with the minimum insertion loss specified in 179.11.2, the PMD receiver operation shall enable a block error ratio as specified in 179.2.

The receiver is allowed to control the transmitter equalizer coefficients, using the ILT function (see 179.8.9) or an equivalent process, to meet these requirements.

Amplitude tolerance Comment 667

Existing text in 179.9.5.2

179.9.5.2 Receiver amplitude tolerance

When a PMD receiver is connected to a compliant transmitter that has a steady-state voltage (see 179.9.4.1.2) equal to the Amplitude tolerance value in Table 179–10, using a compliant cable assembly with the minimum insertion loss specified in 179.11.2, the PMD receiver operation shall enable a block error ratio as specified in 179.2.

The receiver is allowed to control the transmitter equalizer coefficients, using the ILT function (see 179.8.9) or an equivalent process, to meet these requirements.

Proposed replacement text, based on 176D.8.11. Differences are highlighted.

Amplitude tolerance of a receiver is defined as the maximum transmitter steady-state voltage that the receiver can tolerate, using the low-loss test channel specified in 179.9.5.3.2, such that it satisfies the error ratio allocation requirements specified in 179.2 when it operates in DATA mode (see 179.8.2).

The transmitter steady-state voltage is measured as specified in 179.9.4.1.2 at the output of the pattern generator used in the test.

NOTE—The voltage observed at the receiver input is attenuated by the test channel and possibly by transmit equalization in the pattern generator, which is configured by the receiver. The receiver is not required to tolerate the maximum transmitter output voltage at its input.

The pattern generator is initially configured to transmit training frames as defined in 178B.6. During this initialization period, the device under test (DUT) may configure the pattern generator transmit equalizer to the coefficient settings it would select using the ILT function (see 179.8.9). The coefficient settings may be communicated via the ILT protocol or by other means. After the transmit equalizer has been configured, the block error ratio is measured as specified in 174A.8.

Depending on the resolution of #666, the NOTE may also need to refer to the "initialize" value as in 176D.8.11.

CR host classes C2C package classes

Comments 370, 372, 373, 362

CR host classes Comment 370, 372

C/ 179 SC 179.9.4 P 394 L 46 # 370 Ghiasi, Ali Ghiasi Qunatum/Marvell Comment Type TR Comment Status D CR-bost classes Reference to host classes missing SuggestedRemedy

Please reference table 179A-1

Proposed Response Response Status W

PROPOSED REJECT.

The existence of three host classes is stated in the overview subclause, 179.1, including the fact that they have different electrical specifications.

Table 179A-1 (mentioned in the suggested remedy) is not a definition of host classes - it only includes recommendations for insertion losses, and is informative. It is not a helpful reference.

The proposed change does not improve the technical clarity or accuracy of the text.

C/ 179	SC 179.11.7.1	P4	17	L8	# 372	
Ghiasi, Ali		Ghias	si Qunat	um/Marvell		
Comment The o		Comment Status classes are defined	9870 B	able 179A-1	CR host clas	ses
Suggested Need	-	179A-1 or Host clas	sses sho	ould be added to t	he glossary	
Proposed	Response	Response Status	w			
	OSED REJECT.	nse to comment #3	70.			

Table 179–7—Summary of transmitter specifications at TP2

Parameter	Subclause reference	Value	Units
Output jitter (max)	179.9.4.6		
		0.023	UI
J _{RMS} EOJ ₀₃		0.025	UI
J4u ₀₃ Host class HL		0.120	UI
Host class HN		0.124	UI
Host class HH		0.128	UI

Table 179-17-Partial host channel model parameters per Host class

	Host class			
Parameter	HL	HN	нн	Units
Package class	A	В	В	
Package transmission line 1 length, $z_p^{(1)}$	8	15	45	mm
Partial host PCB transmission line length, $z_p^{(h)}$	9	70	60	mm

NOTE—For each host class, the sum of the differential insertion loss (ILdd) at 53.125 GHz of the partial host channel (excluding the device termination) and the reference mated test fixtures (see Equation (179B–5) and Figure 179A–1) is equal to the recommended maximum host channel insertion loss in 179A.4 for that host class.

CR host classes Comment 370, 372

C/ 179	SC	179.9.4	P 3	94	L46
Ghiasi, Ali			Ghias	i Qunatum/	Marvell
Comment T	ype	TR	Comment Status	D	
Referen	ice to	host class	es missing		

SuggestedRemedy

Please reference table 179A-1

Proposed Response Response Status W

PROPOSED REJECT.

The existence of three host classes is stated in the overview subclause, 179.1, including the fact that they have different electrical specifications.

Table 179A-1 (mentioned in the suggested remedy) is not a definition of host classes - it only includes recommendations for insertion losses, and is informative. It is not a helpful reference.

The proposed change does not improve the technical clarity or accuracy of the text.

C/ 179	SC 179.11.7.1	P4	17	L8	
Ghiasi, Ali		Ghias	i Qunat	um/Marvell	
Comment Typ	e TR	Comment Status	D		

CR host classes

372

370

CR host classes

The only place that host classes are defined is in Table 179A-1

SuggestedRemedy

Need reference to table 179A-1 or Host classes should be added to the glossary

Proposed Response Response Status W

PROPOSED REJECT.

Resolve using the response to comment #370.

179.1 Overview

This clause specifies the 200GBASE-CR1, 400GBASE-CR2, 800GBASE-CR4, and 1.6TBASE-CR8 PMDs and the associated baseband media. The PMDs provide point-to-point 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet links on one, two, four, or eight lanes, respectively, over twinaxial copper cable. The specifications for the four PMDs are similar, except for the number of lanes and associated parameters, and the MDI.

There are four associated annexes. Annex 179A provides information on parameters that might not be testable in an implemented system, since the test points they are associated with are typically inaccessible. Annex 179B specifies test fixtures. Annex 179C specifies MDIs. Annex 179D describes host and cable assembly types.

When forming a complete Physical Layer, a PMD shall be connected to the appropriate sublayers (as specified in Table 179–1 through Table 179–4) and to the medium through the appropriate MDI, as illustrated in Figure 179–1.

PMDs defined in this clause conform to one of three host classes. The electrical specifications are separate for each host class.

Cable assemblies defined in this clause conform to one of four classes, which differ by the maximum insertion loss.

Operation of Ethernet links is provided for specific combinations of host classes and cable assembly classes, as listed in Table 179–15 and Table 179A–4.

Table 179-15-Cable assembly class and host class valid combinations

Cable assembly class	Host classes, transmitter side	Host classes, receiver side	Number of combination
C1 1	HN or HL	HL, HN, or HH	6
CA-A	HH	HL or HN	2
	HL	HL, HN, or HH	3
CA-B	HN	HL or HN	2
	HH	HL	1
CA C	HL	HL or HN	2
CA-C	HN	HL	1
CA-D	HL	HL	1

CR host classes Comment 370, 372

The comments suggest adding references to Table 179A-1 in two places. However, this table is not a definition or specification of the host classes - it is only an **informative** recommendation for host design.

The host output specifications (Table 179-7) and the COM partial host model parameters (Table 179-17) are **normative**, and should not refer to this table.

The overview in 179.1 provides the context of having three host classes and their combinations with cable assembly classes.

Editor's recommendation: reject both comments.

179A.4 Host channel insertion loss

The recommended differential insertion loss at 53.125 GHz for the host channels, consisting of controlled impedance PCB, device package, and host connector, are given in Table 179A–1 and illustrated in Figure 179A–1. The recommended maximum differential insertion loss at 53.125 GHz for (TP0d-to-TP2) or (TP3-to-TP5d) for each of the host channels are given in Table 179A–1, and illustrated in Figure 179A–1. The recommended maximum differential insertion loss (TP0d-to-TP2) or (TP3-to-TP5d) are consistent with the host channels and an assumed mated connector insertion loss of 2.45 dB.

	Host channels	TP0d to TP2 or TP3 to TP5d
Host class	Range (dB)	Max (dB)
Host-Low (HL)	4.45 to 8.95	12.75
Host-Nominal (HN)	4.45 to 13.95	17.75
Host-High (HH)	4.45 to 18.5	22.75

Table 179A-1-Recommended differential insertion loss limits at 53.125 GHz

CR host classes Comment 373

C/ 179 SC 179.11.7.1

P417 18 # 373

Ghiasi, Ali

Ghiasi Qunatum/Marvell

Comment Status D

Comment Type TR CR host classes Table 179-17 provide partial channel for different host classes, it would be helpful to also include the losses for the 3 partial channels

SuggestedRemedy

Host Partial HL Class loss = 1 72 dB

Host partial NL Class loss = 9.4 dB

Host partial HH Class loss = 14.35 dB

If one adds the MCB loss of 3.2 dB to the above value then that would give host channel see below and similar to Table 179A-1

Host HL Class loss = 4.9 dB

Host NL Class loss = 9.4 dB

Host HH Class loss = 14,35 dB

The above losses are the not max or min losses, some explanation why value in table 179-17 are chossen would be helpfull.

For the HH case if we go with Zp=140 mm will result in loss of 18.3 dB when MCB is included which inline to max loss in table 179A-1.

Proposed Response Response Status W

PROPOSED REJECT

The comment suggests adding the ILdd values corresponding to the partial host channel of each host class. That could be done by adding another row in Table 179-17.

However, the ILdd value is just a result of the existing information in the table, and is not a specification by itself. Thus, this row would only be informative. Moreover, it would not represent the whole host channel and thus would not be helpful for implementers (and might cause confusion).

The NOTE below the table includes references to the informative annexes where the recommended host channel II dd values are listed

Table 179–17—Partial host channel model parameters per Host class

		Host class			
	Parameter	HL	HN	нн	Units
Package class		A	В	В	0.000
Package transmission	line 1 length, $z_p^{(1)}$	8	15	45	mm
Partial host PCB trans	smission line length, $z_p^{(h)}$	9	70	60	mm

NOTE-For each host class, the sum of the differential insertion loss (ILdd) at 53.125 GHz of the partial host channel (excluding the device termination) and the reference mated test fixtures (see Equation (179B-5) and Figure 179A-1) is equal to the recommended maximum host channel insertion loss in 179A.4 for that host class.

The table was added by the response to comment #92 against D1.2 (See slide 7 in ran 3dj 02a 2411) The values were chosen such that:

ILdd(Partial host channel) + ILdd(reference MTF) = ILdd(TP0d to TP2)

Table 179A-1—Recommended differential insertion loss limits at 53.125 GHz

	Host channels	TP0d to TP2 or TP3 to TP5d
Host class	Range (dB)	Max (dB)
Host-Low (HL)	4.45 to 8.95	12.75
Host-Nominal (HN)	4.45 to 13.95	17.75
Host-High (HH)	4.45 to 18.5	22.75

C2C package classes Comment 362

C/ 176C	SC	176C.6.3	P724	L 22	# 362	
Ghiasi, Ali			Ghiasi Qui	natum/Marvell		Г
Comment T	уре	TR	Comment Status D		(Electrical) Package class	
packag	e as (Class A or C	ackage A and package Class B. Is it total loss? , is that class A?		t determines actual DUT f one has Class B	
Suggested	Reme	dy				
Please	provi	de how to de	etermine DUT package i	is Class A or B.		

Also add reference to table 176C-7

The existence of two package classes is stated in the last paragraph of 176C.3.

This annex defines specifications for two classes of C2C transmitters and two classes of C2C receivers, identified by transmitter package class and receiver package class, respectively. The package is either class A or class B. Devices conform to electrical specifications of either class A or class B. The required characteristics of the electrical interconnect between two devices depend on the transmitter package class on one device and the receiver package class on the other device.

Similar text appears in 178.1, the "Overview" subclause. It makes sense to move this text into the overview 176C.1.

Table 176C-2—Transmitter electrical characteristics at TP0v (continued)

Parameter	Reference	Value	Units
Output jitter (max)	176C.6.3.6		
J _{RMS}		0.023	UI
EOJ ₀₃		0.025	UI
J4u03			
Tx package Class A		0.118	UI
Tx package Class B		0.12	UI

Table 176C-7, mentioned in the suggested remedy, contains reference package model parameters. It is not a definition/specification of the package classes and should not be referenced.

Editor's recommendation: ACCEPT IN PRINCIPLE. Move the last paragraph of 176C.3 to 176C.1, with editorial license.

ERL Tfx

Comments 139, 361

ERL Tfx Comments 139, 361

C/ 179	sc	179.11.3	P	413	L 8	#	139
Noujeim, L	eesa		Goo	gle			
Comment	Туре	т	Comment Status	D			(Electrical) EF
inherit should	ed from	n adjustmer	't de-embed to just nt of HCB, but doe ector and launch b	sn't appl	y to CATF in the	same wa	y. CA ERL
Suggested	Reme	dy					
		move references only.	ence to the mating	interfac	e discontinuity; T	fx should	include the
Proposed	Respo	nse	Response Status	w			
CATF time g cable i Howey measu	(MCB) ated, o itself. ver, the uremen	can have o therwise th text is unc tor time-ga	N PRINCIPLE. liscontinuities or lo e measurement ca lear about whether ated out. This may what the intent is.	the CA	uenced by the C.	ATF mor	e than the
7 176D	SC 1	76D.8.2	P7	52	L 29	#	361
Shiasi, Ali			Ghias	i Qunatu	m/Marvell		
comment Ty	ype	TR	Comment Status	D			(Electrical) Tf.
Line 30	says th	hat "Tfx equ	al to twice the test	t fixture d	delay", statement	t is not cl	ear.

SuggestedRemedy

Tfx for measurement of Host Input/Output is twice the HCB delay. Tfx for measurement of Module Input/Output is twice the MCB delay. Suggest to move Tfx into the table and make the above as footnotes in the table. We shouldn't state in IEEE standard "Tfx is provided by the test fixture provider", what about if fixture suplier doesn't!

Proposed Response Response Status W

PROPOSED REJECT.

The test fixture delay is defined in detail in the second paragraph of 176D.8.2 for both host and module measurements. Based on these definitions, the statement should be clear. The suggested remedy does not match the second paragraph and would not improve clarity.

The statement that Tfx is provided by the test fixture provider" was added by the response to comment #199 against D1.1, see <

https://www.ieee802.org/3/dj/comments/D1p1/8023dj_D1p1_comments_final_clause.pdf#pa ge=77>. It should be understood as a requirement. The suggested remedy does not provide an alternative phrasing for this statement.

179.11.3 Cable assembly ERL

The cable assembly ERL at TP1 and at TP4 is defined by the procedure in 93A.5 with the values in Table 179–14 and Table 179–16, and with T_{fx} equal to twice the test fixture delay. The test fixture delay is defined as the propagation delay between the test connector and the cable-facing connection, excluding the mating interface discontinuity. T_{fx} is provided by the test fixture provider.

This comment is specifically about the span of Tfx in a cable assembly test fixture (aka MCB).

176D.8.2 Effective return loss (ERL)

ERL is computed using the procedure in 93A.5 with the values in Table 176D–7 and Table 176D–8, and with T_{fx} equal to twice the test fixture delay. T_{fx} is provided by the test fixture provider.

For host input and output ERL, the test fixture delay is defined as the propagation delay between the test connector and the host-facing connection, excluding the mating interface discontinuity. For module input and output ERL, the test fixture delay is defined as the propagation delay between the test connector and the module-facing connection, excluding the mating interface discontinuity.

This comment seems to address both MCB and HCB.

July 2025

IEEE P802.3dj Task Force

5

8

9

ERL Tfx Comments 139, 361

Possible time-gating options in an MCB/CATF:

Figure 176D–5—Module compliance points

For Adee Review

Discussion points:

- ERL for cable assembly / module should include anything that is not included in the host.
- For host ERL: "the test fixture delay is defined as the propagation delay between the test connector and the host-facing connection, excluding the mating interface discontinuity"
 - The receptacle is excluded from Tfx, thus included in the host

- Option A would make the ERL dependent on the MCB's receptacle
 - o But Tfx is relatively well-defined and easy to measure
- Option B would reduce the dependence
 - Measurement of Tfx may require mating the MCB to a cable or HCB

ERL Tfx Comments 139, 361

	30	179.11.3	P4	13	L 8	# 139	
Noujeim, l	Leesa		Goog	le			
Comment	Туре	т	Comment Status	D		(Electric	al) ERI
inherit should	ted from	m adjustme	n't de-embed to just nt of HCB, but does ector and launch bu	n't appl	y to CATF in the	same way. CA E	ERL
Suggested	Reme	dy					
		emove refer nector only.	ence to the mating	nterfac	e discontinuity; T	fx should include	the
Proposed	Respo	onse	Response Status	w			
time d							
meas	itself. ver, the ureme	e text is und nt or time-g	clear about whether ated out. This may I what the intent is.			ould be included i	n the
cable Howe measu For C	itself. ver, the ureme RG dis	e text is und nt or time-g	ated out. This may I	be worth		# 361	n the
cable Howe measu For C	itself. ver, the ureme RG dis	e text is und nt or time-g cussion of	ated out. This may l what the intent is. P75	be worth	n clarification.		n the
cable Howe measu For C C/ 176D Shiasi, Ali	itself. ver, the uremen RG dis	e text is und nt or time-g cussion of	ated out. This may l what the intent is. P75	2 Qunatu	L 29		
cable Howe measu For C C/ 176D Shiasi, Ali Comment T	itself. ver, the uremen RG dis SC	e text is und nt or time-g cussion of 176D.8.2 TR	ated out. This may l what the intent is. P 75 Ghiasi	2 Qunatu D	n clarification. L 29 Im/Marvell	# [<u>361</u> (Electric	
cable Howe measu For C C/ 176D Shiasi, Ali Comment T	itself. ver, thu uremei RG dis SC ype says t	e text is und nt or time-g iccussion of 176D.8.2 TR hat "Tfx eq	ated out. This may l what the intent is. P75 Ghiasi Comment Status	2 Qunatu D	n clarification. L 29 Im/Marvell	# [<u>361</u> (Electric	

We shouldn't state in IEEE standard "Tfx is provided by the test fixture provider", what about if fixture suplier doesn't!

Proposed Response Response Status W

PROPOSED REJECT.

The test fixture delay is defined in detail in the second paragraph of 176D.8.2 for both host and module measurements. Based on these definitions, the statement should be clear. The suggested remedy does not match the second paragraph and would not improve clarity.

The statement that Tfx is provided by the test fixture provider" was added by the response to comment #199 against D1.1, see <

https://www.ieee802.org/3/dj/comments/D1p1/8023dj_D1p1_comments_final_clause.pdf#pa ge=77>. It should be understood as a requirement. The suggested remedy does not provide an alternative phrasing for this statement.

179.11.3 Cable assembly ERL

The cable assembly ERL at TP1 and at TP4 is defined by the procedure in 93A.5 with the values in Table 179–14 and Table 179–16, and with T_{fx} equal to twice the test fixture delay. The test fixture delay is defined as the propagation delay between the test connector and the cable-facing connection, excluding the mating interface discontinuity. T_{fx} is provided by the test fixture provider.

Editor's recommendations (based on option B):

In 179.11.3, change from:

"The test fixture delay is defined as the propagation delay between the test connector and the cable-facing connection, excluding the mating interface discontinuity"

To:

"The test fixture delay is defined as the propagation delay between the test fixture's coaxial connector and the mating point with a cable assembly or a TP2 or TP3 test fixture".

In 176D.8.2 change from:

"For module input and output ERL, the test fixture delay is defined as the propagation delay between the test connector and the module-facing connection, excluding the mating interface discontinuity."

To:

"For module input and output ERL, the test fixture delay is defined as the propagation delay between the test fixture's coaxial connector and the mating point with a module or an HCB".

Change other instances of "test connector" to "test fixture's coaxial connector".

9

CR Test Fixture

Comments 658,289,594,601,513,512,600

CR Test Fixture Comments 658

Discussion points: TP1 TP4 24 dB clear, and useful? Via Cable Assembly MCB. MCB MCB ñ 5.95 dB Paddle / Wire Termination 5.95 dB C/ 179A SC 179A.5 P821 L4 # 658 (Top of Figure 179A–1) MCB connector pads Swenson, Norman Nokia, Point2 MDI receptacle interface Comment Type Comment Status D (Electrical) CR test fixture TR What is the extra rectangle labeled Paddle/Wire Termination shown in Fig. 179A-2 that is Receptacle mating point not shown in the mated test fixtures in Fig 179A-1? It is not explained in the text. (Cable / HCB pads / Gold Fingers) SuggestedRemedy Ambiguous Test Point Clarify Proposed Response Paddlecard / DAC wire termination Response Status W PROPOSED ACCEPT IN PRINCIPLE. The rectangle and labels "Paddle/Wire Termination" serve as demarcation of the cable

CR Test Fixtures are meant to be used to measure and assess cable assembly compliance, Clause 179.

For Adee Review

• Is the text "Paddle / Wire Termination" in the Figure

figures with the same features are included in in Annex 162A, added by IEEE Std 802.3	ick.
The suggested remedy does not contain sufficient detail for the CRG to discuss a spec change.	fic

assembly and the host channel, in Figures 179A-1, 2, and 3. The "Paddle" and "Wire Termination" are structures associated with the cable assembly, and are not necessarily present in an HCB (or Mated Test Fixture). The labels are used to identify specific

These figures provide illustration as appropriate within an informative Annex. Similar

structures that are not documented elsewhere in the figure.

CR Test Fixture Comments 289, 594, 601, *513*

Heck, Howard Comment Type

TR

For Adee Review

CR Test Fixtures are meant to be used to measure and assess cable assembly compliance, Clause 179.

Annex 179A is informative and Annex 179B is normative

The Figures to the left are in Annex 179A, while the equations that derive 5.95dB and 3.8dB are in Annex 179B

Discussion points:

289

(Electrical) CR test fixture

- It is critical that CR test fixtures are quantifiable and have consistent quality across implementations. We have introduced a new way of allocating budget in 3dj. Is this working?
- Would Eq. 179B-2 be better suited for Annex 179A?

MCB loss specified in the lower left of Figure 179A-1 is not directly measurable as it is currently specified. Indirect measurement methods do not provide the necessary accuracy. The version of the figure in D1.4 was measureable and reverting back to it will resolve the problem. Equation 179B-2 requires modification to make it accurately represent the MCB insertion loss measured with the 2Xthru method

Comment Status D

TE Connectivity

CR Test Fixture Comments 513, 512, 600

(Bottom of Figure 179A-1)

Discussion points:

- Is a process that requires both an MCB and an HCB (MTF) any better at providing a requirement for an MCB or HCB independently?
- How should we address nomenclature like "gold fingers" and "fixture printed circuit board"

For Adee Review

CR Test Fixtures are meant to be used to measure and assess cable assembly compliance, Clause 179.

Annex 179A is informative and Annex 179B is normative

The Figures to the left are in Annex 179A, while the equations that derive 5.95dB and 3.8dB are in Annex 179B

C/ 179B	SC 179B.2.1	P 82	23	L 34	# 513
Dudek, Mike		Marve	ell.		30 4 0
Comment Typ	e TR	Comment Status	D		(Electrical) CR test fixture

The loss needs to be better defined to be less ambiguous.

SuggestedRemedy

Insert the sentence "The cable assembly tested fixture loss is equal to the loss of the mated test fixture minus the loss of the specific TP2 or TP3 test fixture printed circuit board loss used when measuring the mated text fixture loss." between the 1st and 2nd sentences.

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

The suggested remedy addresses the amibiguity in the definiton of ILcatf, but introduces an additional ambiguity regarding the definition of ILtfref. As a result, the specification is not necessarily less ambiguous.

Discuss with comment #289.

[Editor's note: Changed Page from 823 to 824]

<topic>

<Comments>

<TOPIC> Comment