
802.3dj D2.2 Comment Resolution Common Track

Matt Brown (Alphawave Semi), 802.3dj Chief Editor Leon Bruckman (Nvidia) Tom Huber (Nokia) Eugene Opsasnick (Broadcom)

Introduction

- This slide package was assembled by the 802.3dj editorial team to provide background and detailed resolutions to aid in comment resolution.
- Specifically, these slides are for the various common-track comments.

Topic test blocks to use for test symbol bins Comment #312

174A.9.2 PMA block error counters

Test symbols are defined as non-overlapping groups of 5 consecutive PAM4 symbols (10 bits total).

A test block is defined as a set of 544/p test symbols composed of every fourth test symbol in a set of $4 \times 544/p$ consecutive test symbols, where p is the number of physical lanes.

17 bin counters are defined for each lane i in the range 0 through p-1, as follows (see 176.7.4.7):

- test_block_error_bin_i_k, for k in the range 0 through 15, counts test blocks with k test symbol errors
- test_block_error_bin_i_16p counts test blocks with 16 or more test symbol errors

The concept of the test blocks was introduced and adopted from the following contribution: https://www.ieee802.org/3/dj/public/24 09/healey 3dj 02a 2409.pdf

In particular, slides 5 and 6 explain the concept of a test block.

174A.9.2 first defines a test symbol as being 5 consecutive PAM4 symbols (10 bits total). This corresponds to an RS(544.514) FEC symbol.

It further defines a set of 4 x 544 * p consecutive test symbols. This corresponds to 4 interleaved test blocks. Each test block corresponds to 1 RS-FEC codeword (544 FEC symbols per codeword) divided by the number of physical lanes due to the symbol-wise, round-robin distribution to each of the p physical lanes.

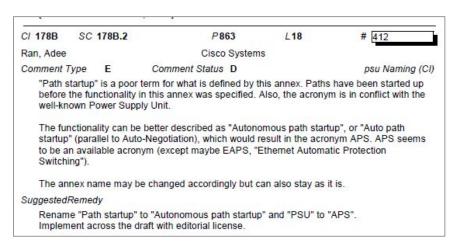
Within that set are 4 test blocks of size 544/p test symbols as follows:

Test block 1 comprises test symbols 0, 4, 8, ...

Test block 2 comprises test symbols 1, 5, 9, ...

Test block 3 comprises test symbols 2, 6, 10,

Test block 4 comprises test symbols 3, 7, 11, ...


It is however not clear which of these test blocks is to be considered.

In fact, that was on purpose as it shouldn't matter if statistics were considered for all test blocks within a set or only a subset of 1, 2, or maybe 3. However, test time could be reduced by considering all test blocks per set. It may be helpful be clear about the expectations.

Suggested changes:

Add text explaining that any subset of test blocks per set may be accumulated for the purposes of this test. Also, add a note pointing out that test time can be minimized by accumulated based on all test blocks.

Topic new term/acronym for path startup Comment #412

At the task force ad hoc 2025/10/30, two related straw polls were taken and are shown to the right. The straw polls are recorded in the following contribution:

https://www.ieee802.org/3/dj/public/adhoc/electrical/25_1030/lusted_3dj_adhoc_01a_251030.pdf

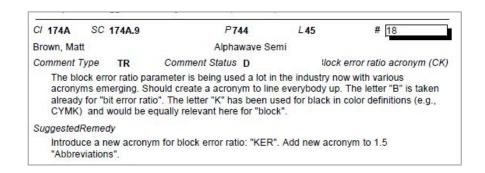
Straw poll #3 indicated strong consensus for adopting the term "autonomous path startup" and acronym "APSU".

Straw Poll #2

For the acronym used for "Annex 178B", I prefer to use:

- A. APSU, e.g. "Autonomous Path Start Up"
- B. LTPSU, e.g. "LT Path Start Up"
- C. something else
- D. don't care

(choose one)


Results (all): A: 11, B: 6, C: 9, D: 3

Straw Poll #3:

For the acronym used for "Annex 178B", I would support using APSU, e.g. "Autonomous Path Start Up"

Y: 19, N: 6, A: 6

Topic new acronym for block error ratio Comment #18

At the task force ad hoc 2025/10/30, a related straw poll was taken is shown to the right. The straw poll is recorded in the following contribution:

https://www.ieee802.org/3/dj/public/adhoc/electrical/25_1030/lusted_3dj_adhoc_01a_251030.pdf

Straw poll #1 indicated strong consensus for adopting the acronym "BLER" to represent the term "block error ratio".

Straw Poll #1

For the acronym of "Block Error Ratio", I prefer to use:

- A. KER
- B. BLER
- C. BKER
- D. don't care

(choose one)

Results (all): A: 6, B: 19, C: 5, D: 3

3

PSU wording

Path startup function description in clauses 116, 169, and 174 Comments 53, 27, 33, 34, 240,

116.2.9 Inter-sublayer link training (ILT)

Inter-sublayer link training (ILT) (see Annex 178B) facilitates the orderly startup of an inter-sublayer link (ISL) and coordinates the startup of a series of ISLs along a path. ILT, ISL, and path are defined in 178B.3.

ILT is used by the following PMD and AUI types:

- 200GBASE-KR1
- 200GBASE-CR1
- 200GBASE-DR1
- 200GBASE-DR1-2
- 400GBASE-KR2
- 400GBASE-CR2
- 400GBASE-DR2
- 400GBASE-BICE
- 400GBASE-DR2-2
- 200GAUI-1 C2C
- 200GAUI-1 C2M
 400GAUI-2 C2C
- 400GAUI-2 C
- 400GAUI-2 C2M

169.2.10 Inter-sublayer link training (ILT)

Inter-sublayer link training (ILT) (see Annex 178B) facilitates the orderly startup of an inter-sublayer link (ISL) and coordinates the startup of a series of ISLs along a path. ILT, ISL, and path are defined in 178B.3. ILT is used by the following PMD and AUI types:

- 800GBASE-KR4
- 800GBASE-CR4
- 800GBASE-DR4
- 800GBASE-FR4-500
- 800GBASE-DR4-2
- 800GBASE-FR4
 800GBASE-LR4
- 800GAUI-4 C2C
- 800GAUI-4 C2M

Change 116.2.9 to the following:

116.2.9 Path startup (PSU)

Path startup (PSU) functions are defined in Annex 178B. The inter-sublayer link training (ILT) function facilitates the orderly startup of an inter-sublayer link (ISL). The ready to send (RTS) function coordinates the startup of a series of ISLs along a path. Path and ISL are defined in 178B.3.

ILT and RTS functions are specified for use by the following PMD and AUI types:

- 200GBASE-KR1
- 200GBASE-CR1
- 200GBASE-DR1
- 200GBASE-DR1-2
- 400GBASE-KR2
- 400GBASE-CR2
- 400GBASE-DR2
- 400GBASE-DR2-2
- 200GAUI-1 C2C
- 200GAUI-1 C2M
- --- 400GAUI-2 C2C
- 400GAUI-2 C2M

Update 169.2.10 and 174.2.12 similarly.

174.2.12 Inter-sublayer link training (ILT)

Inter-sublayer link training (ILT) (see Annex 178B) facilitates the orderly startup of an inter-sublayer link (ISL) and coordinates the startup of a series of ISLs along a path. ILT, ISL, and path are defined in 178B.3.

ILT is used by the following PMD and AUI types:

- 1.6TBASE-KR8
- 1.6TBASE-CR8
- 1.6TBASE-DR8
- 1.6TBASE-DR8-2
- 1.6TAUI-8 C2C
- 1.6TAUI-8 C2M

Clause 174/178-183

Comments: 53, 154, 153, 35, 38, 45, 242, 62, 67, 49

Table 174-2—PHY type and clause correlation (1.6TBASE-R optical)

						(laus	a					
	06	170	2/1	171	175	176	177	120F	120G	176C	176D	180	182
РНҮ type	Time Synchronization	RS	1.6TMII	1.6TMII Extender	1.6TBASE-R PCS	1.6TBASE-R SM-PMA	1.6TBASE-R Inner FEC	1.6TAUI-16 C2C	1.6TAUI-16 C2M	1.6TAUI-8 C2C	1.6TAUI-8 C2M	1.6TBASE-DR8 PMD	1.6TBASE-DR8-2 PMD
1.6TBASE-DR8	0	M	0	0	M	M	_	0	0	0	0	M	_
6TBASE-DR8-2	0	M	0	0	M	M	М	0	0	0	0		M

a O = Optional, M = Mandatory

Table 174-3—PHY type and clause correlation (1.6TBASE-R electrical)

		36.			(Claus	ea	es :	vz 1	× .	
	73	06	1	0/1	171	175	176	120F	176C	178	621
РНУ type	Auto-Negotiation	Time Synchronization	RS	1.6ТМП	1.6TMII Extender	1.6TBASE-R PCS	1.6TBASE-R SM-PMA	1.6TAUI-16 C2C	1.6TAUI-8 C2C	1.6TBASE-KR8 PMD	1.6TBASE-CR8 PMD
1.6TBASE-KR8	M	0	M	0	0	M	M	0	0	M	-
1.6TBASE-CR8	M	0	M	0	0	M	M	0	0	-	M

a O = Optional, M = Mandatory

Table 178-4-Physical Layer clauses associated with the 1.6TBASE-KR8 PMD

Associated clause	1.6TBASE-KR8
73—AN	Required
90—Time Synchronization	Optional
120F—1.6TAUI-16 C2C	Optional ^a
170—1.6 Tb/s RS	Required
170—1.6ТМП ^b	Optional
171—1.6TMII extender	Optional
172—1.6TBASE-R PCS	Required
176—1.6TBASE-R SM-PMA	Required ^c
176C—1.6TAUI-8 C2C	Optional ^a
178B—ILT	Required

a A 1.6TBASE-KR8 PHY may include one instance of 1.6TAUI-n C2C as described in

Table 180-4—Physical Layer clauses associated with the 1.6TBASE-DR8 PMD

Associated clause	1.6TBASE-DRS
90—Time Synchronization	Optional
120F—1.6TAUI-16 C2C	Optional ^a
120G—1.6TAUI-16 C2M	Optional ^a
170—1.6Tb/s RS	Required
170—1.6TMII ^b	Optional
171—1.6TMII Extender	Optional
175—1.6TBASE-R PCS	Required
176—1.6TBASE-R SM-PMA	Required ^c
176C—1.6TAUI-8 C2C	Optional ^a
176D—1.6TAUI-8 C2M	Optional ^a
178B—ILT	Required

^a One or two 1.6TAUI-n may be instantiated within a 1.6TBASE-DR8 PHY as described in 176B 7.1

ILT/RTS functions are mandatory for all 1.6TBASE-R PMDs and for 1.6TAUI-8 C2M and C2C, but not supportable by 1.6TAUI-16 C2M and C2C.

Add a new column in Table 174-2 and Table 174-3 for Annex 178B labelled "ILT/RTS" with "M" with a footnote b on "M" as follows:

In Table 178-4, and similarly for tables for 1.6TBASE Physical Layers in 179, 180, and 182...

Add a footnote "d" on "Required" for the Annex 178B row as follows:

Also, change "178B-ILT" to "178B-ILT/RTS".

b The 1.6TIMII is an optional interface. However, if the 1.6TIMII is not implemented, a conforming implementation behaves functionally as though the RS and 1.6TIMII were present

^c If a 1.6TAUI-n is implemented in a PHY, additional 1.6TBASE-R SM-PMA sublayers are required according to the guidelines in 176B.7.1.

b The 1.6TMII is an optional interface. However, if the 1.6TMII is not implemented, a conforming implementation behaves functionally as though the RS and 1.6TMII were present

c If a 1.6TAUI.n is implemented in a PHY, additional 1.6TBASE-R SM-PMA sublayers are required according to the guidelines in 176B.7.1.

^b Refer to PMD clause for details.

^b Mandatory for the 1.6TBASE-KR8 PMD, and 1.6TAUI-8 C2C and C2M.

Path startup functions in clauses 116/168/174/178-183/185/187 Comments 53, 154, 35, 37, 38, 45, 242, 62, 67,49

Table 169-2-PHY type and clause correlation (800GBASE copper)

							Cla	use ^a						
	73	90	170	2	171	171	173	120F	162	163	176	176C	178	179
PHY type	Auto-Negotiation	Time Synchronization	RS	800GMII	800GMII Extender	800GBASE-R PCS	800GBASE-R BM-PMA	800GAUL8 C2C	800GBASE-CR8 PMD	800GBASE-KR8 PMD	800GBASE-R SM-PMA	800GAUL4 C2C	800GBASE-KR4 PMD	800GBASE-CR4 PMD
800GBASE-KR4	M	ō	M	0	0	M	C	0	=	=	M	0	M	=
800GBASE-KR8	M	Q	M	0	0	M	M	0	=	M	C	Q	=	=
800GBASE-CR4	М	Q	М	Q	Q	М	C	Q	=	=	М	Q	=	М
800GBASE-CR8	M	Q	M	0	0	M	M	0	M	=	C	Q	=	=

 $^{^{3}}$ O = Optional, M = Mandatory, C = Conditional (refer to PMD clause for details)

Table 169-3—PHY type and clause correlation (800GBASE optical PAM4)

	1									·	laus										
	91	02.1		121	172	173	120F	120G	101		167	0	176	176C	176D	122	130	181	182	183	3
PHY type	Time Synchronization	22	800CMII	800MH Extender	800GBASE-R PCS	SOOGBASE-R BM-PMA	800GAULS C2C	800GAULS C2M	800GBASE-DRS PMD	800GBASE-DR8-2 PMD	800GBASE-VR8 PMD	800CBASE-SR8 PMD	S00GBASE-R SM-PMA	800GAUL4 C2C	800GAUL4 C2M	SOIGBASE-R Inner FEC	SOIGBASE-DR4 PMD	SOIGBASE-FR4-SOI PMD	800GBASE-DR4-2 PMD	SOIGBASE-FRI PMD	SOIGBASE-LR4 PMD
800GBASE-VR8	Q	М	0	0	M	M	0	0	Ξ	Ξ	M	=	Ç	Q	Ω	=	Ξ	Ξ	=		I
800GBASE-SR8	Q	М	0	0	M	M	0	0	Ξ	=	=	М	C	Q	Q	=	=	=	=	=	=
900GBASE-DR4	Ω	М	Ω	Ω	М	<u>C</u>	Q	Ω	=	=	=	=	M	Ω	Ω	=	М	=	=	=	=
900GBASE-FR4-500	Ω	М	Ω	Ω	М	C	Ω	Ω	=	=	=	=	M	Ω	Ω	=	=	м	=	=	=
800GBASE-DR8	Q	М	0	0	M	M	0	0	M	Ξ	=	Ξ	C	Q	Q	=	Ξ	Ξ	Ξ	Ξ	I
900GBASE-DR4-2	Q	М	Ω	Ω	М	2	Q	Q	=	=	=	=	М	Q	Q	М	=	=	М	=	=
800GBASE-DR8-2	Q	М	0	0	M	М	0	0	=	М	=	=	2	Q	Q	=	=	=	=	=	=
800GBASE-FR4	Q	М	Ω	Ω	M	C	Q	Ω	=	=	=	=	М	Q	Q	М	=	=	=	М	=
900GBASE-LR4	Q	М	Q	Q	M	2	0	Q	Ξ	=	=	=	M	Q	Q	М	=	Ξ	=		М

Table 178-3—Physical Layer clauses associated with the 800GBASE-KR4 PM

Associated clause	800GBASE-KR4
73—AN	Required
90—Time Synchronization	Optional
120F—800GAUI-8 C2C	Optional ⁸
170-800 Gb/s RS	Required
170—800GMII ^b	Optional
171—800GMII extender	Optional
172-800GBASE-R PCS	Required
173-800GBASE-R BM-PMA	Conditional ^c
176—800GBASE-R SM-PMA	Required
176C800GAUI-4 C2C	Optional ^a
178B—ILT	Required

^a A 800GBASE-KR4 PHY may include one instance of 800GAUI-n C2C as described in 176B.6.1.
^b The 800GMII is an optional interface. However, if the 800GMII is not implemented, a

Table 169-3a—PHY type and clause correlation (800GBASE optical coherent)

								Cla	use ^a							
	06	1.70		171	172	173	120F	120G	176	176C	176D	184	185	981	187	
PHY type	Time Synchronization	RS	MD008	800MII Extender	800GBASE-R PCS	800GBASE-R BM-PMA	800GAU1-8 C2C	800GAUI-8 C2M	800GBASE-R SM-PMA	800GAU1-4 C2C	800GAU1-4 C2M	800GBASE-LR1 Inner FEC	800GBASE-LRI PMD	800GBASE-ERI FEC/PMA	800GBASE-ER1-20 PMD	800GBASE-ER1 PMD
800GBASE-LR1	0	M	0	0	M	C	0	0	С	0	0	M	M	-	-	_
800GBASE-ER1-20	0	M	0	0	M	С	0	0	С	0	0	_	_	M	M	-
800GBASE-ER1	0	M	0	0	M	С	0	0	С	0	0	-	-	M	-	M

^a O = Optional, M = Mandatory, C = Conditional (refer to PMD clause for details)

Table 185–1—Physical Layer clauses associated with the 800GBASE-LR1 PMD

Associated clause	800GBASE-LR1				
90—Time Synchronization	Optional				
120F—800GAUI-8 C2C	Optional ^a				
120G800GAUI-8 C2M	Optional ^a				
170—800 Gb/s RS	Required				
170—800GMII ^b	Optional				
171—800GMII Extender	Optional				
172—800GBASE-R PCS	Required				
173—800GBASE-R BM-PMA	Conditional ^c				
176—800GBASE-R SM-PMA	Conditional ^c				
176C—800GAUI-4 C2C	Optional ^a				
176D—800GAUI-4 C2M	Optional ^a				
184—800GBASE-LR1 Inner FEC	Required				

⁸ One or two 800GAUI-n may be instantiated within a 800GBASE-LR1 PHY as described in

ILT/RTS functions are mandatory for a small subset of PMDs and AUIs in these tables.

Add a new column in Table 169-2/3a/3 Annex 178B labelled "ILT/RTS".

Change footnote a to:

^a O = Optional, M = Mandatory, C = Conditional

In Table 169-2/3, for all existing instances of "C" add footnote "x" as follows:

In Table 169-2/3 in the 178B column, for rows with PMDs not defined in this draft put "C" with footnote y as follows:

In Table 169-2/3 in the 178B column, for rows with PMDs defined in this draft put "M" with footnote "x" as above.

Similarly update tables 116-3, 116-3a, 116-3a, 116-3b, 116-4, 116-4a, 116-5, and 116-5a.

For Table 178-3, and similarly for tables for 800GBASE-R Physical Layers in clauses 179 through 183, for the 178B row change "ILT" to "ILT/RTS" and add footnote z on "Required" as follows ...

Similarly update tables for 200GBASE-R and 400GBASE-R Physical Layers in clauses 178 through 183.

For Table 169-3a in the 178B column, for each row put "C" with footnote x as above.

For Table 185-1 and Table 187-1 add a row for "178B–ILT/RTS" with "Conditional" and footnote "y" as above.

Implement with editorial license.

conforming implementation behaves functionally as though the RS and 800GMII were present.

present.

If a 800GAUI-n is implemented in a PHY, additional 800GBASE-R BM-PMA or SM-PMA
sublayers are required according to the guidelines in 176B 6.1.

b The 800G/MII is an optional interface. However, if the 800G/MII is not implemented, a conforming implementation behaves functionally as though the RS and 800G/MII were

c If one or two 800GAUI-n are implemented in a PHY, additional 800GBASE-R BM-PMA or

x Refer to PMD clause for details.

y ILT/RTS functions are for mandatory 800GAUI-4 C2C and C2M.

^z ILT/RTS functions are mandatory for the 800GBASE-KR4 PMD, and 800GAUI-4 C2C and C2M.

Clause 116, part 1 Comments: 53, 28,29, 30, 31

116.3.3.3 IS SIGNAL indication

leady to sello

ready to send

Change the text in 116.3.3.3 as follows:

The IS_SIGNAL.indication primitive is generated by the sublayer to the next higher sublayer to indicate the status of the receive process. This primitive is generated by the receive process to propagate the detection of severe error conditions (e.g., no valid signal being received by the sublayer that generates this primitive on IS_UNITDATA.indication in the receive direction) to the next higher sublayer and to indicate the ILT status for Physical Layer implementations that use the ILT function defined in Annex 178B.

Change:

"and to indicate the ILT status for Physical Layer implementations that use the ILT function defined in Annex 178B."

To:

"and to convey the RTS status between interfaces that use the RTS function (see 178B.6)."

Similarly apply this change to 116.3.3.4

116.3.3.3.1 Semantics of the service primitive

Change the text 116.3.3.3.1 as follows:

IS SIGNAL.indication(SIGNAL OK)

The SIGNAL_OK parameter can take on one of two values: OK or FAIL. A value of FAIL denotes that invalid data is being presented (rx_symbol parameters undefined) by the sublayer to the next higher sublayer. A value of OK does not guarantee valid data is being presented by the sublayer to the next higher sublayer.

If ILT is not used then the SIGNAL_OK parameter takes one of two values as follows:

- A value of OK indicates that communication with the next lower sublayer is established (but does not guarantee that valid data is being presented to the next higher sublayer).
- A value of FAIL indicates that the sublayer has not established communication to the next lower sublayer, and valid data is not being presented to the next higher sublayer (the rx_symbol parameters are undefined).

Change:

"If ILT is not used then the SIGNAL_OK parameter takes one of two values as follows:" To:

"If the RTS function (178B.6)is not used then the SIGNAL_OK parameter takes one of two values as follows:"

Change:

"If ILT is used then the SIGNAL_OK parameter takes one of four values as follows:"
To:

"If the RTS function (see 178B.6) is used then the SIGNAL_OK parameter takes one of four values as follows:"

Apply similar changes to 116.3.3.4.1

Clause 116 Comments: 53, 30

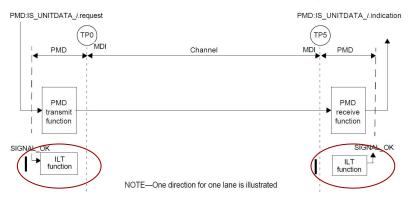
116.3.3.4.1 Semantics of the service primitive

IS SIGNAL.request(SIGNAL OK)

The SIGNAL_OK parameter takes on one of four values: OK, FAIL, IN_PROGRESS, or READY. The values IN_PROGRESS and READY are defined only for Physical Layer implementations that use the ILT function defined in Annex 178B.

Change:

"for Physical Layer implementations that use the ILT function"


To

"for service interfaces between interfaces that use the RTS function (see 178B.x)"

Clause 178/179/180/181/182/183/176C Comment 53, 36, 37, 39, 47, 64, 69, 51, 56

178.8.1 Reference test points

Reference test points are illustrated in Figure 178-2, which shows one direction of a 200GBASE-KR1, 400GBASE-KR2, 800GBASE-KR4, or 1.6TBASE-KR8 link. Additional test points for compliance

At editor's discretion either Split t into two blocks: RTS function (connected to SIGNAL_OK) and ILT function or list both functions in the same box.

Same for figures 179-2, 180-2, 181.2, 182-2, 183-2, 176C-2

178.8.9 Inter-sublayer link training (ILT) function

The PMD inter-sublayer link training function specification is identical to that of 179.8.9.

Change the title of 178.8.9 to:

"Path startup (PSU) functions"

Change:

"The PMD inter-sublayer link training function specification is identical to that of 179.8.9."

To:

"The PMD path startup specification is identical to that of 179.8.9."

Clause 179/180/181/182/183 Comments: 53, 40, 42, 61, 66, 71, 53

179.8.4 PMD global signal detect function

The PMD global signal detect function is used by the PMD to indicate the successful completion of the startup protocol by the inter-sublayer training (ILT) function (see 179.8.9). The variable Global PMD signal detect is set to the value of remote rts in the ILT function (see 178B.8.2.1).

179.14 Management variables

PMD control and status variables intended to be accessible via a management system are listed in Table 179–23 and Table 179–24. Additional variables associated with the ILT function are listed in Table 178B–6 and Table 178B–7.

Change:

"the successful completion of the startup protocol by the inter-sublayer training (ILT) function (see 179.8.9)."

To:

"the successful completion of the inter-sublayer link training (ILT) startup protocol (see 179.8.9)."

Change:

"Additional variables associated with the ILT function"

To:

"Additional variables associated with the PSU functions"

Apply similar changes to 180.11, 181.11, 182.11, 183.11

Clause 179/176C Comments: 53, 43, 44

l.		Į.			
PMDILT	Inter-sublayer link training in PMD	179.8.9	ILT function is implemented in the PMD	PMD:M	Yes [] N/A []

In 179.15.3

Change: "PMDILT" To: "PMDPSU"

Change:

"Inter-sublayer link training in PMD"

To:

"PSU functions in PMD"

Change:

"ILT function is implemented in the PMD"

To:

"PSU functions are implemented in the PMD"

AUIILT	Inter-sublayer link training in AUI-C2C	176C.3	ILT function is implemented in the AUI-C2C	AUI200G: M	Yes [] N/A []
--------	--	--------	--	---------------	--------------------

Apply similar changes in 176C.

Clause 180/181/182/183

Comments: 53, 46, 63, 68, 50

The ILT function indicated in Figure 180–2 is defined in Annex 178B.

In 180.5.1, 181.5.1, 182.5.1, 183.5.1

Change:

"The ILT function indicated in Figure 180–2 is defined in Annex 178B."

To:

"The ILT and RTS functions indicated in Figure 180–2 are defined in Annex 178B."

Other updates related to PSU, ILT, and RTS Comments: 53

Update any other instances where PSU, ILT, and RTS are discussed and are not consistent with the previous set of related slides.

ILT with local_pattern

Comments 222, 344, 149

ILT with local pattern **Comments: 222, 344**

C/ 178B # 344 SC 178B.8.3.5 P889 1 10 Slavick, Jeff

Broadcom

TR

State diagrams (CI)

D2.1 comment #463 brought up an issue with local pattern mode. Nothing was changed in the resolution to address that local pattern mode. A potential fix was supplied on slide 22 of https://ieee802.org/3/dj/public/25 09/slavick 3dj 02a 2509.pdf but this may be a larger change than are necessary.

SuggestedRemedy

Comment Type

In Figure 178B-10 make the following changes: Remove local rts as a condition to enter SEND LOCAL from QUIET Change the assignement of tx disable to be ~local rts in SEND LOCAL add a recirculation from SEND LOCAL to SEND LOCAL when local rts * tx disable add a transition from SEND LOCAL to QUIET when !local rts * !tx disable Update the transition from SEND LOCAL to PATH READY to also require !tx disable

Proposed Response

Response Status W

Comment Status D

PROPOSED ACCEPT IN PRINCIPLE.

Resolve using the response to comment #222.

C/ 178B SC 178B.8.3.5

TR

P889

112

222

Ran. Adee Comment Type Cisco Systems

Comment Status D

State diagrams (CI)

An apparent issue in the Training control state diagram (Figure 178B-10) is that, if mr training enable is false, then lane training status can only have the values (IN PROGRESS, OK, FAIL). It is never set to TRAINED. This means that the interfacelevel training status cannot be set to READY, only to OK; the READY value is never propagated across the service interface. This might interfere with the path startup procedure when some of the ISLs have training disabled.

SuggestedRemedy

A presentation with more detailed analysis and a proposal is planned.

Proposed Response

Response Status W

PROPOSED ACCEPT IN PRINCIPLE

Pending review of the following presentation and CRG discussion.

<URL of presentation>

Presentation has not been submitted; these slides cover the comments instead

ILT with local_pattern Comments: 222, 344

This topic has been covered by contributions to the Annex 178B ad hoc

(slavick 178b 02a 251029, slavick 178b 03a 251029).

The changes to Figure 178B-10 on slide 7 of both presentations (shown on the right) addresses both comments.

We propose updating Figure 178B-10 as shown here.

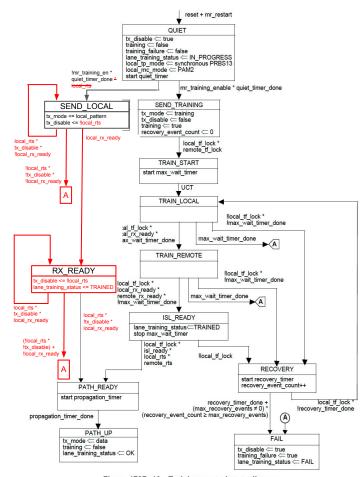


Figure 178B–10—Training control state diagram

ILT with local_pattern Comment 149

CI 178B SC 178B.7 P868 L26 # 149

Brown, Matt Alphawave Semi

Comment Type TR Comment Status D LOCAL_PATTERN mode (CI)

In Draft 2.2, the ILT function includes an alternate mode of operation, referred to as LOCAL_PATTERN mode, when the management variable mr_training_enable is set to false. In this mode, instead of sending bidirectional training frames and permitting parallel start-up of all ISLs in a path, this mode sends a locally generated pattern when the upstream receiver is done acquiring. It is not clear that this mode of operation is necessary. There are known issues with this mode of operation that need to be addressed. This mode of operation is redundant and complex and thus should be removed from the draft.

SuggestedRemedy

Remove the LOCAL_PATTERN mode of operation (mr_training_enable set to false) from Annex 178B

Proposed Response Status W

PROPOSED REJECT.

During D2.0 CRG we resolved a similar comment #126 by adding the note in page 883 line 10, that was further refined during CRG for D2.2. There was no consensus to remove this variable.

Operation with training disabled has been standardized in previous "link training" functions. This mode has various use cases and we should not assume that the training protocol will always be used.

If not covered by the standard, different implementations can arise, which might be incompatible with each other.

Having this mode addressed in detail within the standard (and verified as in the previous comments) will improve interoperability.

Other PSU

PSU "support" description **Comments: 414, 11**

SC 178B.4 P865 C/ 178B L3 Ran, Adee Cisco Systems

Comment Status D

The first paragraph and dashed list define "support for PSU" in a very confusing way. The word "support" is overloaded and is used here recursively (support is defined by support). The order of the dashed list is top-down, and the reader needs to read the last item to get a chance to understand what "supported" means, and even then, the last item is defines "An ISL supports" (PSU) using "the interface supports" (functions), which is not well defined, so it's an incomplete definition. Functions are not "supported", they are specified, and should be implemented; these are not optional features.

Also it is not explained what happens when PSU is not "supported".

The suggested remedy rewrites this part of 178B.4 without "support", and from the bottom

SuggestedRemedy

Comment Type

Replace the first paragraph and list with the follows:

Support for PSU is defined as follows:

- An ISL between two interfaces can be activated using PSU if these interfaces and the associated sublayers (e.g., PMA, Inner FEC), implement the RTS function (see 178B.6) and the ILT function (see 178B.7), or have equivalent functions.
- A PHY can be activated using PSU if every ISL within the PHY can be activated using
- An xMII Extender can be activated using PSU if every ISL within it can be activated
- A Physical Layer can be activated using PSU if the PHY and xMII Extender (if implemented) can be activated using PSU.
- A path can be activated using PSU if the Physical Layer at each end can be activated using PSU.

An ISL, PHY, Physical Layer or path that cannot be activated using PSU may be activated using management or other means beyond the scope of this annex.

Implement with editorial license.

C/ 178B SC 178B.7 P868 L1 Brown, Matt Alphawaye Semi Comment Type Comment Status D Scope (CI)

The ILT is defined assuming that all ISLs in a path support RTS/ILT. There is no guidance on behavior when one or more ISLs in a path do not support do not support those functions. For instance, how does ILT work on an ISL (200 Gb/s per lane) if the other ISLs are 100 Gb/s per lane or lower.

SuggestedRemedy

Add guidance for the case where the path does not support path startup.

Proposed Response Response Status W

PROPOSED REJECT

As stated in the scope, this is beyond the scope of this Annex. The suggested remedy does not provide sufficient detail to implement.

Alternate text...

Support for PSU is defined as follows:

- An ISL can be activated using PSU if the two interfaces and the associated sublayers (e.g., PMA. Inner FEC), implement the RTS function (see 178B.6) and the ILT function (see 178B.7), or have equivalent functions.
- A PHY can be activated using PSU if every ISL within the PHY can be activated using PSU
- An xMII Extender can be activated using PSU if every ISL within it can be activated using PSU.
- A Physical Layer can be activated using PSU if the PHY and xMII Extender (if implemented) can be activated using PSU.
- A path can be activated using PSU if the Physical Layer at each end can be activated using PSU.

An ISL, PHY, Physical Layer, or path that cannot be activated using PSU may be activated using management or other means beyond the scope of this standard.

The last paragraph addresses comment #11.

ILT polarity Comments: 180

Cl 178B SC 178B.7.7 P878 L42 # [180 Dudek, Mike Marvell

Comment Type T Comment Status D Polarity (CI)

Polarity detection and correction is described in 178B.7.7 and required in 179.8.3 and clause 178 and annexes 176C and 176D by reference to 179.8.3. Nothing is however

clause 178 and annexes 176C and 176D by reference to 179.8.3. Nothing is however mentioned for the optical clauses leaving it somewhat ambiguous whether it is required or not.

SuggestedRemedy

Change the NOTE from "NOTE—Polarity detection and correction is not available when training is disabled." to "NOTE—Polarity detection and correction is not available when training is disabled, or for interfaces using the O1 format.

Proposed Response Status W

178B.7.7 Polarity detection and correction

When training starts for each lane, the variable polarity_correction is set to false. If inverted frame markers are detected during the frame lock process, the polarity_correction variable is set to true.

If polarity_correction is true and local_tf_lock is true, the lane input shall be corrected by mapping the received PAM4 symbols 0, 1, 2, and 3 to PAM4 symbols 3, 2, 1, and 0, respectively.

NOTE—Polarity detection and correction is not available when training is disabled.

The state of the polarity_correction variable persists after training completes, correcting the polarity of the data received when tx mode = data.

From 802.3dj Draft 2.2, 179.8.2 PMD transmit function

The polarity of the PMD output on each of the lanes is either normal, where the highest differential output voltage corresponds to the PAM4 symbol 3 and the lowest differential output voltage corresponds to the PAM4 symbol 0, or inverted, where the highest differential output voltage corresponds to the PAM4 symbol 0 and the lowest differential output voltage corresponds to the PAM4 symbol 3. If training is enabled, either normal or inverted output polarity may be used, since the PMD receiver in the peer interface detects the polarity and corrects it if necessary (see 179.8.3). If training is disabled, the output polarity of each lane shall be normal. Output polarity may be controlled by management in an implementation dependent manner.

From 802.3dj Draft 2.2, 179.8.3 PMD receive function

The polarity of the PMD input on each of the lanes is either normal, where the highest differential input voltage at the MDI input corresponds to rx_symbol = three and the lowest differential input voltage corresponds to rx_symbol = zero, or inverted, where the highest differential input voltage at the MDI corresponds to rx_symbol = zero and the lowest differential input voltage corresponds to rx_symbol = three. If training is enabled, the PMD shall detect the polarity during training and correct it if necessary (see 178B.7.7). If training is disabled, the input polarity of each lane shall be normal. Input polarity may be controlled by management in an implementation dependent manner.

TXSEH FRX jitter tolerance Comment #82

Comment Status D

C/ 180 SC 180.9.9

P485

L8

82

Brown, Matt

Alphawave Semi

Comment Type TR

Tx FRx (CO)

The quality of the jitter tolerance (clock tracking bandwidth) for the TXSEH functional receiver is unbounded. The only constraint is that it complies with (i.e., exceeds) the receiver characteristics in Table 180-8. Care is being taken to properly calibrate the vertical noise but no consideration is given for jitter (horizontal noise). A real receiver is required only to support a clock tracking bandwidth of 4 MHz based on jitter tolerance mask specified in 121.8.10.4. If the TXSEH functional has a tracking bandwidth much higher than 4 MHz then it would permit transmitters with excessive low-frequency jitter to pass.

SuggestedRemedy

Specify that the jitter tolerance of the TXSEH optical receiver (ORx) shall minimally comply with the jitter tolerance mask defined in 121.8.10.4 particularly for jitter frequencies 4 MHz and lower.

Proposed Response

Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

Pending review of the following presentation and CRG discussion.

<URL> issenhuth_3dj_01_2511.pdf

[Editor's note: Changed subclause from 180.9.9.1 to 180.9.9]

180.9.9.1 Functional receiver (FRx) definition

The functional receiver (FRx) is a variable optical attenuator (VOA) followed by an optical receiver (ORx) that complies with characteristics in Table 180–8. VOA level is given by Equation (180–27). The transmitter under test is connected to the FRx by a short test SMF, or patch cord.

180.9.17 Stressed receiver sensitivity

Stressed receiver sensitivity of each lane shall be within the limit given in Table 180–8 if measured using the method defined in 121.8.10 with the following exceptions:

- The SECQ of the stressed receiver conformance test signal is measured according to 180.9.6, except that the test fiber is not used. The transition time of the stressed receiver conformance test signal is no greater than the value specified in Table 180–7.
- With the Gaussian noise generator on and the sinusoidal jitter and sinusoidal interferer turned off, the RIN_{xx}OMA of the SRS test source should be no greater than the value specified in Table 180–7.
- The signaling rate of the test pattern generator and the extinction ratio of the E/O converter are as given in Table 180-7 using test patterns specified in Table 180-14.
- The required values of the "Stressed receiver sensitivity (OMA_{outer}), each lane (max)", "Stressed eye closure for PAM4 (SECQ), lane under test" and "OMA_{outer} of each aggressor lane" are as given in Table 180–8.

121.8.10.4 Sinusoidal jitter for receiver conformance test

The sinusoidal jitter is used to test receiver jitter tolerance. The amplitude of the applied sinusoidal jitter is dependent on frequency as specified in Table 121–12 and is illustrated in Figure 121–9.

Table 121-12-Applied sinusoidal jitter

Frequency range	Sinusoidal jitter, peak-to-peak (UI)
f < 40 kHz	Not specified
40 kHz < f ≤ 4 MHz	$2 \times 10^5 \text{ Hz/} f$
4 MHz < f < 10 LB ⁸	0.05

^a LB = loop bandwidth, upper frequency bound for added sine jitter should be at least 10 times the loop bandwidth of the receiver being tested.

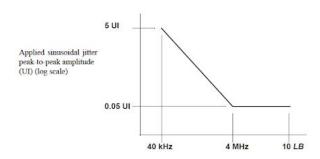


Figure 121-9-Illustration of the mask of the sinusoidal component of jitter tolerance