Consistent Depiction of Connectors

Norman L. Swenson, Ph.D.

Norman Swenson Consulting

Affiliations: Nokia, Point2

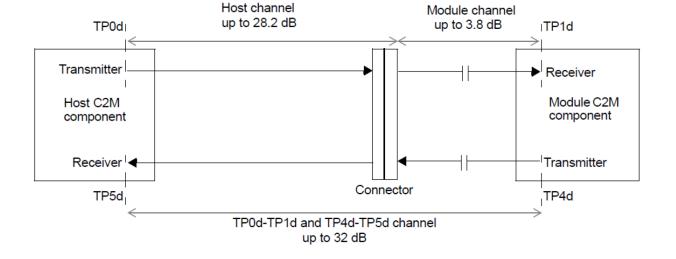
Associated with Comment 406 (and 396)

10 November 2025

Comment #406

C/ 176D SC 176D.7.1 P821 L27 # 406

Swenson, Norman Nokia, Point2


Comment Type TR Comment Status X

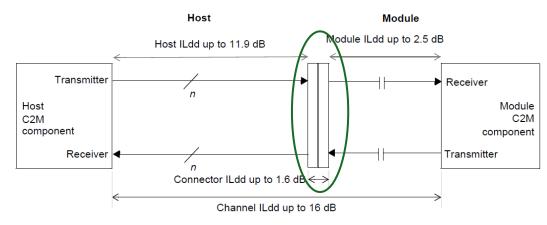
The depiction of the connector in Figure 176D-6 is inconsistent with the connector shown in other figures in the document (e.g., Figures 120C-2, 135E-2,135G-2, . The end point of the Host channel loss is ambiguous.

SuggestedRemedy

Change Figure 176D-6 to that shown to the right. Change the note under the figure to read: "NOTE—For loss budgeting purposes, the Host channel loss is from TP0d to the center of the edge connector of the module.

Proposed Response Response Status O

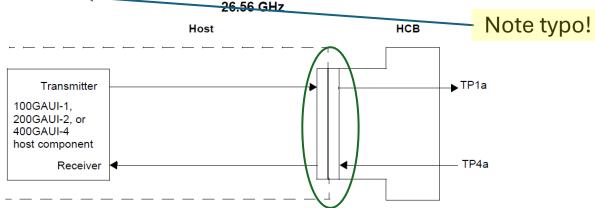
Connector Definition


From Oxford Languages

con-nect-or

noun

- a thing which links two or more things together.
 "a pipe connector"
- a device for keeping two parts of an electric circuit in contact.
 "a cable connector"


Connectors in 802.3 are Shown with Two Parts

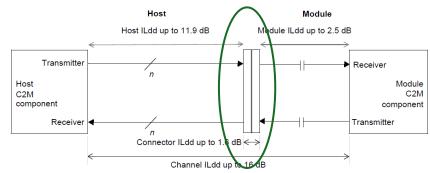

NOTE—The number of lanes *n* is equal to 1 for 100GAUI-1, 2 for 200GAUI-2, and 4 for 400GAUI-4.

Figure 120G-3—Host compliance points

Figure 120G-2—100GAUI-1, 200GAUI-2, and 400GAUI-4 C2M insertion loss budget at

Change the title and NOTE in Figure 120G–2 (as modified by IEEE Std 802.3df-2024) as follows:

NOTE—The number of lanes n is equal to 1 for 100GAUI-1, 2 for 200GAUI-2, 4 for 400GAUI-4, and 8 for 800GAUI-8, and 16 for 1.6TAUI-16.

Figure 120G–3—100GAUI-1, 200GAUI-2, 400GAUI-4, and 800GAUI-8, and 1.6TAUI-16 C2M insertion loss budget at 26.56 GHz

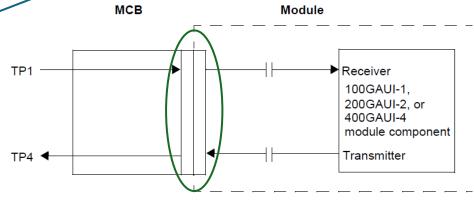
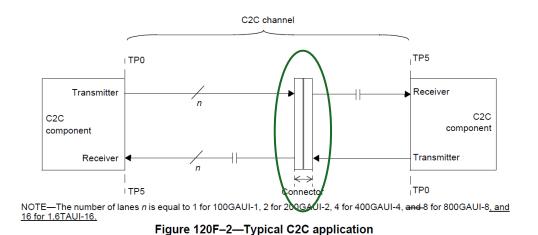



Figure 120G-4—Module compliance points

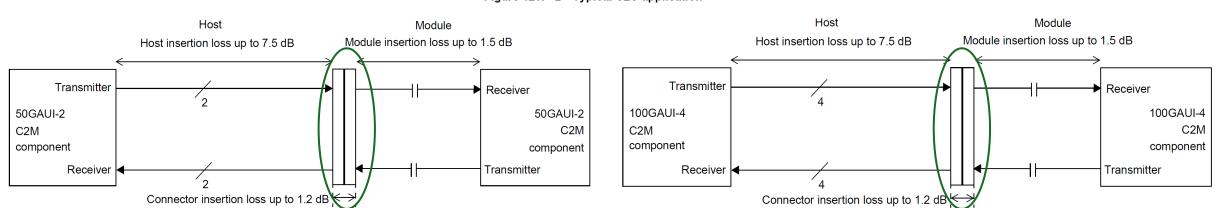


Figure 135E-2—50GAUI-2 C2M insertion loss budget at 13.28 GHz

Figure 135E-3—100GAUI-4 C2M insertion loss budget at 13.28 GHz

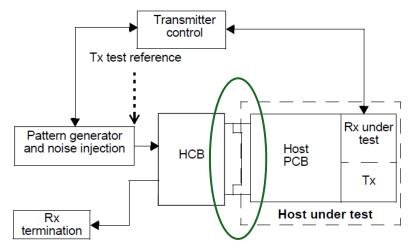


Figure 176D–7a—Host interference tolerance test setup

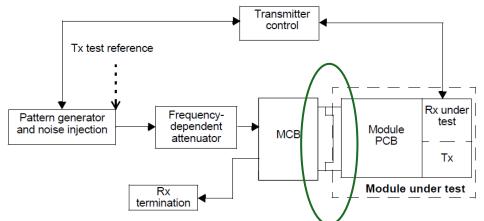


Figure 176D-8a—Module interference tolerance test setup

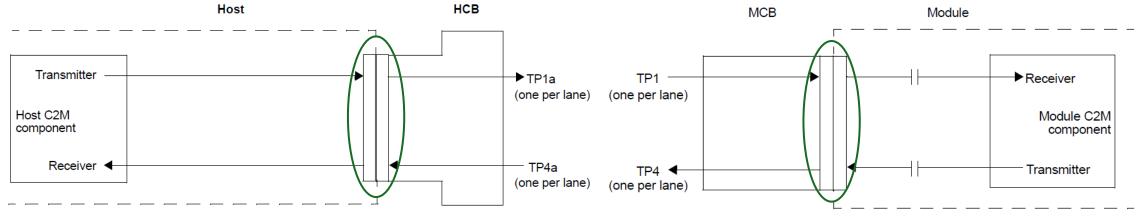
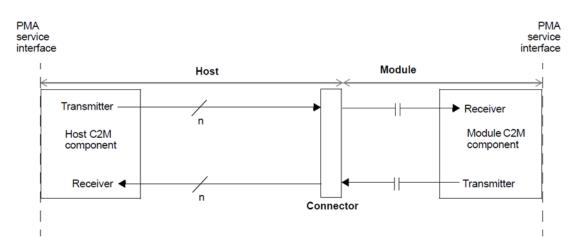
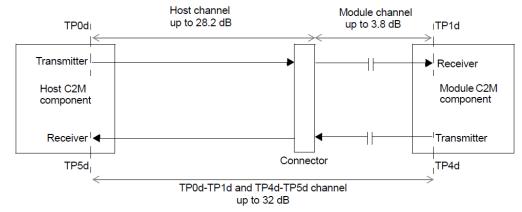



Figure 176D-4—Host compliance points


Figure 176D-5—Module compliance points

Why are we deviating from this precedent in Clause 176D?

NOTE—The number of lanes n is 1 for 200GAUI-1, 2 for 400GAUI-2, 4 for 800 GAUI-4, and 8 for 1.6TAUI-8.

Figure 176D-2—Components of a 200 Gb/s per lane AUI-C2M

NOTE—For loss budgeting purposes, the connector is considered part of the host.

Figure 176D-6—Reference insertion loss budget at 53.125 GHz

Changing the symbol for the connector creates confusion

- The figure looks wrong and raises questions
 - Where is the other half of the connector?
 - Where does the 28.2dB host allocation end?
- If the idea is to omit any part of the module connector in the host loss budget, then show the host loss terminating at the end of the host part of the connector
- If we *really* do not want to show two parts of the connector, then explain in the text why this is shown differently from all preceding depictions of connectors

And for the Connectors in Cl 179...

Comment #396

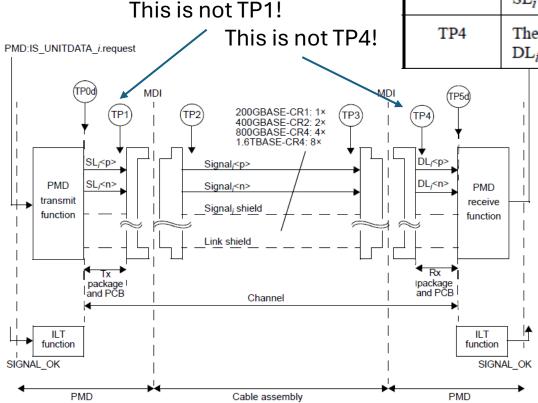
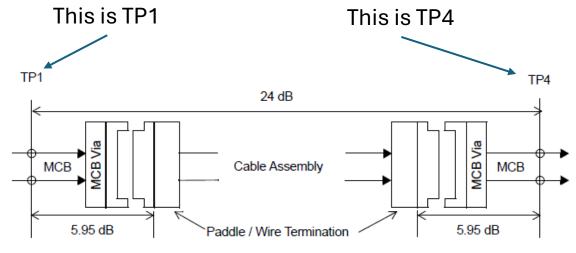

179.8.1:
The test points are illustrated in Figure 179–2
This is not TP11

Table 179–6—Test points

The input of a cable assembly test fixture (see 179B.3)

The input of a cable assembly test fixture (see 179B.3), corresponding to MDI signals SL_i and $SL_i < n >$), used in cable assembly specifications.


The output of a cable assembly test fixture (see 179B.3), corresponding to MDI signals DL_i and $DL_i < n >$, used in cable assembly specifications.

NOTE 1—The source lane (SL) signals SL/p> and SL/p> are the positive and negative sides of the transmitter's differential signal pair on lane i and the destination lane (DL) signals DL/p> and DL/p> are the positive and negative sides of the receiver's differential signal pair on lane i.

NOTE 2—The test points TP1, TP2, TP3, and TP4 are associated with test fixtures as described in Table 179–6

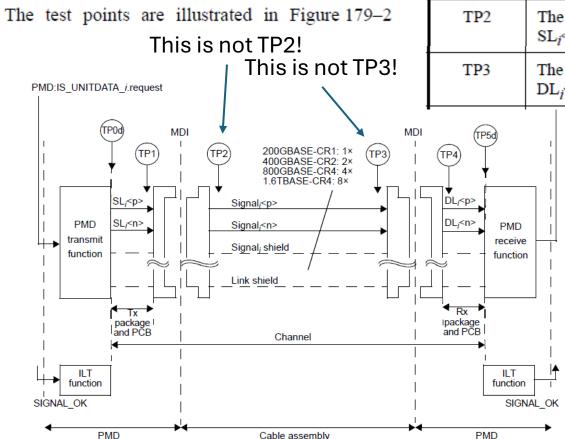
Figure 179–2—200GBASE-CR1, 400GBASE-CR2, 800GBASE-CR4 or 1.6TBASE-CR8 link diagram

From Figure 179A-1

179B.3 Cable assembly test fixture

The cable assembly test fixture (also known as Module Compliance Board) is required for measuring the cable assembly specifications in 179.11 at TP1 and TP4. The TP1 and TP4 test points are illustrated in Figure 179–2.

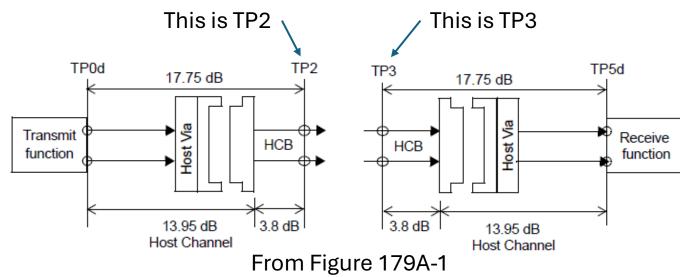
And for the Connectors in Cl 179...


Comment #396

179.8.1:

The output of a TP2 or TP3 test fixture (see 179B.2), corresponding to MDI signals SL_i and $SL_i < n >$). Host output measurements and tests defined in 179.9.4 are made at this point.

Table 179–6—Test points


The input of a TP2 or TP3 test fixture (see 179B.2), corresponding to MDI signals DL_i and $DL_i < n >$). Host input measurements and tests defined in 179.9.5 are made at this point.

NOTE 1—The source lane (SL) signals SL_r and $SL_r < n >$ are the positive and negative sides of the transmitter's differential signal pair on lane i and the destination lane (DL) signals DL_r and $DL_r < n >$ are the positive and negative sides of the receiver's differential signal pair on lane i.

NOTE 2—The test points TP1, TP2, TP3, and TP4 are associated with test fixtures as described in Table 179—6.

Figure 179–2—200GBASE-CR1, 400GBASE-CR2, 800GBASE-CR4 or 1.6TBASE-CR8 link diagram

179B.2 TP2 or TP3 test fixture

The TP2 or TP3 test fixture (also known as Host Compliance Board) is required for measuring the transmitter and receiver specifications at TP2 and TP3. The TP2 and TP3 test points are illustrated in Figure 179A-1.

Thank you