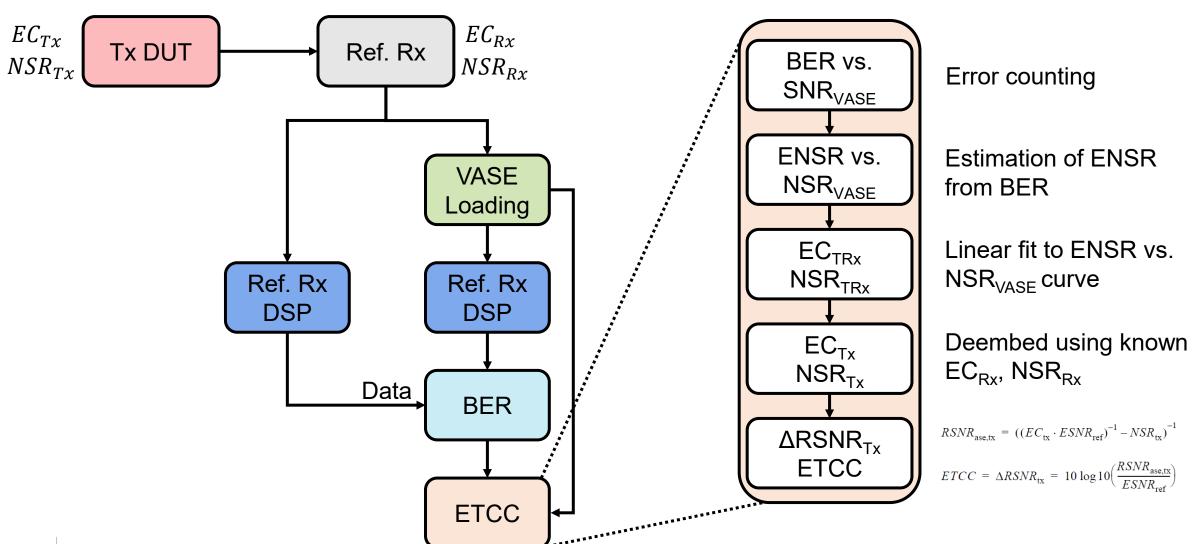
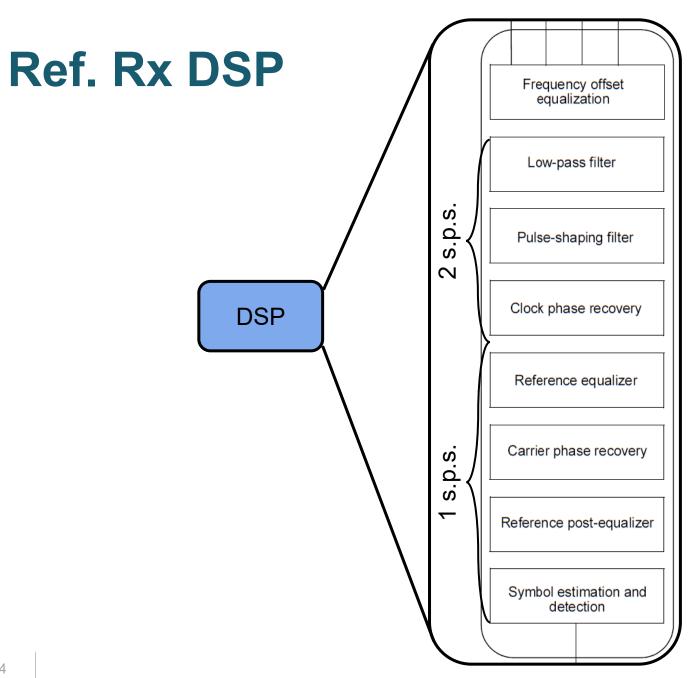
A receiver-agnostic approach to ETCC Supporting contribution for Draft 2.2 comment #251

IEEE 802.3 November 2025 plenary

Eduardo Temprana, Bernd Huebner, Jonas Geyer, Tom Williams - Cisco

Acknowledgement to


Lukas Jakober, Eric Maniloff, Jamal Riyaz - Ciena


Joerg Pfeifle – Keysight

Outline

- 1. Review of current ETCC methodology
- 2. Simulation showing inconsistent results with different Rx/Tx DUTs
- 3. ETCC with receiver compensation
- 4. Simulation of new approach
- 5. Experimental demonstration of new approach
- 6. Proposal summary and suggested editorial changes

Current ETCC Methodology

4th-power FFT

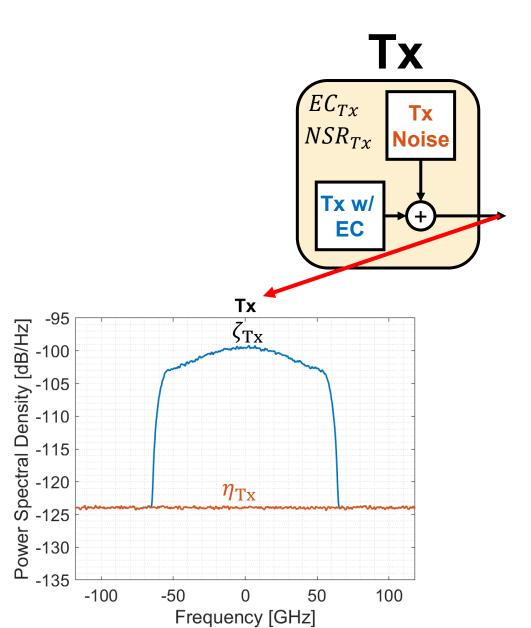
Bessel Thomson w/ 0.55*BR BW

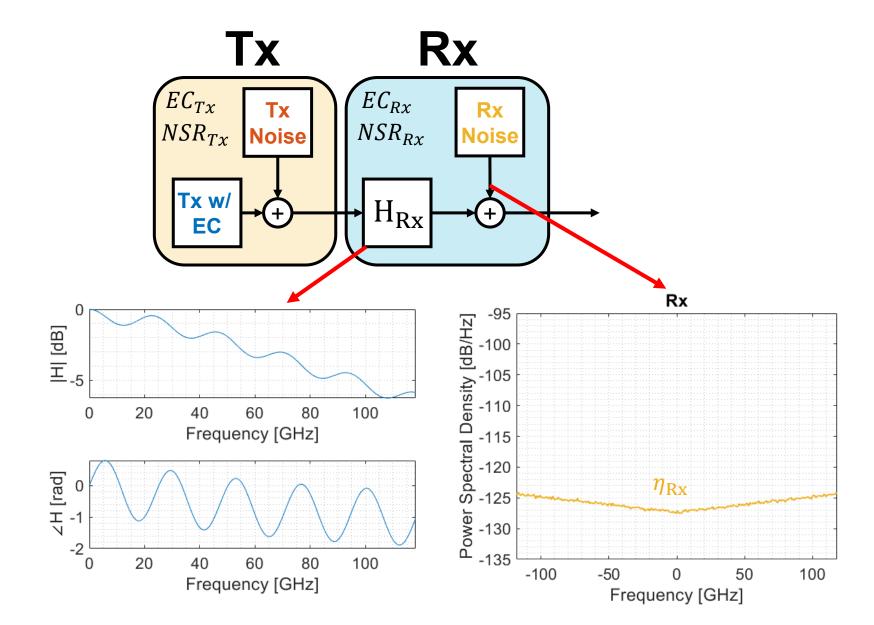
Root-raised cosine w/ 0.1 roll-off

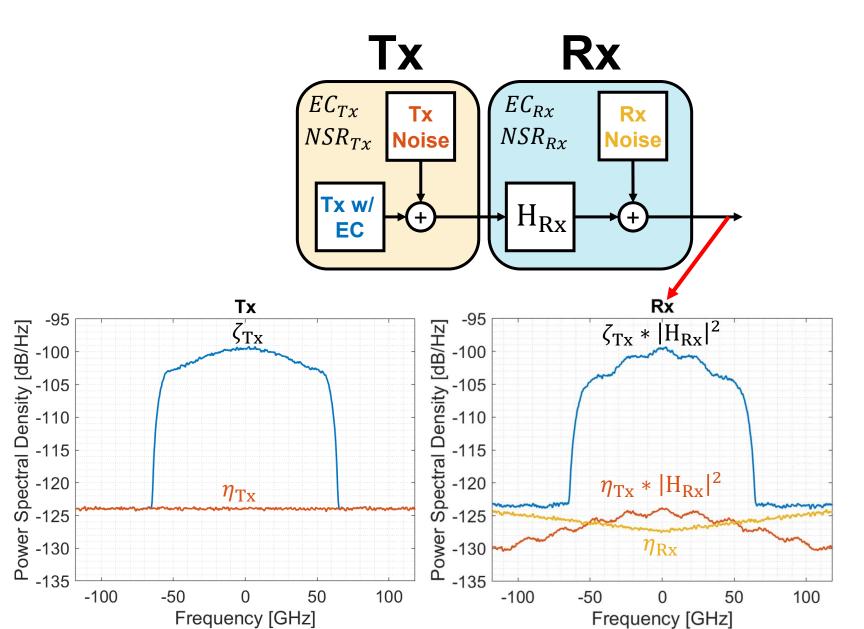
Power clock tone per polarization

31-tap T-spaced 2x2 CMA/RDE/LMS

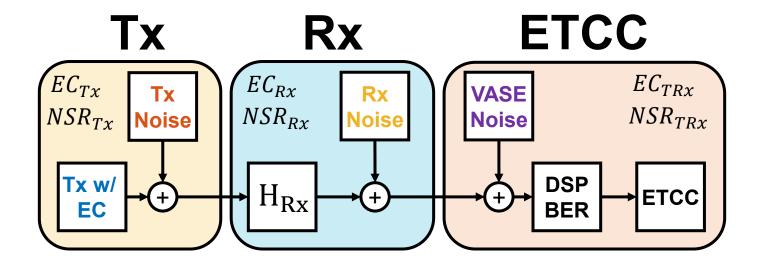
4th-power w/ inner & outer symbols


5-tap T-spaced 2x2 real MIMO per pol.


Optimized thresholds


Validating ETCC methodology in simulation

- 1. DUT Tx $(EC_{Tx}, NSR_{Tx}) \rightarrow Ideal Rx = \Delta RSNR_{Tx}$
- 2. Ideal Tx \rightarrow DUT Rx $(EC_{Rx}, NSR_{Rx}) = \Delta RSNR_{Rx}$
- 3. DUT Tx $(EC_{Tx}, NSR_{Tx}) \rightarrow DUT Rx (EC_{Rx}, NSR_{Rx}) = \Delta RSNR_{TRx}$
- 4. Deembed DUT Rx from (EC_{TRx}, NSR_{TRx}) to find $\Delta RSNR_{Tx (Rx deembed)}$


Analytically $\Delta RSNR_{Tx\;(Rx\;deembed)} = \Delta RSNR_{Tx}$, but what happens in practice?

DUT $Tx \rightarrow Ideal Rx$ Ideal $Tx \rightarrow DUT Rx$ DUT $Tx \rightarrow DUT Rx$

TRx				Tx after deembed			
EC [dB]	SNR [dB]	ΔRSNRTRx [dB]	EC [dB]	SNR [dB]	ΔRSNRTx [dB]		
0.5	23.03	0.98					
0.31	24.48	0.63					
1.04	20.84	1.98	0.73	23.3	1.2		

ETCC Simulation (Different Tx/Rx)

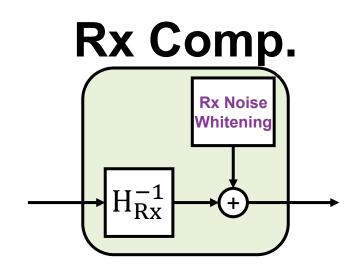
		TRx		Tx after deembed			
		EC [dB]	SNR [dB]	ΔRSNRTRx [dB]	EC [dB]	SNR [dB]	ΔRSNRTx [dB]
Tv4/Dv4	DUT <mark>Tx1 →</mark> Ideal Rx	0.5	23.03	0.98			
Tx1/Rx1	Ideal Tx → DUT Rx1	0.31	24.48	0.63			
	DUT $Tx1 \rightarrow DUT Rx1$	1.04	20.84	1.98	0.73	23.3	1.2
			TRx		Tx after deembed		ped
		EC [dB]	SNR [dB]	ΔRSNRTRx [dB]	EC [dB]	SNR [dB]	ΔRSNRTx [dB]
T 4/D 0	DUT <mark>Tx1 →</mark> Ideal Rx	0.5	23.03	0.98			
Tx1/Rx2	Ideal Tx → DUT Rx2	0.51	23.79	0.9			
	DUT $Tx1 \rightarrow DUT Rx2$	1.48	20.84	2.54	0.98	23.9	1.41
		TRx		Tx after deembed			
		EC [dB]	SNR [dB]	ΔRSNRTRx [dB]	EC [dB]	SNR [dB]	ΔRSNRTx [dB]
	DUT Tx2 → Ideal Rx	0.86	22.96	1.39			
Tx2/Rx1	Ideal Tx → DUT Rx1	0.31	24.48	0.63			
	DUT Tx2 \rightarrow DUT Rx1	1.24	20.88	2.61	1.24	23.37	1.77
		TRx			Tx after deemb	ped	
		EC [dB]	SNR [dB]	ΔRSNRTRx [dB]	EC [dB]	SNR [dB]	ΔRSNRTx [dB]
	DUT Tx2 → Ideal Rx	0.86	22.96	1.39			
Tx2/ Rx2	Ideal Tx → DUT Rx2	0.51	23.79	0.9			
11	DUT Tx2 → DUT Rx2	2.08	20.92	3.29	1.57	24.06	2.05

Issues with current approach

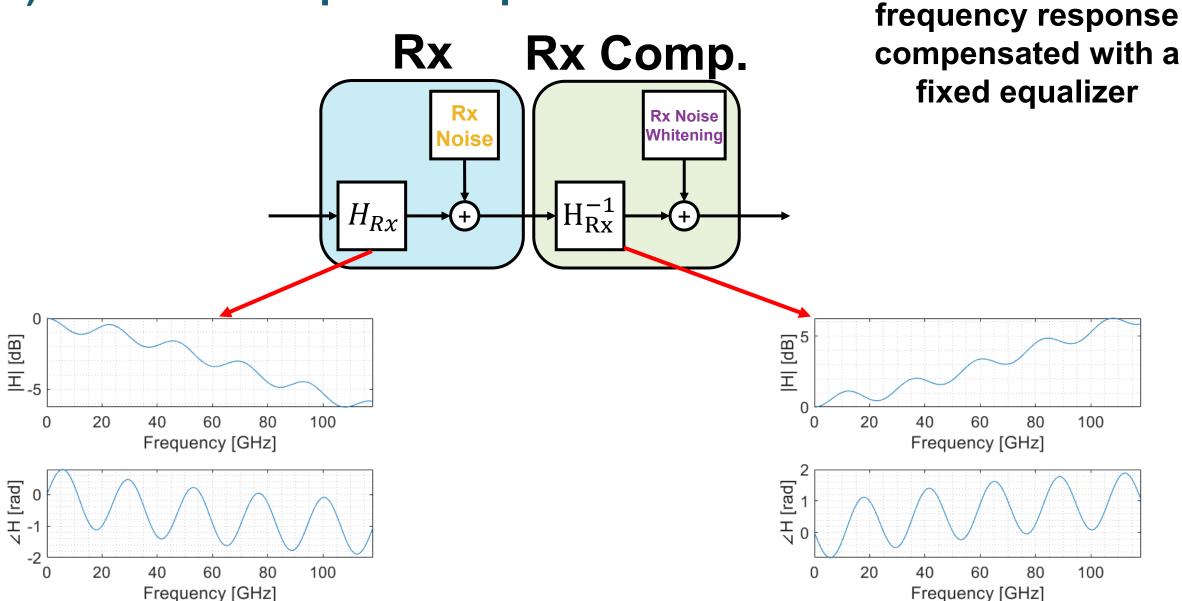
- Issue #1: NSR_{Rx} & EC_{Rx} parameters aren't directly measurable
 - In practice there is no "Ideal Tx"
 - CW laser method (Keysight) does not capture Rx burden on equalizer (underestimates EC_{Rx} & NSR_{Rx})
- Issue #2: Deembedding NSR_{Rx} & EC_{Rx} from NSR_{TRx} & EC_{TRx} does not yield consistent $\Delta RSNR_{Tx}$ results
 - Tx DUT and Rx DUT share equalizer resources

$$EC_{TRx} > EC_{Tx} \cdot EC_{Rx}$$

• Equalizer enhances noise differently depending on its state $NSR_{TRx} \neq NSR_{Tx} + NSR_{Rx}$

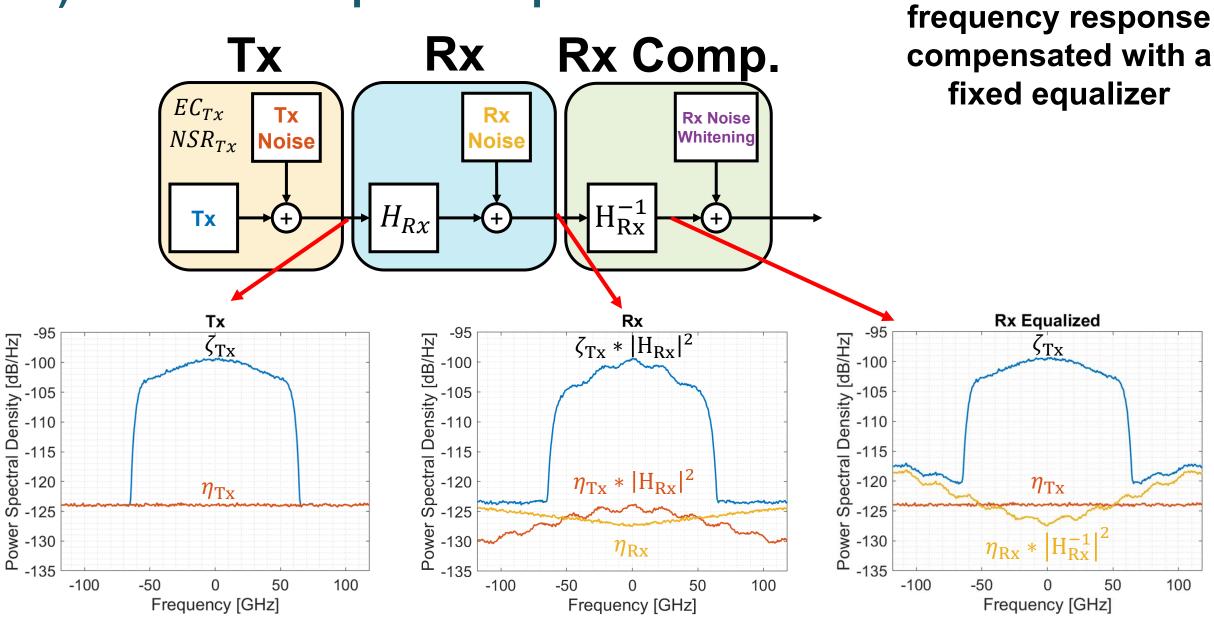

Proposed ETCC modification

Same


- Measurement procedure (single capture using reference receiver)
- Digital signal processing pipeline
- EC & NSR estimation methodology (VASE Noise loading → BER vs. SNR_{VASE} → ENSR vs. NSR_{VASE} → linear fit)

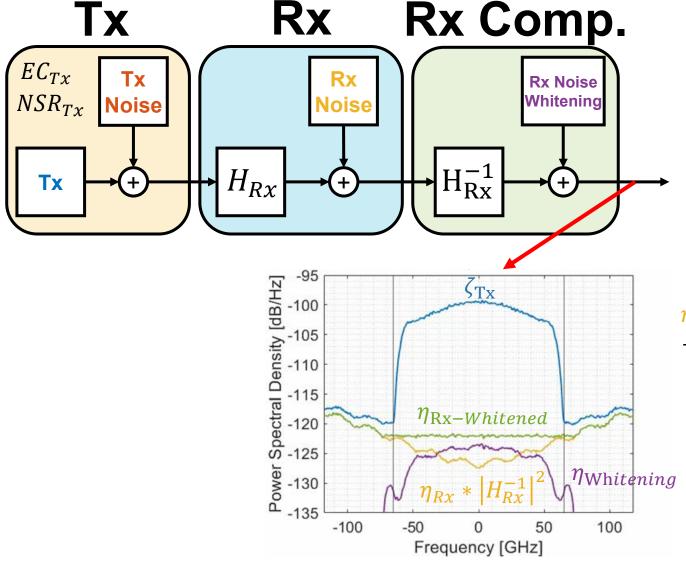
Proposed change: "Receiver Compensation"

- A) Receiver Response Equalization: Fixed equalizer to compensate receiver frequency response (H_{Rx}^{-1})
- B) Receiver Noise Whitening: Addition of spectrally-shaped noise to whiten receiver noise



A) Receiver Response Equalization

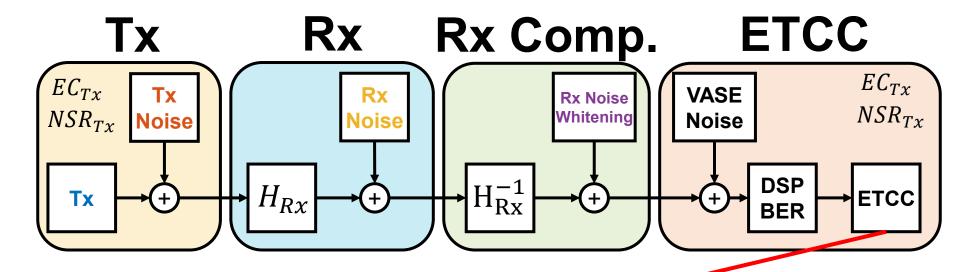
Rx analog front end


A) Receiver Response Equalization

Rx analog front end

Spectrally-shaped B) Receiver Noise Whitening noise added to Rx Rx Comp. "whiten" equalized receiver noise Rx **Rx Noise Whitening Noise** H_{Rx}^{-1} Rx Rx Equalized **DSP In** $\eta_{\mathrm{Rx-}Whitened}$ $\eta_{Rx} * | H_{Rx}^{-1}$ η_{Rx} $\eta_{ m Whi}$ tening -135 -135 -135 -100 -50 50 100 -100 -50 50 100 -100 -50 50 100 0 Frequency [GHz] Frequency [GHz] Frequency [GHz]

B) Receiver Noise Whitening

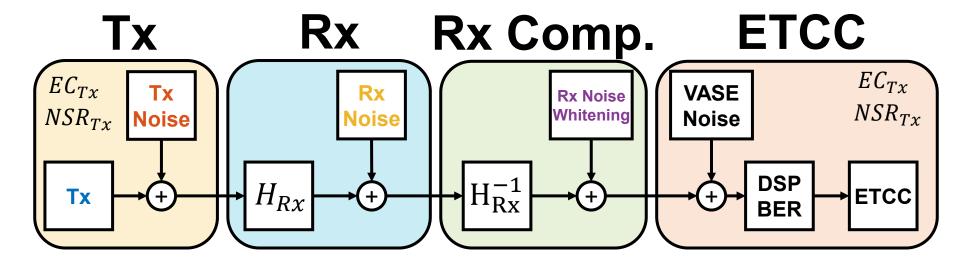


Spectrally-shaped noise added to "whiten" equalized receiver noise

$$\eta_{\text{Rx}} * \left| \mathbf{H}_{\text{Rx}}^{-1} \right|^{2} + \eta_{\text{Whitening}}$$

$$\eta_{\text{Rx-Whitened}} \sim \text{AWGN}$$

ETCC with Rx Compensation



NSR calculation accounts for whitened receiver noise power

$$NSR_{ETCC,i} = \frac{N_{VASE,i} + N_{Rx-Whitened}}{S}$$

Receiver is inherently deembedded in ETCC calculation!

ETCC Simulation with Rx Compensation

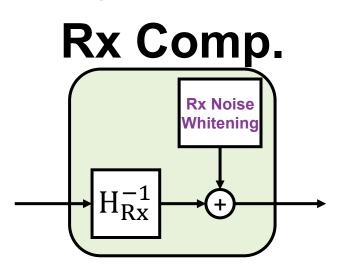
DUT Tx → Ideal Rx

DUT Tx → DUT Rx

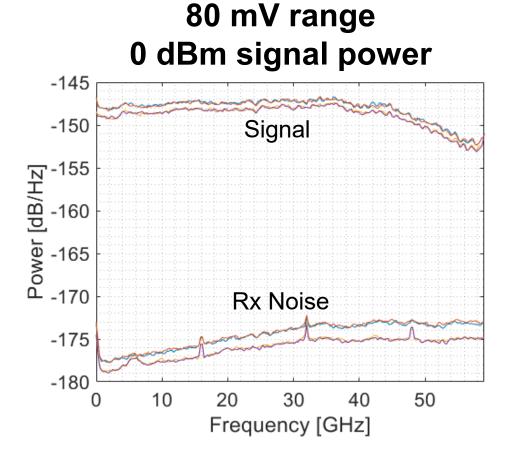
Tx 1					
EC [dB]	SNR [dB]	ΔRSNRTx [dB]			
0.5	23.03	0.98			
0.52	23.01	1			

ETCC Simulation with Rx Compensation (Different Tx/Rx)

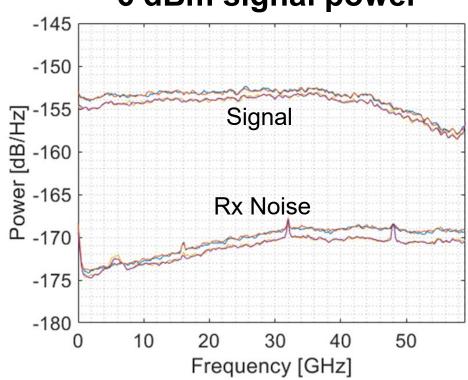
		Tx 1				
		EC [dB]	SNR [dB]	ΔRSNRTx [dB]		
Tx1/Rx1	DUT Tx1 → Ideal Rx	0.5	23.03	0.98		
IXIIIXI	DUT $Tx1 \rightarrow DUT Rx1$	0.52	23.01	1		
		Tx 1				
		EC [dB]	SNR [dB]	ΔRSNRTx [dB]		
Tx1/Rx2	DUT Tx1 → Ideal Rx	0.5	23.03	0.98		
	DUT Tx1 → DUT Rx2	0.52	23.04	1		
		Tx 2				
		EC [dB]	SNR [dB]	ΔRSNRTx [dB]		
Tx2/Rx1	DUT Tx2 → Ideal Rx	0.86	22.96	1.39		
IXZIIXI	DUT Tx2 → DUT Rx1	0.88	22.96	1.41		
		Tx 2				
		EC [dB]	SNR [dB]	ΔRSNRTx [dB]		
Tx2/Rx2	DUT Tx2 → Ideal Rx	0.86	22.96	1.39		
	DUT Tx2 → DUT Rx2	0.88	22.95	1.41		

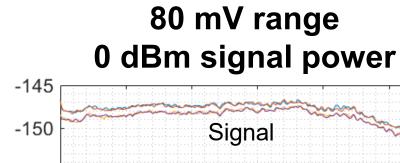

Experimental Demonstration

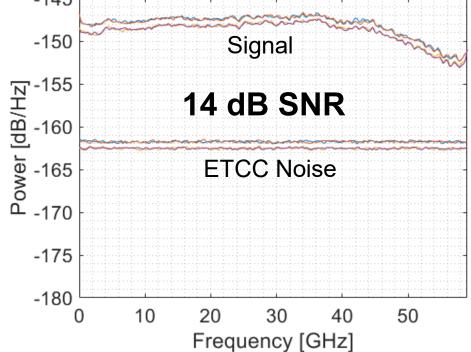
Keysight Dataset October 2025


- Anonymous vendor → Keysight N4391C OMA
- 800 ZR sampled @ 256 GS/s

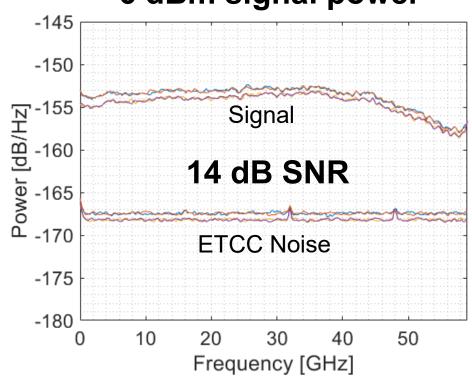
- Three oscilloscope voltage range settings: 80, 120 & 160 [mV]
- Signal power sweep: -10:2:0 (80 mV) | -10:2:2 (120/160 mV) [dBm]


- N4391C OMA includes equalizer
- Noise whitening applied per previous slides

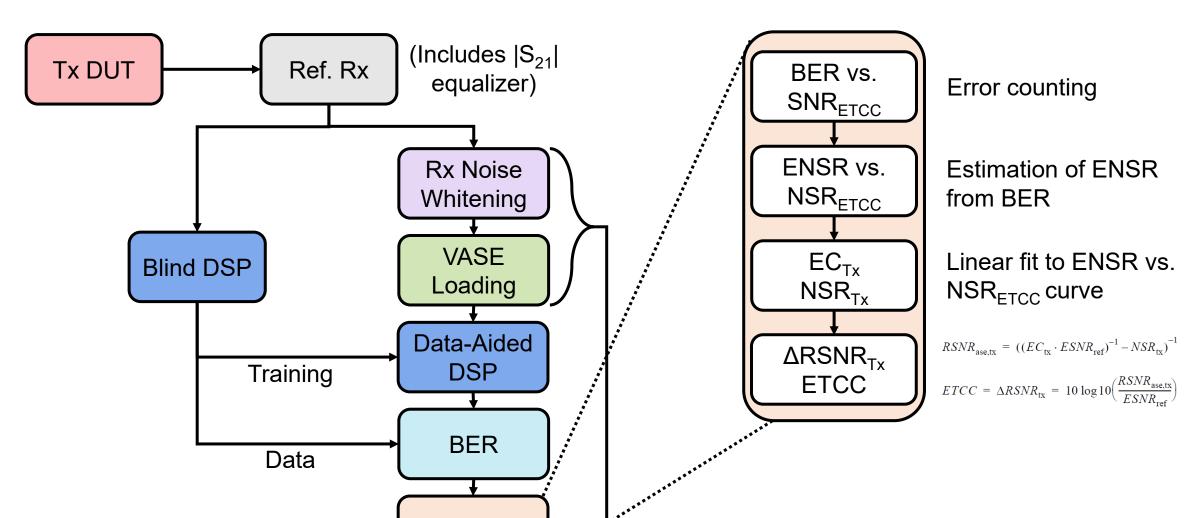

Signal and Rx Noise PSD before whitening



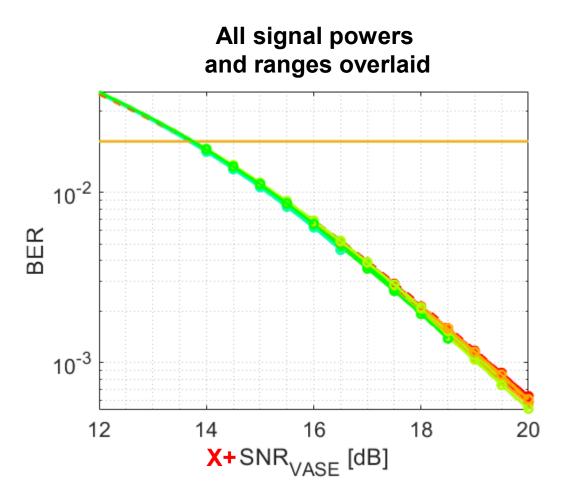
160 mV range -6 dBm signal power

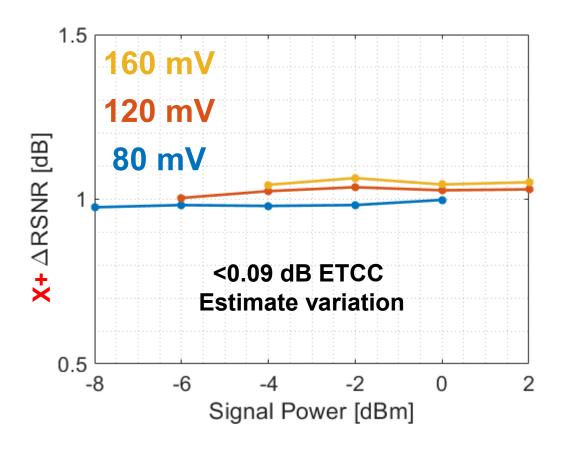


Signal and Rx Noise PSD after whitening



160 mV range -6 dBm signal power


New ETCC Methodology



ETCC

Experimental Results

Note: SNR values shifted to maintain vendor confidentiality

ETCC change proposal summary

- Include "Receiver Compensation"
 - A) Receiver Response Equalization: Fixed equalizer to compensate receiver frequency response
 - Requires Rx S₂₁ (PD/TIA/ADC)
 - B) Receiver Noise Whitening: Addition of spectrally-shaped noise to whiten receiver noise
 - Requires Rx noise spectral shape
- Receiver is inherently deembedded (equalizers are burdened by Tx only, noise loading accounts for Rx noise)
- Estimated $\Delta RSNR$ is attributed to the transmitter (ETCC)
- Ancillary changes:
 - Remove EC_{Rx}, NSR_{Rx}, EC_{TRx}, NSR_{TRx}
 - Add compensated Rx requirements (frequency response maximum variation, noise power spectral density maximum variation, minimum signal-to-receiver-noise)

Editorial changes: Pg 943 - Calibrated front-end sampling

Current

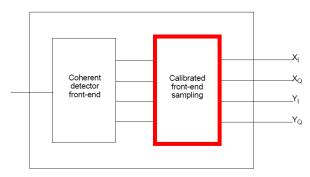


Figure 185A-2—Calibrated coherent detector front-end

185A.2.2.1.2 Calibrated front-end sampling

The coherent calibrated sampling performs analog-to-digital conversion of the four electric signals obtained by the coherent detector front-end and mitigates the imperfections of the front-end as listed in Table 185A–2. The values assigned to these parameters are defined by the Physical Layer specification that invokes the method.

Table 185A–2—Coherent front-end post calibration residuals

Description	Unit
X-Y gain error (max)	dB
Skew between X-Y polarizations (max)	ps
I-Q phase error for X (max)	degree
I-Q gain error for X (max)	dB
I-Q skew for X (max)	dB
I-Q phase error for Y (max)	degree
I-Q gain error for Y (max)	dB
I-Q skew for Y (max)	dB
Carrier frequency offset (max)	GHz

Values defined in Clause 185, 187

Proposed

185A.2.2.1.2 Calibrated front-end sampling

The calibrated front-end sampling function performs the analog-to-digital conversion of the four electrical signals obtained from the coherent detector front-end and compensates for the front-end imperfections listed in Table 185A–2.

The calibrated coherent detector front-end shall exhibit a flat frequency response, with magnitude and phase variations within the limits specified in Table 185A–2. Compliance with these limits may be achieved through the implementation of a digital equalizer applied prior to the ETCC noise-loading and calculation process.

The receiver noise impairing the digitized signal shall exhibit a flat power spectral density across the occupied signal bandwidth, with variations within the limits specified in Table 185A–2. If the intrinsic receiver noise does not meet this requirement, additive colored noise shall be synthesized and applied to the sampled waveform such that the aggregate receiver noise presented to the ETCC processing is effectively white. The calibrated receiver-noise power spectral density shall be known and shall be used in the ETCC computation as specified in 185A.2.5. The signal-to-receiver-noise ratio of the sampled waveform after noise whitening shall comply with the minimum value defined in Table 185A–2.

The parameters in Table 185A–2 and their associated limits are defined by the invoking Physical Layer specification, which assigns values consistent with the requirements of this method.

Table 185A-2—Coherent front-end post calibration residuals

Description	Unit
X-Y gain error (max)	dB
Skew between X-Y polarizations (max)	ps.
I-Q phase error (max)	degree
I-Q skew (max)	ps.
I-Q gain error (max)	dB
Carrier frequency offset (max)	GHz
Frequency response magnitude variation (max)	dB
Frequency response phase variation (max)	rad
White noise power spectral density variation (max)	dB
Signal-to-Receiver-Noise Ratio (min)	dB

Table 185–15 & Table 187-13 — Coherent front-end frequency response and noise post calibration residuals

Description	Value	Unit
	Value	
Frequency response magnitude variation (max)	1	dB
Frequency response phase variation (max)	0.3	rad
White noise power spectral density variation (max)	0.1	dB
Signal-to-Receiver-Noise Ratio (min)	20	dB

Editorial changes: Pg 947 – Parameter definitions

Current

185A.2.5.1 Parameter definitions

The following parameters are used in the equations for ETCC derivation and ETCC calculation:

a is the slope of the derived linear equation

b is the y-intercept of the derived linear equation

EC_{TX} is the eye-elosure term representing signal loss due to receiver imperfections

 EC_{tx} is the eye-closure term representing signal loss due to transmitter imperfections

 EC_{trx} is the eye-closure term representing signal loss due to transmitter and receiver

imperfections

 $ENSR_{ref}$ is the theoretical noise-to-signal ratio at BER_{ref} for the modulation format being

used

ESNR is the signal-to-noise ratio for the modulation format used at the FEC input

 $ESNR_{ref}$ is the theoretical signal-to-noise ratio at the BER_{ref} for the modulation format and

FEC being used

 $N_{\rm ase}$ is the amplified spontaneous emission (ASE) noise power or the non-transmitter

related noise power in the signal Nyquist bandwidth

 $N_{
m ux}$ is the noise including contributions from the transmitter and receiver

impairments and physical noise sources

 $N_{\text{vase,i}}$ is the virtual ASE noise power of each increment

NSR_{ase} is the ASE noise-to-signal ratio

NSR is the intrinsic front end noise power

 NSR_{tx} is the transmitter noise-to-signal ratio including contributions from the

transmitter imperfections and physical noise sources

NSR_{ux} is the transmitter and receiver noise to signal ratio including contributions from

impairments and physical noise sources

RSNR ase is the required SNR to meet a specific BER of a device in the presence of virtual

ASE

Proposed

185A.2.5.1 Parameter definitions

The following parameters are used in the equations for ETCC derivation and ETCC calculation:

a Slope of the derived linear equation

b Y-intercept of the derived linear equation

 BER_{ref} Reference bit-error-ratio for the modulation format and FEC under test

 EC_{tx} Eye-closure term representing signal loss due to transmitter imperfections

 $ENSR_{ref}$ Theoretical noise-to-signal ratio corresponding to BER_{ref} for the modulation

format and FEC under test

ESNR Estimated signal-to-noise ratio for the modulation format under test,

measured at the FEC input

 $ESNR_{ref}$ Theoretical signal-to-noise ratio corresponding to BER_{ref} for the modulation

format and FEC under test

 N_{ASE} Power (within the signal Nyquist bandwidth) of amplified spontaneous

emission (ASE) noise

 $N_{VASE,i}$ Power (within the signal Nyquist bandwidth) of the <u>i-th</u> increment of virtual

ASE noise

 N_{rx} Power (within the signal Nyquist bandwidth) of the receiver white noise

 N_{tx} Transmitter noise power (within the signal Nyquist bandwidth)

NSR_{ASE} ASE noise-to-signal ratio

NSR_{VASE} Virtual ASE noise-to-signal ratio

 NSR_{tx} Transmitter noise-to-signal ratio, including contributions from transmitter

imperfections and physical noise sources

RSNR_{ASE tx} Required signal-to-noise ratio to achieve a specified BER for the transmitter-

under-test in the presence of ASE noise

 $\Delta RSNR_{tx}$ Required signal-to-noise ratio penalty due to transmitter impairments (ETCC)

S Signal power of the captured dual-polarization waveform

Editorial changes: Pg 948 – ETCC derivation

Current

185A.2.5.2 ETCC derivation

ETCC calculation is based on BER and digital noise loading and the process is described in the following steps.

The estimated signal to noise ratio (ESNR) for a signal is related to its eye-closure and noise terms according to Equation (185A-1).

$$ESNR = \frac{EC_{\text{trx}}^{-1}S}{N_{\text{ase}} + N_{\text{trx}}} = \frac{EC_{\text{trx}}^{-1}}{NSR_{\text{ase}} + NSR_{\text{trx}}}$$
(185A-1)

The required signal to noise ratio (RSNR) in the presence of virtual ASE (RSNR_{ase}) is related to ESNR_{ref} according to Equation (185A-2).

$$RSNR_{ase} = ((EC_{tx} \cdot ESNR_{ref})^{-1} - NSR_{tx})^{-1}$$
(185A-2)

For an ideal device where $NSR_{trx} = 0$ and $EC_{trx} = 1$, the theoretical RSNR is equal to the reference ESNR, $ESNR_{ref}$

 $\Delta RSNR_{trx}$ is related to the eye closure, $RSNR_{ase}$, and NSR_{trx} by Equation (185A-3) expressed in dB

$$\Delta RSNR_{\text{trx}} = 10 \times \log 10 \left(\frac{RSNR_{\text{ase}}(EC_{\text{trx}}.NSR_{\text{trx}})}{ESNR_{\text{ref}}} \right)$$
(185A-3)

 $\Delta RSNR_{tx}$ includes contributions from both the transmitter and receiver. ETCC is defined by the transmitter contribution $\Delta RSNR_{tx}$. The contributions from only the transmitter are defined in Equation (185A–4) and Equation (185A–5) expressed in dB.

$$RSNR_{ase,tx} = ((EC_{tx} \cdot ESNR_{ref})^{-1} - NSR_{tx})^{-1}$$
(185A-4)

$$ETCC = \Delta RSNR_{tx} = 10 \log 10 \left(\frac{RSNR_{ase,tx}}{ESNR_{ref}} \right)$$
 (185A-5)

 EC_{tx} and NSR_{tx} are measured using a noise loading procedure based on captured waveforms as described in Figure 185A-5.

A set of data relating ESNR to NSR_{ase} is created and used to derive a linear fit with parameters a and b according to Equation (185A–6). From the derived linear fit parameters, $EC_{trx} = a$ and $NSR_{trx} = b / a$.

$$ENSR = EC_{trx} NSR_{ase} + EC_{trx} NSR_{trx} = a NSR_{ase} + b$$
 (185A-6)

Proposed

185A.2.5.2 ETCC derivation

The estimated signal-to-noise ratio (ESNR) of a transmitter is related to its eye-closure (EC_{tx}) , its intrinsic noise term (N_{tx}) , and ASE noise term (N_{ASE}) according to Equation (185A-1).

$$ESNR = \frac{EC_{tx}^{-1}S}{N_{ASE} + N_{tx}} = \frac{EC_{tx}^{-1}}{NSR_{ASE} + NSR_{tx}}$$
(185A-1)

The required signal-to-noise ratio (RSNR) is related to the reference ESNR by Equation (185A-2):

$$RSNR_{ASE,tx} = \left(\left(EC_{tx} \cdot ESNR_{ref} \right)^{-1} - NSR_{tx} \right)^{-1}$$
 (185A-2)

For an ideal transmitter with $NSR_{tx}=0$ and $EC_{tx}=1$, the theoretical value of $RSNR_{ASE,tx}$ is equal to $ESNR_{ref}$.

The ETCC parameter represents the penalty in RSNR attributed to the transmitter at given BER_{ref} . Denoted $\Delta RSNR_{tx}$, it is related to $RSNR_{ASE,tx}$ by Equation (185A-3), expressed in decibels.

$$ETCC = \Delta RSNR_{tx} = 10 \log_{10} \left(\frac{RSNR_{ASE,tx}}{ESNR_{ref}} \right)$$
 (185A-3)

The parameters EC_{tx} , NSR_{tx} and the resulting $\Delta RSNR_{tx}$ shall be determined using the digital noise loading procedure applied to captured waveforms, as described in Figure 185A–5 and detailed in 185A.2.5.3.

Editorial changes: Pg 949 – ETCC calculation

Current

185A.2.5.3 ETCC calculation

ETCC is calculated using the following steps

A reference receiver and a real-time sampling oscilloscope are used to acquire X_i , X_q , Y_i and Y_q digital waveforms as detailed in 185A.2.2.

The sampled waveforms are processed using the reference receiver DSP algorithm described in 185A.2.3 to estimate the BER with no added noise power, *BER*₀, of the preconditioned test waveform from a given transmitter under test.

Add incremental, controlled amounts of additive white Gaussian noise (AWGN) with virtual amplified spontaneous emission noise power of each increment, $N_{\text{vase,i}}$, to the transmitter under test waveform and repeat the processing to the estimate BER_i of each increment. Repeat the increments a minimum of 10 times with small enough noise increments such that BER_i is less than BER_{ref} .

For each BER_i calculate NSR_{vase.i} and ENSR_i using Equation (185A-7) and Equation (185A-8).

$$NSR_{\text{vase,i}} = \frac{N_{\text{vase,i}}}{S} \tag{185A-7}$$

A set of data relating $ESNR_i$ to $NSR_{vase,i}$ is created and used to derive a linear fit with parameters a and b according to Equation (185A–8).

$$ENSR_{i} = a \times NSR_{vase,i} + b \tag{185A-8}$$

As a result of the fit $EC_{trx} = a$ and $NSR_{trx} = b / EC_{trx}$.

Determine the intrinsic receiver noise power NSR_{IX} and EC_{IX} of the calibrated coherent detector front-end via a measurement or calibration process using a known transmitter.

Determine the NSR_{tx} using Equation (185A–9) and the EC_{tx} using Equation (185A–10).

$$NSR_{tx} = NSR_{tx} - NSR_{rx}$$
 (185A-9)

$$EC_{\text{tx}} = \frac{EC_{\text{tx}}}{EC_{\text{rx}}} \tag{185A-10}$$

Calculate the RSNR_{ase,tx} using Equation (185A-4).

Calculate ETCC using Equation (185A-5).

Proposed

185A.2.5.3 ETCC calculation

The ETCC calculation is based on digital noise loading and BER measurements, following the steps described below. The overall processing flow is illustrated in Figure 185A–5.

A reference receiver and a real-time sampling oscilloscope are used to acquire Xi, Xg, Yi and Yg, digital waveforms as detailed in 185A.2.2.

The transmitted data patterns are determined by processing the raw digitized waveforms and are used to measure BER on the noise-loaded signals in the subsequent steps.

Controlled amounts of virtual ASE (additive complex white Gaussian noise) with power $N_{VASE,i}$ are incrementally added to the transmitter-under-test waveform, and the corresponding BER_i values are measured.

The procedure shall begin at zero added noise and proceed with small increments in noise power, acquiring a minimum of ten measurement points such that all measured BER_i values remain below the reference BER_{ref} .

$$\left\{N_{VASE,1}=0,N_{VASE,2},\ldots,N_{VASE,10}\right\} \rightarrow \left\{BER_1,BER_2,\ldots,BER_{10}\right\}$$

For each BER_i , the corresponding $ENSR_i$ is computed using the theoretical BER-ESNR relationship specific to the modulation format under test.

$$\{BER_1, BER_2, \dots, BER_{10}\} \rightarrow \{ENSR_1, ENSR_2, \dots, ENSR_{10}\}$$

For each noise increment $N_{VASE,i}$, the $NSR_{ETCC,i}$ is calculated using Equation (185A–4), incorporating the calibrated and whitened receiver noise power N_{rx} .

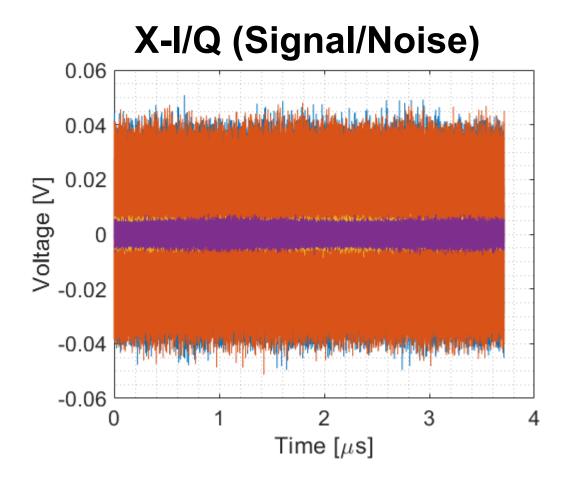
$$NSR_{ETCC,i} = \frac{N_{VASE,i} + N_{rx}}{S}$$
 (185A-4)

$$\left\{ N_{VASE,1}, N_{VASE,2}, \dots, N_{VASE,10} \right\} \rightarrow \left\{ NSR_{ETCC,1}, NSR_{ETCC,2}, \dots, NSR_{ETCC,10} \right\}$$

A set of data relating $ENSR_i$ to $NSR_{ETCC,i}$ is then used to derive a linear fit with parameters a and b according to Equation (185A–5).

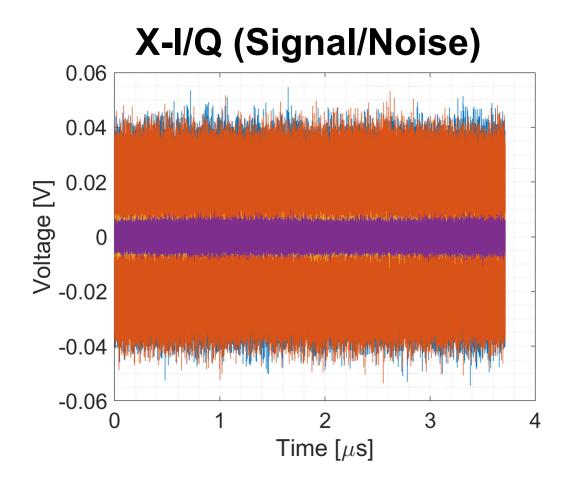
$$\left\{ENSR_1, ENSR_2, \dots, ENSR_{10}\right\} \leftrightarrow \left\{NSR_{ETCC,1}, NSR_{ETCC,2}, \dots, NSR_{ETCC,10}\right\}$$

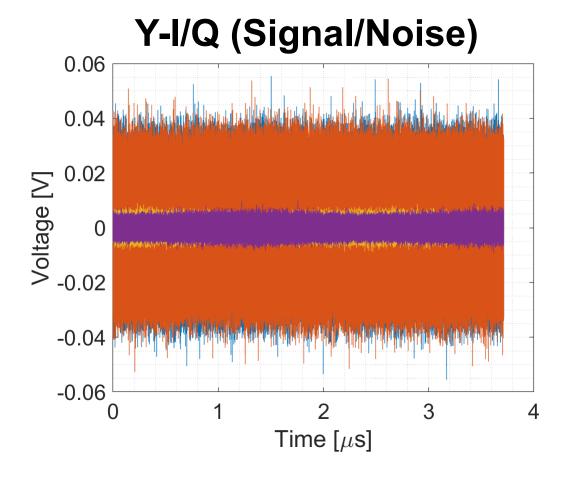
$$ENSR_i = a \cdot NSR_{ETCC,i} + b \tag{185A-5}$$

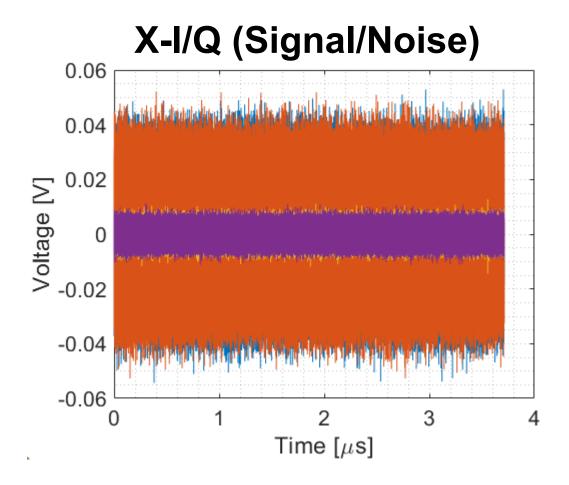

The transmitter parameters EC_{tx} and NSR_{tx} are obtained from the linear fit according to Equation (185A-6)

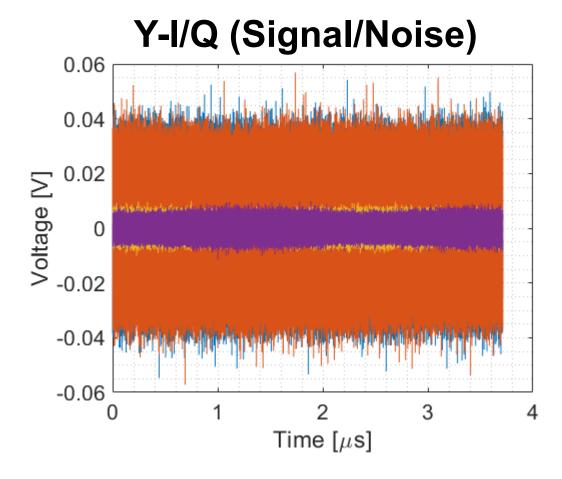
$$EC_{tx} = a, NSR_{tx} = b/a \tag{185A-6}$$

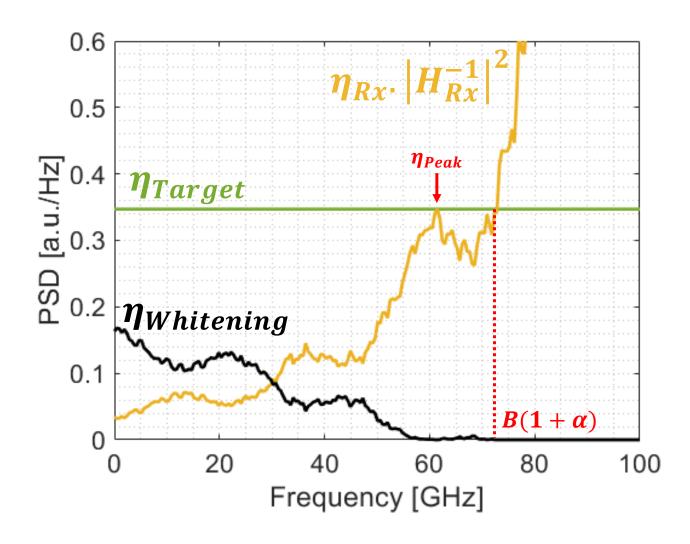
Finally, $RSNR_{ASE}$ is calculated using Equation (185A–2), and the ETCC is calculated using Equation (185A-3).


Backup


Scope Range Setting = 80 mV Signal Power = 0 dBm




Scope Range Setting = 120 mV Signal Power = 0 dBm



Scope Range Setting = 160 mV Signal Power = 0 dBm

Noise Whitening

