Quantization Noise Feature in COM Matlab Code

COM Commit Request Number 4p6_5

Hossein Shakiba Huawei Technologies Canada October 2024

Introduction

- In contribution <u>shakiba 3dj 02 2405.pdf</u> effects of including ADC quantization noise in COM channel compliance verifications was analyzed and its significance was demonstrated
- Similarly, contribution <u>healey_3dj_01b_2405.pdf</u> also considered adding a new eta_1 noise term between CTLE and RxFFE to represent quantization noise
- This contribution also suggested another option that scales the existing eta_0 noise term
- Straw poll #1 in the May interim meeting did not support addition of a new noise term

Straw Poll #1	
I support adding a new noise term (such as 'eta_1' in healey_3dj_01a_2405, slide 6) to the COM reference receiver.	
Results (all) Y: 13, , N: 37 , A: 31	
 Results (all) Y: 13, N: 37, A: 31	

- Despite that, there has been continuous interest and request to include this capability to the COM Matlab code for the purposes of investigations and explorations
- With the capability added, parameter ENOB, which represents ADC number of bits, can be set to a non-positive number (defaulted to 0) to disable the feature for standard COM channel compliance purposes

October 01, 2024

Background

• Quantization noise is a new noise term added between CTLE and RxFFE

Quantization Noise

• It is modeled by a uniform distribution over –LSB/2 to +LSB/2

- ADC clip level is chosen so that clipping frequency is low
 - Ser defined and defaulted to the target error rate (parameter adc_clip_rate)
- For details see contribution <u>shakiba_3dj_02_2405.pdf</u>

October 01, 2024

Changes to the Code (1 of 8)

1) Insert 5 lines:

* Saves pulse response and its sampled values and sampling times at the CTLE output

	841 - 842 - 843 844 -	chdata(i).eq_imp_response=eq_ir; eq_pulse=filter(ones(1, param.samples_per_ui), 1, chdata(i).eq_imp_response); if isequal(chdata(i).type, 'FEXT') isequal(chdata(i).type, 'THRU')				
	845 - 846 -	eq_pulse = FFE(fom_result.txffe ,fom_result.cur-1 , param.samples_per_ui, eq_pulse); end				
341 - 342 -	chdata(i).eq_imp_response=eq_ir; eq_pulse=filter(ones(1, param.samples_per_ui),	1, chdata(i).eq_imp_response);				
843 % Next 4 lines save pulse response and its sampled values and times at the CTLE output, needed for quantization noise						
345 -	4 - chdata(1).ctle_pulse = eq_pulse; 5 - [~, sample_start] = min(abs(chdata(i).t-fom_result.sampled_best_sbr_precursors_t(1)));					
346 - chdata(i).ctle_pulse_s = eq_pulse(sample_start:param.samples_per_ui:end); 347 - chdata(i).t_s = chdata(i).t(sample_start:param.samples_per_ui:end);						
348 349 - 350 -	<pre>if isequal(chdata(i).type, 'FEXT') isequal(chdata(i).type, 'THRU') eq_pulse = FFE(fom_result.txffe ,fom_result.cur-1 , param.samples_per_ui, eq_pulse); end</pre>					

Changes to the Code (2 of 8)

2) Insert 28 lines:

 If ENOB is positive, calculates ADC clipping level and LSB and quantization noise PDF at the injection point and after RxFFE and adds it to the overall noise PDF

	1483 % Equation 93A-45					
	1484 - combined_interference_and_noise_pdf = conv_fct(NS.isi_and_xtalk_pdf, NS.noise_pdf);					
	1485 - PDF=combined_interference_and_noise_pdf:					
	1486					
	1487 % Equation 93A-37					
488	% Equation 93A-45					
489 -	combined interference and noise pdf = conv fct(NS.isi and xtalk pdf. NS.noise pdf):					
.490	% The following if statement calculates quantization noise PDF and adds i to the total noise if ENOB is positive					
491 -	if param.ENOB > 0					
492 -	ctle signal pdf = get pdf from sampled signal(chdata(1).ctle pulse s. param.levels. param.delta v):					
493 -	ctle_signal_noise_pdf = conv_fct(ctle_signal_pdf, combined_interference_and_noise_pdf):					
94 -	ctle_signal_noise_cdf = cumsum(ctle_signal_noise_pdf.y);					
i95 -	<pre>adc_clip = -CDF_inv_ev(param.adc_clip_rate, ctle_signal_noise_pdf, ctle_signal_noise_cdf);</pre>					
,96 -	ctle_pulse_sigma = sqrt(sum((ctle_signal_pdf.x.^2).*ctle_signal_pdf.y));					
97 -	adc_lsb = 2*adc_clip/(2^param.ENOB-1);					
98 -	NS.sigma_Q = adc_lsb/sqrt(12);					
99 -	NS.sigma_before_clip = ctle_pulse_sigma;					
- 00	NS.peak_clip = adc_clip;					
01 -	NS.p2ptosigma_clip = 2*adc_clip/ctle_pulse_sigma;					
02 -	quantization_noise_pdf = combined_interference_and_noise_pdf; % This is to copy the fields of the structure					
)3 -	<pre>[~, adc_ind_right] = min(abs(quantization_noise_pdf.x-adc_lsb/2));</pre>					
)4 -	[~, adc_ind_left] = min(abs(quantization_noise_pdf.x+adc_lsb/2));					
)5 -	<pre>quantization_noise_pdf.y = zeros(size(quantization_noise_pdf.x));</pre>					
)6 -	quantization_noise_pdf.y(adc_ind_left:adc_ind_right) = 1/(adc_ind_right-adc_ind_left+1);					
)7	% Calculate quantization noise PDF after R×FFE					
- 80	h_rxffe = fom_result.RxFFE(find(fom_result.RxFFE ~= 0));					
09 - L	for irxffe = 1:length(h_rxffe)					
510 -	if irxffe ~= param.ffe_pre_tap_len					
11 -	<pre>quantization_noise_pdf_scale = scalePDF(quantization_noise_pdf, abs(h_rxffe(irxffe)));</pre>					
12 -	quantization_noise_pdf = conv_fct(quantization_noise_pdf, quantization_noise_pdf_scale);					
13 -	end a second					
.4 -	end					
15 -	combined_interference_and_noise_pdf = conv_fct(combined_interference_and_noise_pdf, quantization_noise_pdf);					
516 -	Ns.quantization_noise_pdf = quantization_noise_pdf;					
517 -						
1518 -	PDF=combined_interference_and_noise_pdf;					

Changes to the Code (3 of 8)

3) Insert 7 lines

If ENOB is positive, registers quantization noise data

2852 % r259 putting COM, VEO and loss last in report 2853 % output_args.VE0_normalized = (A_s-A_ni)/A_s; output_args.VEC_dB = COM_SNR_Struct.VEC_dB; 2854 -2855 output_args.VE0_mV = COM_SNR_Struct.VE0_mV; 2885 % r259 putting COM, VEO and loss last in report 2886 output_args.VE0_normalized = (A_s-A_ni)/A_s; % The following if statement registers guantization noise data if ENOB is positive 2887 2888 if param. ENOB > 02889 output_args.sqm_Q = Noise_Struct.sigma_Q; 2890 output_args.sigma_before_clip = Noise_Struct.sigma_before_clip; output_args.peak_clip = Noise_Struct.peak_clip; 2891 -2892 output_args.p2ptosigma_clip = Noise_Struct.p2ptosigma_clip; 2893 end output_args.VEC_dB = COM_SNR_Struct.VEC_dB; 2894 -2895 output_arqs.VE0_mV = COM_SNR_Struct.VE0_mV;

Changes to the Code (4 & 5 of 8)

4 & 5) Insert 19 lines, and insert 1 line and change 1 line

✤ If ENOB is positive, calculates quantization noise PSD, otherwise sets it to 0

Adds quantization noise PSD to the overall PSD

5308 % result.S_in 5309 result.S_n=result.S_rn+ result.S_tn+ result.S_×n+ result.S_jn; 5310 result.S_n_rms = sqrt(sum(result.S_n)* delta_f); 5311 5312 %% %% Hisi to be included in MLSE rho eq 178a-28 5313 5348 % result.S_jn 5349 % The following if statement calculates or zeroes quantization noise PSD based on ENOB 5350 if param. ENOB > 0if OP.INCLUDE_CTLE == 1 5351 eq_ir = TD_CTLE(chdata(1).uneq_imp_response, param.fb, param.CTLE_fz(1), param.CTLE_fp1(1), param.CTLE_fp2(1), G_DC, param.samples_per_ui); 5352 -5353 eq_ir = TD_CTLE(eq_ir, param.fb, param.f_HP(1), param.f_HP(1), 100e100, G_DC2, param.samples_per_ui); 5354 else 5355 eq_ir = chdata(1).uneq_imp_response; 5356 end 5357 ctle_pulse = filter(ones(1, param.samples_per_ui), 1, eq_ir); ind_max = find(ctle_pulse == max(ctle_pulse)); 5358 adc_clip = sum(abs([ctle_pulse(ind_max-param.samples_per_ui:-param.samples_per_ui:1); ctle_pulse(ind_max:param.samples_per_ui:end)])); 5359 adc_lsb = 2*adc_clip/(2^param.ENOB-1); 5360 $sigma_0 = adc_1sb/sgrt(12);$ 5361 -S_qn = sigma_Q^2/(length(result.S_rn)*delta_f)*ones(size(result.S_rh)); 5362 result.S_qn = S_qn; 5363 result.gn_rms = sqrt(sum(result.S_qn)* delta_f); 5364 -5365 else 5366 result.S_qn = 0; 5367 end % The folloeing line change adds guantization noise PSD to the overall noise PSD 5368 result.S_n=result.S_rn+ result.S_tn+ result.S_xn+ result.S_jn; 5369 result.S_n=result.S_rn+ result.S_tn+ result.S_xn+ result.S_jn+ result.S_qn; 5370 -5371 result.S_n_rms = sqrt(sum(result.S_n)* delta_f);

October 01, 2024

Changes to the Code (6 of 8)

6) Insert 1 line and change 1 line

Adds quantization noise PSD to the overall PSD

Changes to the Code (7 of 8)

- 7) Insert 3 lines
 - Registers sampling time

Changes to the Code (8 of 8)

8) Insert 3 lines

Reads parameters ENOB and adc_clip_rate from COM configuration file

9223 %% addd default to support multiple packages

9224 - param.a_thru = xls_parameter(parameter, 'A_v', true, 0.5); % Victim differential peak source output voltage (half of peak to peak) 9225 - param.a_fext = xls_parameter(parameter, 'A_fe', true,0.5); % FEXT aggressor differential peak source output voltage (half of peak to peak) 9226 - param.a_next = xls_parameter(parameter, 'A_ne', true,0.5); % NEXT aggressor differential peak source output voltage (half of peak to peak) 9227 - param.a_icn_fext = xls_parameter(parameter, 'A_ne', true, param.a_fext); % FEXT aggressor amplitude for ICN. Defaults to A_fe if not specified 9228 - param.a_icn_next = xls_parameter(parameter, 'A_nt', true, param.a_next);% NEXT aggressor amplitude for ICN. Defaults to A_ne if not specified 9229 - param.levels = xls_parameter(parameter, 'L'); % number of symbols levels (PAM-4 is 4, NRZ is 2)

- 9230 param.specBER = x1s_parameter(parameter, 'DER_0'); % Target detector error ratio
- 9231 ____ param.DER_CDR = x1s_parameter(parameter, 'DER_CDR',true,1e-2); % min DER required for a CDR
- 9232 param.pass_threshold = xls_parameter(parameter, 'COM Pass threshold',false,0); % the pass fail threshold for COM in dB
- 9233 param.ERL_pass_threshold = xls_parameter(parameter, 'ERL Pass threshold',false,0); % the pass fail threshold for ERL in dB
- 9234 param.VEC_pass_threshold = xls_parameter(parameter, 'VEC Pass threshold',false,0);% the pass fail threshold for VEC in dB only used when PMD_type is C2M

9289 %% addd default to support multiple packages

- 9290 param.a_thru = xls_parameter(parameter, 'A_v', true, 0.5); % Victim differential peak source output voltage (half of peak to peak)
- 9291 param.a_fext = xls_parameter(parameter, 'A_fe', true,0.5); % FEXT aggressor differential peak source output voltage (half of peak to peak)
- 9292 param.a_next = xls_parameter(parameter, 'A_ne', true,0.5); % NEXT aggressor differential peak source output voltage (half of peak to peak)
- 9293 param.a_icn_fext = xls_parameter(parameter, 'A_ft', true, param.a_fext); % FEXT aggressor amplitude for ICN. Defaults to A_fe if not specified 9294 - param.a_icn_next = xls_parameter(parameter, 'A_nt', true, param.a_next);% NEXT aggressor amplitude for ICN. Defaults to A_ne if not specified
- 9295 param.levels = xls_parameter(parameter, 'L'); % number of symbols levels (PAM-4 is 4, NRZ is 2)
- 9296 param.specBER = x1s_parameter(parameter, 'DER_0'); % Target detector error ratio
- 9297 yparam.DER_CDR = x1s_parameter(parameter, 'DER_CDR',true,1e-2); % min DER required for a CDR
- 9298 % The following two lines read parameters ENOB and adc_clip_rate from the configuration spreadsheet
- 9299 param.ENOB = xls_parameter(parameter, 'ENOB', 'false', O); % ADC Number of bits
- 9300 param.adc_clip_rate = xls_parameter(parameter, 'adc_clip_rate', 'false', 2*param.specBER); % ADC clipping probability
- 9301 param.pass_threshold = xls_parameter(parameter, 'COM Pass threshold',false,0); % the pass fail threshold for COM in dB
- 9302 param.ERL_pass_threshold = xls_parameter(parameter, 'ERL Pass threshold',false,0); % the pass fail threshold for ERL in dB
- 9303 | param.VEC_pass_threshold = xls_parameter(parameter, 'VEC Pass threshold',false,0);% the pass fail threshold for VEC in dB only used when PMD_type is C2M

October 01, 2024

Example Outputs

		After Change		
	Before Change	adc_clip_rate = 2*specBER	adc_clip_rate = 0.2*specBER	
Without Quantization (ENOB = 0)	DER_MLSE_trunc: 2.0764e-06 Q_budget_adj: 0 COM_from_matlab: -0.7246 DER_MLSE: 2.0764e-06 DER_DFE: 1.4608e-04 COM: 1.0876 delta_com: 1.8122	DER_MLSE_trunc: 2.0764e-06 Q_budget_adj: 0 COM_from_matlab: -0.7246 DER_MLSE: 2.0764e-06 DER_DFE: 1.4608e-04 COM: 1.0876 delta_com: 1.8122	DER_MLSE_trunc: 2.0764e-06 Q_budget_adj: 0 COM_from_matlab: -0.7246 DER_MLSE: 2.0764e-06 DER_DFE: 1.4608e-04 COM: 1.0876 delta_com: 1.8122	
With Quantization (ENOB = 6)	NA	DER_MLSE_trunc: 3.5894e-05 Q_budget_adj: 0 COM_from_matlab: -1.7698 DER_MLSE: 3.5894e-05 DER_DFE: 7.4213e-04 COM: -0.1862 delta_com: 1.5836	DER_MLSE_trunc: 4.0593e-05 Q_budget_adj: 0 COM_from_matlab: -1.8263 DER_MLSE: 4.0593e-05 DER_DFE: 8.0210e-04 COM: -0.2499 delta_com: 1.5764	

• It is recommended that this change be made along with the change for MLSE truncation

Thank You 🕲

Hossein Shakiba Huawei Technologies Canada October 2024