

Phase Only Jitter (179.9.4.6 proposed revisions) Presented to IEEE P802.3dj Joint Electrical/Optical/Logic ad hoc Version 1.1: January 09, 2025

Associated comments (D1.3): 305, 219, 220, 221

Author: David Gines (Keysight Technologies)

Contributors: John Calvin, Ryan Chodora, Mike Beyers. Based on draft release of IEEE P802.3dj[™]/D1.3

Abstract: Improvements to Output Jitter clause 179.9.4.6, JHrms and Jnu with attention to making these operations more accurate and less sensitive to channel induced losses.

Supporters/Collaborators (Version 1.1)

Yasuo Hidaka (Credo)

Useful References:

IEEE 07/15 Contribution: https://www.ieee802.org/3/dj/public/24_07/calvin_3dj_01b_2407.pdf Diminico: https://www.ieee802.org/3/dj/public/24_07/calvin_3dj_01b_2407.pdf

Characteristics with high loss (30 dB) channel

- 1. Jitter increases
- 2. Jitter more variable, both between and within edge types.

These effects not necessarily seen in simulation.

Instrument noise compensation important, but

- DUT noise small after channel, compared to instrument.
- Removing large percentage of measured noise is numerically sensitive to error.
- Results are still channel dependent, so issues not resolved, even if no scope noise.

Channel 1		Various		No graphs			
Ch 1 J4u Table (408 Patterns)							
Fron	To LO	To L1	To L2	To L3			
All	82.2959 mUI						
L3	95.0430 mUI	143.870 mUI	251.444 mUI				
L2	139.215 mUI	216.188 mUI		139.679 mUI			
L1	203.456 mUI		155.391 mUI	89.6822 mUI			
LO		225.838 mUI	105.534 mUI	66.7842 mUI			

Jitter Increases with Physical Channels

Jitter is created through horizontal shifts (phase only jitter), JH, and through vertical shifts (noise-to-jitter conversion), JV.

Phase Only Jitter (Horizontal)

Noise-to-Jitter (AM-PM) Conversion (Vertical)

- Due to clock variation only
- Does not change over channel
- This is often the desired metric

$$JV = \frac{N}{SR}$$

- Noise and slew rate are affected by channel
- This is the source of higher jitter and variability

These effects are not created by the measurement instrument. However, instrument jitter and noise may lead to different sensitivities to them.

Slew Rate Examples

Horizontal versus Vertical Jitter

The RMS value of the total measured jitter *Jrms* is the geometric sum of *JHrms* (phase only *Jrms*) and *JVrms*.

$$J_{rms}^2 = JH_{rms}^2 + JV_{rms}^2$$

Time-interval errors for JV are equal to N/SR, where N is vertical noise and SR is an edge's slew rate. Which gives:

$$J_{rms}^2 = JH_{rms}^2 + \left(\frac{1}{SR}\right)^2 N_{rms}^2$$

This is a linear polynomial with y-intercept JH_{rms}^2 and slope N_{rms}^2

Example: 12-Edge Jitter on PRBS13Q, 23dB channel

Model: $J_{rms}^2 = JH_{rms}^2 + N_{rms}^2/SR^2$

- Source: BERT with no impairments
- Real-Time Oscilloscope
- Measure Jrms at each of the 12 edges
 defined in IEEE Specification
- Note: composite dominated by single edge transitions
- Measure slew rate at each of those edges
- Fit model to (1/SR², Jrms²) pairs

```
corresponds to JHrms of 57 fs (6mUI) -
```


Example: multiple channels

Model
$$J_{rms}^2 = JH_{rms}^2 + N_{rms}^2/SR^2$$

Compare JHrms after 3 different channels

- As channel loss increases, DUT noise gets smaller. This is seen in shallower slopes in the model.
- But the slew rate gets smaller at a faster rate, meaning jitter goes up. This is seen in graph points going up and to the right.
- Longer channels also have more ISI, creating more variability.
- All models have the same y-intercept, since all datasets have the same phase only jitter.

Making the method more robust

Numerical methods can be used to make the fitting more robust.

Example, use quadratic fit instead of a linear fit. This adds another degree of freedom to the model. The linear model assumes that edges are linear, so that noise-to-jitter conversion is equal to N/SR.

$$J_{rms}^{2} = JH_{rms}^{2} + \left(\frac{1}{SR}\right)^{2} N_{rms}^{2}$$
$$J_{rms}^{2} = JH_{rms}^{2} + \left(\frac{1}{SR}\right)^{2} N_{rms}^{2} + \left(\frac{1}{SR}\right)^{4} K_{4}$$

A curved edge amplifies noise-to-jitter conversion, creating more jitter than a linear edge does. (Not trying to model the edge, just adding another param to the model.)

Example with non-zero JHrms

Measured data from BERT: PRBS9Q, 6548 patterns, 106.25 Gbaud PAM4, 31dB channel **RJ and PJ impairments added**

Quadratic fit instead of a linear fit Choosing a subset of 100 edges

Measured data; PRBS9Q, 100 edges, Quadratic fit

All units in mUI, 106.25 GBaud Source: BERT

Channel Loss: 0, 12, or 31 dB

URCE: BERT			JHrms			Jrms03		
RJrms In	PJpp In	Expected JHrms	0 dB	12 dB	31 dB	0 dB	12 dB	31 dB
0	0	0	3	3	4	8	9	23
30	0	30	28	28	29	29	29	37
0	50	18	16	16	17	17	18	28
30	50	35	32	32	35	35	35	56

			JHrms	Jrms03
RJrms In	PJpp In	Expected JHrms	31 dB	31 dB
0	0	0	5	19
50	0	50	48	50
0	50	18	16	24
50	IEEE P8023dj: 50	V1.1: Phase Only Jitter (17 53	79.9.4.6) Ad-Hoc Jan 2025 51	61

KEYSIGHT

JNU

Creating a model for JNU is ongoing research. One possible path is to use a dual-dirac decomposition, but this has not been verified. Use model fits to get the horizontal components of *RJrms* and *DJdd*, then,

 $JNUH = DJH_{dd} + Q * RJH_{rms}^2$

Note that this is not used to extrapolate to a lower BER, this is just used to model the total jitter histogram.

Proposed revisions to 179.9.4.6 Output jitter

Consensus check with Ad-Hoc team

[Current Text]:

- The estimated probability distribution fJ(t) is calculated as specified in 120D.3.1.8.1, except that only the transitions R03 and F30 are used.
- JRMS03 is defined as the standard deviation of fJ(t).
- Jnu03 is defined as the time interval that includes all but 10-n of fJ(t), between the 5 × 10-(n+1) and the 1 5 × 10-(n+1) quantiles of fJ(t).

[Proposed Text]:

- The measured probability distribution fJ(t) is calculated as specified in 120D.3.1.8.1.
- JRMS is defined as the standard deviation of fJ(t).
- JHRMS is the measured RMS value of *phase jitter* and has all noise elements removed. For example, JHRMS would correspond to the SQRT(Y-intercept) of a linear fit to a set of JRMS^2 values versus (1/Slew-rate)^2, using the edges defined in 120D.3.1.8.1 *or any additional edges as needed*.
- Jnu03 is defined as the time interval that includes all but 10–n of fJ(t), between the 5 × 10–(n+1) and the 1 5 × 10–(n+1) quantiles of fJ(t), where fJ(t) restricted to 3 level transitions.

KEYSIGHT

Appendix

Noise-to-Jitter Conversion

Noise-to-Jitter (AM-PM) Conversion (Vertical)

$$JV = \frac{N}{SR}$$

- Noise and slew rate both reduced in channel
- Slew rate goes down faster than noise. creates **Higher Jitter.**
- Slew rates more variable due to ISI. creates More Jitter Variability.