Block TDECQ Test Method

(Addressing comments: 244, 245, 246, 247)

Ali Ghiasi - Ghiasi Quantum/Marvell Mike Dudek – Marvell Pavel Zivny – Multilane John Calvin – Keysight

> IEEE 802.3dj Interim Meeting Phoenix, AZ

> > January 20, 2025

Overview

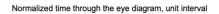
- **Concern about TDECQ not capturing jitter**
- **Current TDECQ method**
- Block processing
- **TDECQ** based on block processing
- **Summary.**

Improving TDECQ Test Method

Ghiasi 3dJ 01 2501 proposes several enhancements to TDECQ method

- Testing TDECQ in mission mode
- Adding counter propagating traffic during TDECQ test
- □ <u>Mi 3dJ 02a 2409</u> investigate possible method how to better define TECQ/TDECQ to capture effect of block errors will improve TECQ/TDECQ correlation to post-FEC
- Current TDECQ test method provides average TDECQ over ~ 1 seconds assuming Oscope and all perturbation events gets averaged out
 - This contribution leverages method of <u>healey 3dj 02a 2409</u> to process SSPRQ waveforms as blocks with real time scope to determine the TDECQ_{Max}
 - TDECQ_{Max} will also address concern raised by <u>Mi 3dJ 02a 2409</u> on how to capture effect of block errors and concerns raised by <u>ran 3dj elec 01 240822</u> due to jitter
- The advantage of measuring TDECQ_{Max} by using Blocks is that there is no need for Golden hardware receiver which may introduce its own block errors and may not even be available commercially.

Current TDECQ SER Calculation


- Two normalized histogram created (Left and Right) are created and associated function F(yi) equal to the number of sample captured divided by number of sample in the histogram window
 - The sum of all F(yi)=1
 - Three cumulative probability functions are created for left and right histogram F(yi)
 - The three histograms are for level 1, 2, 3
 - The left cumulative function given below:

•
$$CF_{Li}(y_i) = \begin{cases} \sum_{y=P_{th1}}^{y_i} F(y) \text{ for } y_i \ge P_{th1} \\ \sum_{y=y_i}^{P_{th1}} F(y) \text{ for } y_i < P_{th1} \end{cases}$$

- Each element of CF_{L1}, CF_{L2}, and CF_{L3} are multiplied with associated threshold to partial SER for each level, then the 3 left cumulative distribution summed to get SER(left)
- The larger of SER_L or SER_R is used for TDECQ calculation

The current TDECQ calculate SER_L or SER_R (PAM4 symbols)

 Currently one full SPPRQ waveform is captured on the Oscope for SER_L or SER_R and TDECQ calculation which takes ~ 3 seconds.

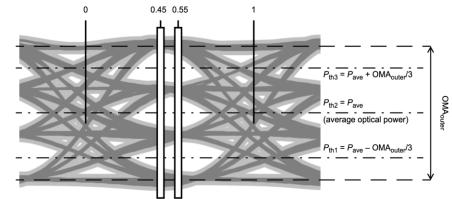
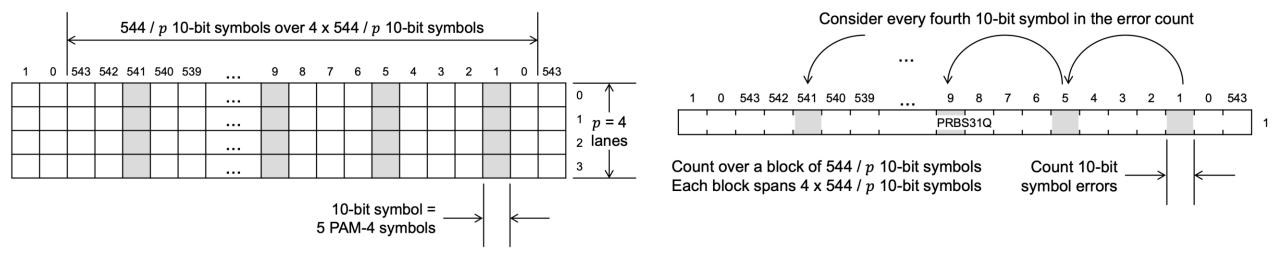



Figure 121–5—Illustration of the TDECQ measurement

Block Processing to Determine TDECQ_{Max}

Proposal from <u>healey 3dj 02a 2409</u> show mechanisam to process PRBS data similar to FEC symbols block processing

- Exact same mechanisam can be used for optical signal at TP2 with real time scope and SSPRQ pattern
- Block processing of SSPRQ waveform at TP2 will capture perturbations and jitter
- TDECQ processed block waveform results in TDECQ_{Max}.
- To capture blocks as shown below require real time scope but Equivalent Time Oscope (ETO) also captures periodic jitter/effects but the reported penalty/TDECQ maybe < TDECQ_{Max}
 - ETO's blocks are assembled from bits are from later samples but at the same exact location in the waveform.

TDECQ_{Max} Based on Block Processing

Block processing of SSPRQ waveform (SSPRQ pattern length 65,535 PAM4 symbols)

- TDECQ_{Max} ignores effect of averaging across lanes for simplicity
- A FEC block would consist of 5 PAM4 symbols
- Capture 10 SSPRQ waveform, each SSPRQ waveform forms 655,350 PAM4 symbols
- KP4 FEC with 4-way interleaving creates 4*544 or 2176 FEC symbol blocks (10880 PAM4 symbols)
- 10 repetition of SSPRQ forms ~60 4-way KP4 frames
- Pick the worst 6 4-way KP4 frames to form the PDF
 - Calculate TDECQ on each of 60 blocks to determine the worst 6 blocks
- From the PDF calculate SER_L or SER_R
- Use existing TDECQ definition by using the larger of SER_L or SER_R to calculate TDECQ_{Max}

TDECQ based on 10 SSPRQ waveforms extend asynchronous jitter capture from ~810 kHz from ~81 kHz

Number of errors per 4*544 FEC frame or 10880 PAM4 symbol

- FECo at target SER of 4.8e-4 has ~5 errored PAM4 symbols (or ~15 for 3 4-way KP4 frame)
- FECi at target SER of 9.6e-3 has ~104 errored PAM4 symbols (or ~312 for 3 4-way KP4 frame).

Average TDECQ vs TDECQ_{Max}

What is in the draft today is average TDECQ

Average TDECQ with current should stay in the draft

Proposed limit for TDECQ_{Max} is +0.4 dB excursion above the current average TDECQ limit.

Summary

There have been reports of compliant TDECQ transmitters resulting in high FEC codeword errors and we need to address these shortcoming in DJ taskforce

- TDECQ is measured in mission mode, see Ghiasi_3dj_01_2501
- TDECQ is measured based on block processing to determine TDECQ_{Max} (this contribution)
- Functional test with a compliant receiver
- Measuring TDECQ_{Max} is the best way to determine transmitter/host/PLL/power supply are not causing any issue that may result in FEC tail without relying on hardware receiver where it may have its own FEC tail

Both real time and Equivalent Time OScope (ETO) may be used to measure TDECQ_{Max}

- Real time scope offers block processing more like KP4 FEC block processing and 3 out of 30 worst blocks are used for TDECQ calculation – more exact solution
- ETO constructs the block from non-consecutive samples in the waveform and expect to produce similar result for repetitive jitter/noise events – need confirmation
 - Statistically ETO expect to catch worst blocks, since 6 out of 60 worst blocks are used for TDECQ_{Max} calculation.