SCMR (signal to common mode ratio) for Channels d2.0 Comments 49, 50

Richard Mellitz, Samtec Adam Gregory, Samtec Brandon Gore, Samtec

June 26, 2025 IEEE P802.3dj Ad Hoc

Abstract

Proposal

- Introduce SCMR_CH (signal to common mode ratio for channels) and interconnect.
- Rational
 - The current COM model emphasizes Sdd21 but may overlook common-mode conversion effects, potentially allowing marginal channels to pass simulation while failing in real-world applications.
 - SCMR_CH is intended to
 - Limit channel inter pair skew
 - Limit skew based signal asymmetric distortion
 - Limit other channel comment mode impairments

Table of Contents

□ Interoperability

- SCMR computation for interconnect channel using time domain (TD) and frequency domain (FD)
- □ Context: Estimate maximum reference device skew
- □ COM and SCMR experiments
- □ Introducing skew in COM example code

Interoperability

Parts pass COM which fail in a real-world system.

- Skew contributes to common-mode conversion, alongside other imbalances.
- COM specifies a minimum differential performance
- S-parameters passed to COM can include the skew and other common mode effects. So, the effect of skew for a given channel is included in COM.
- The effects of skew or common mode entering a channel is weakly controlled with the following
 - Signal to AC common-mode noise ratio, SCMR (min)
 - Common-mode to common-mode return loss, RL_{cc} (min)
- □ The next slide diagrams a skew impact scenario

Skew Impact on Interoperability

- □ An upper limit for skew for the reference packages may be determined from Signal to AC common-mode noise ratio, SCMR (min)
- □ If skew is included in COM, how significantly does it alter the computed COM between configurations A and B?
- □ Another question is how does the channel interact with the skew and can that be controlled with SCMR for the channels (ref: mellitz_3dj_02_elec_231207)

2023 Presentation on Skew and SCMR

 $mellitz_3dj_02_elec_231207$

- Consider the channel is LTI an usually passive.
- The pulse response from a pattern averaged signal on an LTI network approaches the computed pulse response of the network.
- Signal and noise power is computed from the pulse responses.
- Compute SCMR by combining pulse response metrics from SNDR and noise variance like for ERL

Apply SCMR to a Channel

SCMR_{ch} Quantifies Signal Integrity Degradation Due to CM conversion

- □ It starts by evaluating pulse DD and CD pulse responses and determines the ratio of signal power to common-mode power
- CM noise power is handledd similarly to refection noise power in ERL.
- Diagram on next slides

SCMR Step 1: Pulse Responses

Determine signal and CM sampled pulse responses

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Step 2: Compute SCMR_{ch}

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Also, consider $SCMR_{CH_{FQ}}$ computed in the frequency domain

□ Like SNR_{MDFEXT}

 $\Box SCMR_{CH_FQ} = 10log_{10} \left(\frac{\hat{P}_{signal}}{\hat{\sigma}_{scd21}^2 \sigma_x^2 Q^{-1} (DER_0)^2} \right)$ • $\hat{P}_{signal} = 2\Delta f \sum w(f) 10^{-IL(f)} / 10^{-IL(f)}$, Normalized signal power • $\hat{\sigma}_{scd21}^2 = 2\Delta f \sum w(f) S_{cd21}^2$,Normalized common mode power $w(f) = \frac{1}{f_b} sinc \left(\frac{f}{f_b}\right)^2 \left[\frac{1}{1 + \left(\frac{f}{f_f}\right)^4}\right] \left[\frac{1}{1 + \left(\frac{f}{f_f}\right)^8}\right] \dots \text{ from eq. (93A-57) note: } f_{\text{tf}}, f_{\text{t}}, f_{\text{t}}, f_{\text{t}}, and f_{\text{t}} are assumed to be the same$ $IL(f) = -20log_{10}(|sdd21(f)|)$ $\sigma_x^2 = \frac{(L^2 - 1)}{3(L - 1)^2}$...note: L is number of PAM levels $1/Q^{-1}(DER_0)$ aligns RMS to DER₀

SCMR is computed COM from branch Called SCMR

In Richard Mellitz Git Fork

SCMR_ch_dB and SCMR_ch_fq_dB are output in COM branch SCMR

□ Pointer to a single COM code file

- <u>https://opensource.ieee.org/richard.mellitz/com_code/-</u> /raw/SCMR/release/com_ieee8023_4p9p1_SCMR.m?ref_type=heads&inline= false
- Pointer to spread sheets templates used
 - <u>https://opensource.ieee.org/richard.mellitz/com_code/-</u> /tree/SCMR/config_templates/testing_SCMR?ref_type=heads

Context: Estimate Maximum Device Skew

- □ Signal to AC common-mode noise ratio, SCMR (min) is 15 dB
 - Based of using Vpeak
- □ Not all contributions to SCMR (min) are from skew
- □ For the reference package, skew it would be limited to a about 1.5 ps
 - No other CM impairments are considered
- □ Skew (delay) is highly correlated to SCMR
- □ This sets the bounds for the next step of experiments

COM and SCMR experiments

- □ For collection of channels (see backup for list)
 - These files have varying amount of common mode
 - 30 mm package
 - Includes crosstalk
- Add varying amounts of skew (ideal delay) to the s4p files (ref: mellitz_3dj_02_elec_231207)
 - This can be done in COM with the keywords Txpskew, Txnskew, Rxpskew, and Rxnskew
 - For this experiment only Txpskew is used.

Determine COM, SCMR_ch_dB, SCMR_ch_fq_dB, and delta COM for each skew

- Define delta COM(delay) = COM(delay=0)- COM(delay)
- □ Evaluate delta COM to SCMR_CH, SCMR_CH_FD, COM, and skew

Skew (delay) is added before COM example code computations

□ The new Sdd is used to compute COM

- □ The new Sdd and Scd are used to compute SCMR_ch
- □ The new Sdd is used to compute all the FD parameter too

Skew is added in COM as an ideal sparameter delay.

- In this experiment skew is added to one side of the Tx channels
- □ The COM zero-delay case is COM of the channel.
- □ SCMR and COM change drastically when delay introduced

Large Skew Greatly Affects Delta COM

Delta COM increases with skew.

Relatively flat distribution of COM

This amount of skew is not likely

Reconsider with skew below 2.6 ps

The effect of skew is different for different channels

The effect of skew is different for different channels (cont'd)

Initial recommendation: Set SCMR_ch_dB (min) = 18.5 dB based on observed delta COM stabilization below 0.3 dB for skew < 1.5 ps

Dark color is Delta COM with < 1.5 ps skew

Control delta com to +/- 0.3 dB relative to SCMR_ch_dB with zero skew

Previous data indicated larger delta COM was associated with > 5 dB COM

Count

SCMR_ch_dB with corresponding zero skew

i.e. Actual SCMR of channel (from ~ 100 Channels)

More data

Allowing for 0.7 dB guard band SCMR_CH_fq would be 12 dB

Summary

- □ Add section for SCMR_{ch} computation in COM as a channel metric
- **□** Recommend:

 $SCMR_{ch}$ (min) =18.5 dB (TD) or $SCMR_{ch_{fq}}$ (min) =12 dB (FD)

- SCMR_{ch} enhances COM by bounding skew-induced CM conversion effects
- □ Future work: Investigate SCMR_{ch} post-equalization

Thank You!

Back up

Channels Sets

- □ akinwale_3dj_01_2311
- □ kocsis_3dj_02_2305
- □ lim_3dj_03n04_2306205
- □ mellitz_3dj_02_elec_230504
- □ weaver_3dj_02_2303
- □ weaver_3dj_02_2305
- □ weaver_3dj_02_2311
- □ weaver_3dj_elec_01_230622a

COM template sheet (see GITLAB)

Values and settings in the spread sheet may not be align with a standard. Please check before using													
data rate, die load, ref impedance					I/O control			Operational			SAVE_CONFIG2MAT	0	
Parameter	Setting	Units	Information	DIAGNOSTICS	1	logical	ERL Pass threshold	11	dB			Receiver testing	•
f_b	106.25	GBd		DISPLAY_WINDOW	1	logical	COM Pass threshold	3	db		RX_CALIBRATION	0	logical
f_min	0.05	GHz		CSV_REPORT	0	logical	DER_0	2.00E-04			Sigma BBN step	5.00E-03	V
Delta_f	0.01	GHz		RESULT_DIR	.\results\CAKR_{date}		T_r	0.00400	ns			ICN parameters	
C_d	[0.4e-4 0.9e-4 1.1e-4;0.4e-4 0.9e-4 1.1e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical	FORCE_TR	1	logical	for legacy but required	T_t	6.000	ps
L_s	[0.13 0.15 0.14; 0.13 0.15 0.14]	nH	[TX RX]	Port Order	[1324]		PMD_type	C2C	for MMSE use C2C only		f_v	0.371	39.42
C_b	[0.3e-4 0.3e-4]	nF	[TX RX]	RUNTAG	KR_pkgA_		EW	1			T_ft	4.250	ps
R_0	50	Ohm		COM_CONTRIBUTION	0	logical	MLSE	1	logical		T_nt	4.250	ps
PKG_NAME	PKG_HIR_CLASSB PKG_HIR_CLASSB		TX RX	DO_NOT_COMPUTE_COM	4 O	logical	ts_anchor	1			f_f	0.524	55.65
z_p select	[34]			TDR	and ERL options		sample_adjustment	[-16 16]			f_n	0.524	55.65
L	4			TDR	1	logical	Local Search	0			f_1	0.010	GHz
M	32			ERL	1	logical	TS_SRCH_MODE	middle	full-sweep, middle	only of local_search=2	f_2	67.000	GHz
filter and Eq				ERL_ONLY	0	ns			Filter: Rx FFE		A_ft	0.600	V
f_r	0.55	*fb		TR_TDR	0.005		ffe_pre_tap_len	6	UI	d_w	A_nt	0.600	V
c(0)	0.54		min	N	7000	logical	ffe_post_tap_len	8	UI	N_fix-d_w			
c(-1)	0	[-0.34:.02:0]	[min:step:max]	TDR_Butterworth	1		ffe_pre_tap1_max	0.7	(normalized)	w_max(d_w) and -w_min(d_w)	Parameter	Setting	
c(-2)	0	[0.14:.02:0]	[min:step:max]	beta_x	0		ffe_post_tap1_max	0.7	(normalized)	w_max(d_w+2) and -w_min(d_w+2)	board_tl_gamma0_a1_a2	[0 5.95e-4 2.6e-05]	1.4 db/in @ 53.125G
c(-3)	0		[min:step:max]	rho_x	0.618		ffe_tapn_max	0.7	(normalized)	all other fixed w_max and w_min	board_tl_tau	5.790E-03	ns/mm
c(-4)	0		[min:step:max]	TDR_W_TXPKG	0	UI	num_ui_RXFF_noise	4096			board_Z_c	92.5	Ohm
c(1)	0	[-0.2:.02:0]	[min:step:max]	N_bx	16	??			Floating Tap Control		z_bp (TX)	9	mm
N_b	1	UI		fixture delay time	[00]		N_bg	2	0 1 2 or 3 groups	N_wg	z_bp (NEXT)	9	mm
b_max(1)	0.85		As/dffe1	Tukey_Window	1		N_bf	4	taps per group	N_wf	z_bp (FEXT)	9	mm
b_max(2N_b)	0		not used	Z_t	42.5		N_f	80	UI span for floating taps	Nmax-d_w-1	z_bp (RX)	9	mm
b_min(1)	0		As/dffe1	Nois	e, jitter	UI	bmaxg	0.05	max FFE value for floating taps	all floating w_max and w_min	C_0	[00]	nF
b_min(2N_b)	0	S	not used	sigma_RJ	0.01	UI	N_tail_start	9	(UI) start of tail taps limit	not supposed to be used but untested	C_1	[00]	nF
g_DC	0	dB	[-20:1:0]	A_DD	0.02	V^2/GHz			added skew		Include PCB	0	logical
f_z	42.50	GHz		eta_0	1.00E-08	dB	Txpskew	0	ps				
f_p1	42.50	GHz	ļ	SNR_TX	33.5		Txnskew	0	ps				
f_p2	106.25	GHz		R_LM	0.95		Rxpskew	0	ps				
g_DC_HP	[-6:1:0]		[min:step:max]				Rxnskew	0	ps				
f_HP_PZ	1.328125	GHz											

.START	PKG_HIR_CLASSB		
Parameter	Setting	Units	Information
package_tl_gamma0_a1_a2	[0.0005 0.00065 0.000293]		
package_tl_tau	0.006141	ns/mm	
package_Z_c	[87.5 87.5 ; 95 95 ; 100 100; 78 78]	Ohm	
R_d	[46.25 46.25]	Ohm	[TX RX]
z_p (TX)	[8 24 30 45; 2 2 2 2; 1.3 1.3 1.3 1.3; 1.5 1.5 1.5 1.5]	mm	[test cases]
z_p (NEXT)	[8 24 29 44; 2 2 2 2; 1.3 1.3 1.3 1.3; 1.5 1.5 1.5 1.5]	mm	[test cases]
z_p (FEXT)	[8 24 30 45 ; 2 2 2 2; 1.3 1.3 1.3 1.3 ; 1.5 1.5 1.5 1.5]	mm	[test cases]
z_p (RX)	[8 24 29 44 ; 2 2 2 2; 1.3 1.3 1.3 1.3 ; 1.5 1.5 1.5 1.5]	mm	[test cases]
C_p	[0.4e-4 0.4e-4]	nF	[TX RX]
A_v	0.385	V	Vf=0.400
A_fe	0.385	V	Vf=0.399
A_ne	0.481	V	Vf=0.400
.END			