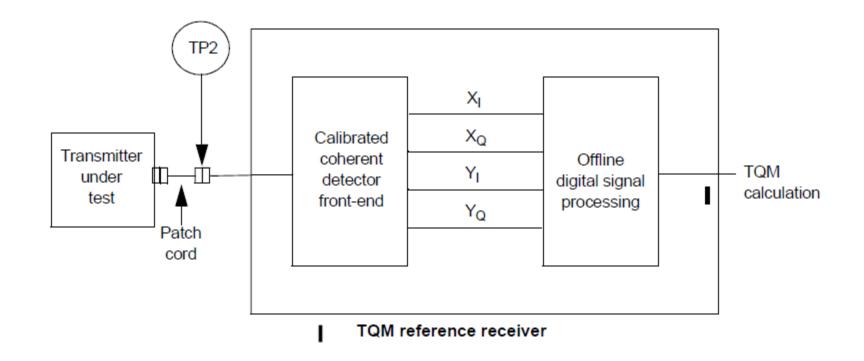
Description of the calculation of the extended transmitter constellation closure (ETCC) for IEEE 802.3dj

IEEE P802.3dj Task Force
Optical / Logic Ad hoc Meeting
17 October 2024

- · Xiang Liu, Huawei
- Eric Maniloff, Ciena
- Qirui Fan, Huawei
- Riyaz Jamal, Ciena
- Tom Issenhuth, Huawei
- Mike Sluyski, Cisco
- Or Vidal, Alphawave Semi

Supporters

- Gary Nicholl, Cisco
- Tao Gui, Huawei


Introduction

- The following presentation addresses the following comments
 - **Comment #259** (SC 185.9) This subclause "Transmitter quality metric (TQM) test setup and calculation" is incomplete and there is an editors note requesting contributions to help complete
 - **Comment #260** (SC 187.9) This subclause "Transmitter quality metric (TQM) test setup and calculation" is incomplete and there is an editors note requesting contributions to help complete.
- This presentation will provide a proposed recommendation to address these comments.
- This presentation builds upon
 - "Leveraging IEEE P802.3cw Specification Approach for IEEE P802.3dj"
 (https://www.ieee802.org/3/dj/public/24 07/dambrosia 3dj 01 2407.pdf)
 - "Reference Receiver Design for Transmitter Constellation Closure (TCC) as a Transmitter Quality Metric (TQM) for coherent transmitters" (https://www.ieee802.org/3/dj/public/24_07/fan_3dj_02a_2407.pdf)
 - SG15-LS125, Liaison Statement "LS/r on B400G work and EVM"
 - SG15-TD214/WP2 "Transmitter Quality Metric (TQM) and Reference Receiver for 800G"
 (https://www.ieee802.org/3/private/liaison_docs/itu/Att-TD214-WP2.pdf, Note Password needed)
 - "Transmit Quality Metric approach for Coherent Specifications"
 (https://www.ieee802.org/3/dj/public/24_05/maniloff_3dj_02_2405.pdf)
 - IEEE P802.3cw D3.0
 - "Transmitter Quality Metric (TQM) and Reference Receiver for 800G Being Considered in ITU-T and IEEE 802.3"
 (https://www.oiforum.com/bin/c5i?mid=4&rid=5&gid=0&k1=54472)
 - "Supporting Material TQM Related Comments (259, 260) for 800GBASE-LR1, 800GBASE-ER1-20, 800GBASE-ER1" (https://www.ieee802.org/3/dj/public/24 09/issenhuth 3dj 01 2409.pdf)

Agreements on ETCC so far (issenhuth_3dj_01_2409)

- 1. Utilize the document structure proposed in dambrosia_3dj_01_2407.pdf.
 - Calculate TQM Calculation for 800GBASE-LR1, 800GBASE-ER1-20, 800GBAS-ER1, as per SG15-LS125 / SG15-TD214/WP2 and maniloff_3dj_02_2405.pdf:
 - a) TQM = Δ RSNRtx, Tx-only RSNR penalty (Renamed as "Extended TCC") in dB (normative with a maximum specification)
 - b) SNRtx, ECtx in dB (informative)
- 2. Proposed Figures & associated text where appropriate
 - a) TQM Test Setup
 - b) Calibrated coherent detector Front End
 - c) Coherent Detector Front-end
 - d) Address IQ offset in coherent detector front-end (reference IEEE P802.3cw D3.0 "IQ offset per polarization")
 - e) Offline Digital Signal processing
- 3. Implement with editorial license
- 4. Continued liaisons with ITU-T on TQM development efforts recommended.

TQM Test Setup (issenhuth_3dj_01_2409)

Offline digital signal processing (DSP) for TQM calculation (issenhuth_3dj_01_2409)

Leverage descriptions for each step on Page 7 of fan_3dj_02a_2407.pdf.

ETCC Calculation – Overall flowchart

Definitions

- The following definitions apply
- EC_{modem} : Eye-closure term, representing signal loss
- S: Signal power
- N_{ase} : ASE (or non-transmitter) noise power (in the signal Nyquist bandwidth)
- N_{modem} : Modem implementation noise power
- NSR_{ase} : ASE (or non-transmitter) noise-to-signal ratio
- NSR_{modem}: Modem implementation noise-to-signal ratio

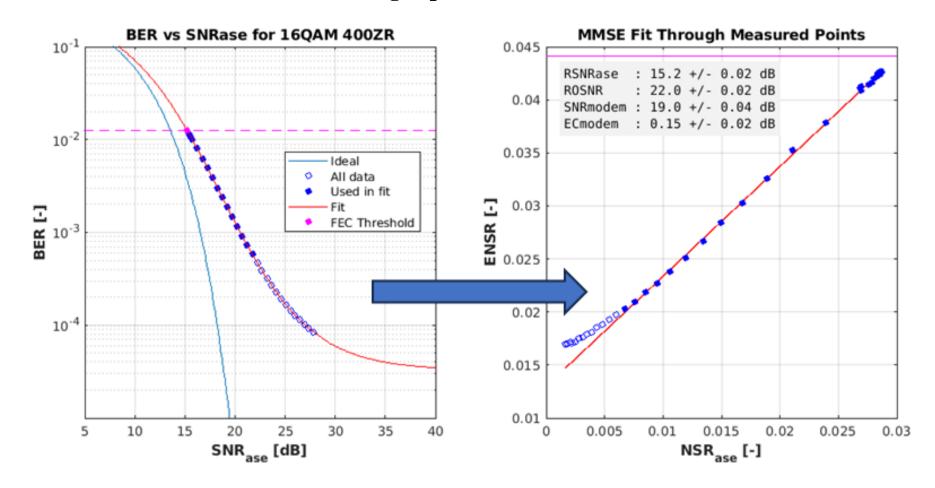
Notes:

- 1) The non-transmitter noise power is introduced digitally by virtual noise loading and includes the intrinsic frontend noise power.
- 2) To add additional equations to explain terms in a November 2024 contribution.

ETCC Calculation - Procedural steps

The ETCC calculation consists of the following eight procedural steps:

- 1. A coherent receiver frontend and a real-time sampling oscilloscope is used to acquire X_I , X_Q , Y_I and Y_Q digital waveforms.
- 2. Find the intrinsic frontend noise power NSRref,rx, and ECref,rx via a frontend calibration process, e.g., by using a known transmitter.
- 3. Estimate the BER₀ of the preconditioned test waveform from a given Tx under test (TUT). Add incremental, controlled amounts of white Gaussian noise (AWGN) with power N_{ase} to the TUT waveform and repeat the processing to estimate BER_i. Repeat N times with small enough noise increments such that BER_i < BER_{ref}.
- 4. Convert the measured BER values (BER_m) to effective noise-to-signal ratios (ENSRs) to obtain the relationship between the measured ENSR and NSR_{ase} .
- 5. Find the two parameters (a and b) that relate ENSR and NSR_{ase} in the linear region between BER_{ref} and $0.1 \cdot \text{BER}_{\text{ref}}$ as $ENSR(BER) = a \cdot NSR_{ase}(BER) + b$ by using a minimum mean square error (MMSE) fit.
- 6. Obtain EC_{modem} and NSR_{modem} by $EC_{modem} = a$ and $NSR_{modem} = b/EC_{modem}$
- 7. Removing the Rx contribution to determine the Tx NSR and EC


$$NSR_{tx} = NSR_{modem} - NSR_{ref,rx}$$
, $EC_{tx} = EC_{Modem}/EC_{ref,rx}$

8. Obtain the transmitter-only required SNR penalty ($\Delta RSNR_{TX}$) for a given BER as $ETCC(BER) = RSNR_{ase}(BER)/RSNR_{Ref}(BER)$

ETCC Calculation – An example

Pictorial representation of data collection and parameter extraction during

ASE noise loading experiment (SG15-TD214/WP2)

ETCC Specifications

Table 185–13 — ETCC spec for 800GBASE-LR1

BER	ETCC
1.1E-2	≤3.4 dB

Table 185–14 — ETCC spec for 800GBASE-ER1

BER	ETCC
2E-2	≤3.4 dB