100GBASE-BR40: Updates to Tables*

K.P. Jackson & James Kannan (Sumitomo Electric)

Tomoo Takahara (Fujitsu)

Hirotaka Nakamura & Takuya Kanai (NTT Innovative Devices)

July 15, 2024
IEEE Plenary Meeting

*Update from June 12, 2024 Ad Hoc Meeting

Supporters

Overview

- This presentation includes updates to table entries from the following:
 - 3dk_jackson_2406_1.pdf
 - 3dk_takahara_2406_1.pdf {Takahara's slide 6 => 0.4dB improved Rx sensitivity value proposed}
- Update also includes additions from off-line comments received to reflect recent editorial notes adopted in *.dj project to enhance readability. {Some accepted comments during P802.3dj "comment resolution" will be incorporated after editors have completed their wording.}

Note: This presentation is covering 100GBASE-BR40. 100GBASE-BR10/BR20 specification values are addressed in separate presentations.

Table 999-4 Signal Detect value definition (page 6244)

Receive conditions	SIGNAL_DETECT value
Average optical power at TP3 ≤ TBD dBm -20 (Note)	FAIL
[(Optical power at TP3 average receive power (min) Table 999–7) AND (compliant 100GBASE-BRx signal input)]	OK
All other conditions	Unspecified

Justification

Value must be lower than Rx avg power at TP3. Some projects used -15 dBm, which are for shorter reaches (higher Rx power) & the desire to include SiPh technology where the squelch was initiated by an MZM modulator.

Note: 3dk_takahara_2404_1a.pdf proposed **-15 dBm**.

Table 999-6—100GBASE-BRx transmit characteristics (Page 6246)

Description	100GBASE- BR10	100GBASE- BR20	100GBASE- BR40	Unit
Signaling rate (range)		53.125 ± 100 ppm		GBd
Modulation format		PAM4		_
100GBASE-BRx-D center wavelengths (range)		1308.1 to 1310.1		nm
100GBASE-BRx-U center wavelengths (range)		1303.6 to 1305.6		nm
Side-mode suppression ratio (SMSR), (min)			<u>30</u>	dB
Average launch power (max)			8.1 <u>%</u> 5	dBm
Average launch power ^a (min)			[2.3] <u>2</u> X7	dBm
Outer Optical Modulation Amplitude (OMA _{outer}) (max)			8.3	dBm
Outer Optical Modulation Amplit (min) ^b : for TDECQ < 1.4 dB for 1.4 dB ≤ TDECQ (\$\frac{3.4}{4B}\$)		3.9+TDECQ	5.3 <u>3/7</u>] 4.3 + TDECQ	dBm dBm
Transmitter and dispersion eye closure for PAM4 (TDECQ) (max)			3.9	dB
TECQ (max)			3.9	dB
TDECQ – TECQ (max)			2.7	dB
Transmitter over/under -shoot (max)			<u>22</u>	%
Transmitter power excursion (max)		[6	.1 <u>TBD</u> 6\(\bar{\chi}\)5	dBm
Average launch power of OFF transmitter (max)			<u>-15</u>	dBm
Extinction ratio (min)			<u>5.0</u>	dB

BR 40 Justification	on				
Align with ITU-T G9608 Am 3, 100G BiDi wavelength	plan (DS)—May 2023 Motion				
Align with ITU-T G9608 Am 3, 100G BiDi wavelength	plan (US)—May 2023 Motion				
Consistent with other IEEE standards					
March 2024, Motion #5.					
Assumes ER=∞. {Suggestions this is unlikely in prac	ctice. Alternate value?}				
March 2024, Motion #5. 8.7 gives 0.5dB of margin re	March 2024, Motion #5. 8.7 gives 0.5dB of margin relative to 4.3+TDECQ=+8.2dBm				
Outer Optical Modulation Amplitude (OMA _{outer}), each lane (min) for max(TECQ, TDECQ) < 1.4 dB for 1.4 dB ≤ max(TECQ, TDECQ) ≤ .TDECQ (max)	5.3 -3.9 + max(TECQ, TDECQ)				
lane (min) for max(TECQ, TDECQ) < 1.4 dB					
lane (min) for max(TECQ, TDECQ) < 1.4 dB for 1.4 dB ≤ max(TECQ, TDECQ) ≤ TDECQ (max)					
lane (min) for max(TECQ, TDECQ) < 1.4 dB for 1.4 dB ≤ max(TECQ, TDECQ) ≤ TDECQ (max) March 2024, Motion #5					
lane (min) for max(TECQ, TDECQ) < 1.4 dB for 1.4 dB ≤ max(TECQ, TDECQ) ≤ TDECQ (max) March 2024, Motion #5 March 2024, Motion #5					
lane (min) for max(TECQ, TDECQ) < 1.4 dB for 1.4 dB ≤ max(TECQ, TDECQ) ≤ TDECQ (max) March 2024, Motion #5 March 2024, Motion #5 March 2024, Motion #5	-3.9 + max(TECQ, TDECQ)				
lane (min) for max(TECQ, TDECQ) < 1.4 dB for 1.4 dB ≤ max(TECQ, TDECQ) ≤ TDECQ (max) March 2024, Motion #5 March 2024, Motion #5 March 2024, Motion #5 Same as P802.3cu, 100Gb/s per wavelength.	-3.9 + max(TECQ, TDECQ) 2 dB less than OMA_max value)				

March 2024, Motion #5

Table 999-6—100GBASE-BRx transmit characteristics (continued)

Description	100GBASE- BR10	100GBASE- BR20	100GBASE- BR40	Unit	BR40 Justification
Transmitter transition time (max)			<u>17</u>	ps	Consistent with P802.3cu, 100Gb/s per wavelength.
RIN _x OMA (max) ^c			<u>-136</u>	dB/Hz	Consistent with P802.3cu, 100Gb/s per wavelength.
Optical return loss tolerance (max)			<u>1</u> <u>X</u> 6 15	dB	15.6 adopted in March Motion #5. Should it be 15 ? Consistent with 50GBASE-ER/BR40?
Transmitter reflectance ^d (max)			<u>-26</u>	dB	Consistent with P802.3cu, 100Gb/s per wavelength & P802.3cp, 50GBASE-BR40

^a Average launch power (min) is not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.

^b The OMA_{outer} (min) requirement holds even if the TDECQ < 1.4 dB. Even though the representation of the OMA_{outer} requirement is different from that in Clause 139, they are consistent.

^c In RIN_xOMA, "x" is the optical return loss tolerance (max) for the PHY under test. ^d Transmitter reflectance is defined looking into the transmitter.

Table 999–7—100GBASE-BRx receive characteristics (page 6248)

Description	100GBASE- BR10	100GBASE- BR20	100GBASE- BR40	Unit
Signaling rate (range)		$53.125 \pm 100 \text{ ppm}$		GBd
Modulation format		PAM4		_
100GBASE-BRx-D center wavelengths (range)		1303.6 to 1305.6		nm
100GBASE-BRx-U center wavelengths (range)		1308.1 to 1310.1		nm
Damage threshold ^a		[-(0.9 <u>TBD</u> -0x5	dBm
Average receive power (max)		[-1	1.9 <u>TBD</u> -1×5	dBm
Average receive power ^b (min)		[-1	15.7 -1 <u>X</u> 3	dBm
Receive power (OMA _{outer}) (max)		[-1	TBD -1X3	dBm
Receiver reflectance (max)			<u>-26</u>	dB
Receiver sensitivity $(OMA_{outer})^c$ Accommodate 3.4 & 3.9 values for TECQ < 1.4 dB for 1.4 dB \leq TECQ \leq 3.4 dB		[-1 -14.6+TECC	3.2 -1 <u>2</u> x8 -14.2 + TECQ	dBm dBm
Stressed receiver sensitivity (OMA _{outer}) ^d (max)		[-	10.7 <u>TBD</u> -10x3	dBm
Conditions of stressed receiver sensitivity test: ^e				
Stressed eye closure for PAM4 (SECQ)			3.9	dB

^a The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.

BR40 Justification					
Align with ITU-T G9608 A	m 3, 100G BiDi wavelength plan (downstream)				
Align with ITU-T G9608 A	m 3, 100G BiDi wavelength plan (upstream)				
+1 dB higher than max av	verage receive power, e.g. P802.3cu/cn/cp standards (1)				
Avg Tx (max) plus 10 dB IL	(min) => +8.1 dBm – 10 dB <mark>= -1.9 dBm</mark>				
Avg Tx (min) plus 18 dB II	_ (max) => 2.3 dBm – 18 dB <mark>= -15.7dBm</mark>				
Tx OMA (max) plus 10 dB	IL (min) => 8.3 dBm – 10 dB <mark>= -1.7dBm</mark>				
Consistent with P802.3c	u, 100Gb/s per wavelength & P802.3cp, 50GBASE-BR40				
March 2024, Motion #5	Receiver sensitivity (OMA _{outer}), each lane (max) for TECQ \leq 1.4 dB for 1.4 dB \leq TECQ \leq SECQ				
-14.2 dBm (intrinsic sens	sitivity) + TECQ (3.9) = <mark>-10.7 dBm</mark>				
SECQ = TECQ					

^b Average receive power (min) is not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.

^c Receiver sensitivity (OMA_{outer}) (max) is optional and is defined for a transmitter with a value of SECQ up to 3 dB for 100GBASE-BR10 and 3.2 dB for 100GBASE-BR20, and 100GBASE-BR40.

^d Measured with conformance test signal at TP3 (see 999.7) for the BER specified in 999.1.1.

e These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Table 999–8—100GBASE-BRx illustrative link power budgets (page 6249)

Parameter	100GBASE- BR10	100GBASE- BR20	100GBASE- BR40	Unit	BR40 Justification
Power budget (for maximum TDECQ)			22.4	dB	IL = 18dB, 3.9dB = TDECQ, 0.5dB => (MPI + DGD)
Operating distance		<u>20</u>	<u>40</u>	km	
Channel insertion loss		<u>10ª</u>	18 ^a	dB	
Maximum discrete reflectance Footnote d			<u>-35</u>	dB	Propose P802.3cp has -26dB (?) whereas P802.3cn cites table.* Propose P802.3cn approach
Allocation for penalties ^b (for maximum TDECQ)			4.4	dB	Propose P802.3cu and *.dj approach => -35dB with footnote c citing the Table below and footnote d stating the row with 6 reflectances above -55dB.

^a The channel insertion loss is calculated using the maximum distance specified in Table 999–5 for 100GBASE-BR10₂–100GBASE-BR20 and 100GBASE-BR40 and fiber attenuation of 0.4 dB/km plus an allocation for connection and splice loss given in 999.10.2.1.

Add footnote to illustrative link power budgets Table

See 999.10.2.2 for	details and specifications as a function of the number of discrete reflectances
within the channel.	

^d Maximum value for each discrete reflectance with 6 discrete reflectances above –55 dB within the channe

Table 999-xx -Maximum value of each discrete reflectance						
Number of discrete		Maximum value for each discrete reflectance				
reflectances above -55 dB	1	00GBASE-BR10	100GBASE-BR20	100GBASE-BR40		
1			<u>−19 dB</u>			
2			<u>-27 dB</u>			
4			<u>−32 dB</u>			
6		(see otner p	(see other presentations)			
8			<u>−37 dB</u>			
10						

Recommend using Table 160-13 from P802.3cp and 50GBASE-ER (P802.3cn)

^b Link penalties are used for link budget calculations. They are not requirements and are not meant to be tested.

Table 999-11—Transmitter compliance channel specifications (page 6252)

DMD tone	Dispersion	Insertion	Optical	Max	
PMD type	Minimum	Minimum Maximum loss ^b return loss ^c			mean DGD
100GBASE-BR10	$0.23 \times \lambda \times [1 - (1324 / \lambda)^4]$	$0.23 \times \lambda \times [1 - (1300 / \lambda)^4]$	Minimum	15.6	5
100GBASE-BR20	$0.46 \times \lambda \times [1 - (1324 / \lambda)^4]$	$0.46 \times \lambda \times [1 - (1300 / \lambda)^4]$	Minimum	TBD	TBD
100GBASE-BR40	$0.92 \times \lambda \times [1 - (1324 / \lambda)^4]$	$0.92 \times \lambda \times [1 - (1300 / \lambda)^4]$	Minimum	15 dB D (0.8 ps D

^a The dispersion is measured for the wavelength of the device under test (λ in nm). The coefficient assumes 10 km for 100GBASE-BR10, 20 km for 100GBASE-BR20, and 40 km for 100GBASE-BR40. The link may be as short as 2 m, and the minimum or maximum dispersion may be 0.

Update with latest from Statistical Dispersion in P802.3dj.
Optical Return Loss = Tx spec table.
Max mean DGD = same as other specifications (this is Tx compliance spec, not
fiber cable plant spec)

BR40 Justification

^b There is no intent to stress the sensitivity of the O/E converter associated with the oscilloscope.

^c The optical return loss is applied at TP2.

Table 999-12—Fiber optic cabling (channel) characteristics (page 6259)

		-			_
Description	100GBASE- BR10	100GBASE- BR20	100GBASE- BR40	Unit	
Operating distance (max)	10	20	40	km	
Channel insertion loss ^{a, b} (max)	6.3	10	18	dB	
Channel insertion loss (min)	0	<u>0</u>	10	dB	
Positive dispersion ^b (max)	9.3 9.2		<u>37</u>	ps/nm	ŧ
Negative dispersion ^b (min)	- 19.4 -19.2		<u>-77</u>	ps/nm	f
DGD_max ^c	5		<u>TBD</u> 4.9	ps	P
Optical return loss (min)	22		¾ 19	dB	Р

^a These channel insertion loss values include cable, connectors, and splices.

^c Differential Group Delay (DGD) is the time difference at reception between the fractions of a pulse that were transmitted in the two principal states of polarization of an optical signal. DGD_max is the maximum differential group delay that the system is required to tolerate.

BR40 Justification		
Update per progress in P802.3dj (?)		
Update per progress in P802.3dj (?)		
P802.3cp, BR40 has 10.3 psec. Leads to high penalty. Too conservative?		
P802.3cn, 50GBASE-ER has 19 dB. P802.3cp, 50G BiDi has 21 dB. Propose using the same methodology as other standardsassuming a table for discrete reflections is used. The first-row entry is for a <u>single connection</u> with the indicated RL => 19 dB (see slide 8 of this presentation)		

^b Over the wavelength range 1260 nm to 1340 nm for 100GBASE BR10 and 1281 nm to 1322 nm for 100GBASE BR20 and 100GBASE BR40 1303.6 nm to 1310.1 nm.

Add Table and update Section 999.10.1 Optical fiber cable

999.10.1 Optical fiber cable

The optical fiber cable requirements are satisfied by cables containing ITU-T G.652.B (dispersion unshifted), type G.652.D (low water peak, dispersion unshifted), or type G.657.A1, or type G.657.A2 (bend insensitive) fibers, or the requirements in Table 182–11 where they differ.

Table 139–13—Optical fiber and cable characteristics

{from P802.3cn, 50GBASE-ER}

Description	Value	Unit
Nominal fiber specification wavelength	1310	nm
Cabled optical fiber attenuation (max)	0.43 ^a or 0.5 ^b	dB/km
Zero dispersion wavelength (λ_0)	$1300 \le \lambda_0 \le 1324$	nm
Dispersion slope (max) (S ₀)	-0.093 0.092	ps/nm ² km

^a The 0.43 dB/km at 1304.5 nm attenuation for optical fiber cables is derived from Appendix I of ITU-T G.695.

b The 0.5 dB/km attenuation is provided for Outside Plant cable as defined in ANSI/TIA 568-C.3. Using 0.5 dB/km may not support operation 10 km for 100GBASE-BR10, 20km for 100GBASE-BR20 or 40km for 100GBASE-BR40.

Thanks!