## Coaxial Unbalanced Media for Automotive Applications

Contribution to IEEE 802.3dm, May 2024

David Cliber, Bert Bergner TE Connectivity

### This Contribution Gives:

- Introduction of coaxial unbalanced cables types that are available and frequently used in automotive applications
- Introduction of commonly used automotive grade connectors for these cables
- Discussion about possible link segment topologies
- The contribution concludes with proposals of preferred coaxial cable and connector types and of reference topologies for the further discussion in the 802.3dm TF.

## How to Develop a Link Segment IL and RL Proposal



This contribution discusses cable models, connector models and topology considerations for unbalanced coaxial link segments.

## Specifications for Automotive Unbalanced Coaxial Cabling Components

- Cable:
  - ISO 19642-11: Road Vehicles Automotive Cables Part 11: Dimensions and requirements for coaxial RF cables with a specified analogue bandwidth up to 6 GHz (20 GHz)
- Connectors:
  - USCAR17: Performance Specification for Automotive RF Connector Systems
    → SMB-style electrical terminals, aka FAKRA, frequencies from DC to 6 GHz
  - USCAR49: Performance Specifications for Miniature Automotive Coaxial Connectors

→ Mini Coax connector systems for coaxial style cables with outer diameter of <u>max. 3.6 mm</u>, frequencies from DC to 9 GHz

# Commonly Used Unbalanced Cable Types in Automotive Data Applications (ISO 19642-11)

- Characteristic impedance (50  $\pm$  3)  $\Omega$
- Outer cable diameter ≤ 3.6 mm to allow miniaturized coaxial connectors
- Center wire construction with 7 strands and CCS possible for flexibility and increased tensile strength
- Screen construction with braid and foil for automotive grade screening attenuation
- Commonly used types, available from many vendors, examples:
  - CX174d/e: 7x CCS core diameter 0.5 mm, braid + foil, outer diameter 2.9 mm, impedance (50  $\pm$  3)  $\Omega$
  - CX31a: 7x Cu core diameter 0.9 mm, braid + foil, outer diameter 3.4 mm, impedance (50  $\pm$  3)  $\Omega$

## Unbalanced Coaxial Cable Types for Automotive Applications in ISO 19642-11

| Cable Types<br>(ISO 19642-11)                                 | CX174?                                                                                                                         | CX58?                                                        | CX31a            | CX44?                                                 | CX501?                                                                             | CX502?                                                                                                           | CX751?                                                    |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Center Wire<br>(wire / strand<br>diameters are max<br>values) | CX174a: 7x CCS, d=<br>0.5 mm<br>CX174b: 1x CCS, d=<br>0.47mm<br>CX174c: 1x Cu, d=<br>0.57 mm<br>CX174d/e; 7x CCS, d=<br>0.5 mm | CX58a: 1x Cu, d= 1.05<br>mm<br>CX58b/c: 7x Cu, d=<br>1.12 mm | 7x Cu, d= 0.9 mm | 1x Cu, d= 0.87 mm                                     | CX501a/b: 7x Cu, d=<br>0.57 mm<br>CX501c: 7x Cu, d=0.63<br>mm                      | CX502a: 7x Cu, d=<br>1.01 mm<br>CX502b: 1x Cu, d=<br>1.07 mm<br>CX502c: 1x Cu, d=<br>0.97<br>CX502d: 7x Cu 0.975 | 1x CCS, d= 0.27 mm                                        |
| Screen                                                        | CX174a: braid, no foil<br>CX174b/c/d/e: braid<br>& Al foil                                                                     | Braid & Al foil                                              | Braid & Al foil  | CX44a/c: braid & Al<br>foil<br>CX44b, braid & Cu foil | CX501a: braid & Al<br>foil<br>CX501b: braid, no foil<br>CX501c: braid & Cu<br>foil | CX502a: braid & Cu<br>foil<br>CX502b/c/d: braid &<br>Al or Cu foil                                               | CX751a/c: braid, no<br>foil<br>CX751b: braid & Al<br>foil |
| Outer Diameter (max)                                          | 2.9 mm                                                                                                                         | 5.0 mm                                                       | 3.4 mm           | 3.6 mm                                                | 3.2 mm                                                                             | CX502a/b: 4 mm<br>CX502c/d: 3.6 mm                                                                               | CX751a/b: 3.2 mm<br>CX751c: 3.6 mm                        |
| Characteristic<br>impedance                                   | (50 ± 3) Ω                                                                                                                     | (50 ± 3) Ω                                                   | (50 ± 3) Ω       | CX44a/b: (50 ± 2) Ω<br>CX44c: (50 ± 3) Ω              | (50 ± 3) Ω                                                                         | (50 ± 3) Ω                                                                                                       | (75 ± 3) Ω                                                |
| Max. frequency for IL<br>(acc. to ISO)                        | 6 GHz                                                                                                                          | 6 GHz                                                        | 6 GHz            | CX44a/b: 20 GHz<br>CX44c: 9GHz                        | 6 GHz                                                                              | 6 GHz                                                                                                            | 6 GHz                                                     |

CCS ... copper cladded steel 5/9/2024

highlighted types on focus in this contribution

## Commonly Used Unbalanced Cable Types in Automotive Data Applications - IL



0524\_802.3dm\_cliber\_01

## Commonly Used Automotive Connectors for Unbalanced Coaxial Cable Types

- USCAR 17 Style (FAKRA), based on SMB ferrule:
  - Random examples



#### Acceptance criteria USCAR 17

| Frequency (GHz) | RL (dB) |
|-----------------|---------|
| ≤ 2             | ≥ 15.56 |
| 2 < f ≤ 3       | ≥ 13.98 |
| $3 \le f \le 6$ | ≥ 12.74 |

Mated connector pair acc. to procedure in USCAR 17

- Widely used, many vendors, many types
- Well established and standardized in automotive specs.

## Commonly Used Automotive Connectors for Unbalanced Coaxial Cable Types

- USCAR 49 Style Mini Coax:
  - For cables with outer diameters  $\leq$  3.6 mm
  - Random examples



- Widely used, many vendors, many types
- Well established and standardized in automotive specs.



### Topology – Objective and Previous Work

• IEEE 802.3dm objective:

"Define performance characteristics of link segments suitable for use with automotive balanced-pair cabling and automotive unbalanced coaxial cabling supporting use of up to **4 inline connectors and up to at least 15m reach** on at least one type of automotive cabling."

- Previous topology discussion in IEEE 802.3 projects with focus to automotive applications:
  - <u>https://www.ieee802.org/3/B10GAUTO/public/may19/wienckowski 3+10G 01a 05</u> <u>19.pdf</u>: "OEM CONSOLIDATED GREATER THAN 10GB/S ETHERNET TOPOLOGIES"
  - <u>https://www.ieee802.org/3/cy/public/adhoc/wienckowski\_3cy\_01\_01\_12\_21.pdf</u>: WORST CASE CABLE TEMP
  - Note: These contribution were part of the 802.3cy project. However, the discussed link segment topologies for camera and display applications are considered as representative for automotive use cases.

### Topology – Previous Work (Recap)

• Camera and display uses cases in wienckowski\_3+10G\_01a\_0519.pdf:



Note: 802.3cy had the objective to support link segments up to at least 11 m with up to at least 2 inlineconnectors.

## Topology – Proposal for Reference Link Segment

- Consensus for reference link segment needed to analyze link segment requirements for 802.3dm
- Proposal for reference link segment based on previous work, "extrapolated" to 802.3dm objectives (up to at least 15 m and up do at least 4 inline-connectors):



- This reference link segment considers:
  - Previous work in wienckowski\_3+10G\_01a\_0519.pdf → segments 0.3 m and 1 m ("worst case" assumption for return loss)
  - Extrapolation to 15m and 4x inline-connectors by equally distributes segments lengths for segments 3, 4 and 5 up to the total length of 15 m

### Topology – Mixed Cable Grades

- Automotive applications require mixing of cable grades in the same link segment
- Example:



- Automotive applications use different cable grades in the same link!
- Proposal: Consider up to 3 m flexible cable (higher loss) for link segment insertion loss definition.

## Proposals for 802.3dm Link Segment Definition

- Use CX174d/e (flexible) and CX31a (low loss) cable grades for calculation of link segment insertion loss requirements
- Consider USCAR 17 and USCAR 49 connectors for calculation of return loss requirements (link segment and MDI)
- Use link segment topology 0.3--1--4.57--4.57--4.57 as reference for link segment return loss analysis
- Use 3 m flexible cable (CX174d/e) and 12 m low loss (CX31a) cable for link segment insertion loss analysis