

Evaluation of 802.3ch for Automotive Sensor PHY

KY-ANH TRAN 05/16/24

Supporters

- Thomas Hogenmueller (Bosch)
- Akin Sami (Cariad)

Agenda

- Motivation of the contribution
- Key evaluation factors
 - Power consumption of 802.3ch PHY with EEE for asymmetric link
 - Coax performance
 - Check 802.3ch PHY against ISAAC objectives
- Conclusion

Motivation

- Provide silicon test results of 802.3ch PHY as a reference data point for 802.3dm task group
- Evaluate 802.3ch PHY against 802.3dm objectives
- Identify potential areas of improvement

Power Consumption Evaluation

10Gbps CSI-2 to 802.3ch Bridge Chip Power

Parameter	Value	Comment
Bridge chip Power	< 0.3W	Whole chip, all supplies/circuits. TT, room temp
PHY Power	< 0.2W	PHY port + supporting circuitry. Implemented with EEE as specified by 802.3ch
% time in full duplex data mode	< 0.5%	Detailed value sensitive to packetization/tunneling scheme. IEEE1722 is used for this data point. However, in general it is <i>a very small ratio</i>

Full duplex time for uplink

- RX power is low for typical camera serializer applications
 - Only small intervals to transmit i2C, Frame sync uplink
 - Can get 100Mbps equivalent uplink with negligible power impact

5Gbps CSI-2 to 802.3ch Bridge Chip Power

Parameter	Value	Comment
Bridge chip Power	< 0.2W	Whole chip, all supplies/circuits. TT, room temp
PHY Power	< 0.15W	PHY port + supporting circuitry. Implemented with EEE as specified by 802.3ch
% time in full duplex data mode	< 0.5%	Detailed value sensitive to packetization/tunneling scheme. IEEE1722 is used for this data point. However, in general it is <i>a very small ratio</i>

Is < 0.3W @ 10Gbps/15m Low Enough?

Chip	Payload downstream (Gbps)	Line rate (Gbps)	Reach (m)	Power * (W)	Source
CSI-802.3ch Bridge	10	11.25	15	< 0.3	
Proprietary Serializer A3	NA	12	NA	NA	https://www.analog.com/en/resources/analog- dialogue/articles/gigabit-multimedia-serial-link- gmsl-cameras.html
Proprietary Serializer A2	5.2	6	NA	0.18	https://www.analog.com/media/en/technical- documentation/data-sheets/max96717.pdf
CSI-802.3ch Bridge	5	5.625	15	< 0.2	
Proprietary Serializer B3	NA	4.16	NA	0.29	https://www.ti.com/product/DS90UB635-Q1

• OEMs, Tier1s and Tier2s have proven design to accommodate 0.3W serializer power envelope.

* Typical operating condition. Unclear if power on proprietary serializer datasheet quoted at max reach. Process node may vary between different implementations.

Silicon Measured 802.3ch Link Up Transient

- Standard allocates 97ms
- Silicon measurement shows 802.3ch can link up much (>10X) faster

Camera Module Power Profile with 802.3ch Sensor PHY

Typical Camera module power profile vs. time

Coaxial Cable Support

Coax / PoC Support

- "The IEEE 802.3CH specification does not address but also does not prohibit the use of coaxial cables." [Source: https://www.ieee802.org/3/ad hoc/ngrates/ public/23 05/20230516a DataCollection Po tentialCFI.pdf]
- We would like to evaluate its suitability of 802.3ch PHY on coax medium
- Using coax allows PoC, simplifies power delivery
- Smaller PoC inductors can be used compared to those required by existing FDD SerDes

Measured 802.3ch PHY STP vs. Coax Link Margin

- Preliminary measurement shows 802.3ch PHY can meet link margin requirements on both STP and Coax at 15m reach
 - DP-SNR = Decision Point SNR
 - 17-18dB DP-SNR => meet post-FEC BER requirement of < 1e-12</p>

Cable length	DP-SNR, Coax	DP-SNR, STP
8m	23.5dB	24dB
15m	21.3dB	21.5dB

Measured slicer input

• We measure the PAM 4 slicer input in silicon for Coax and STP channel

Conclusion

802.3ch PHY can perform well with coax cabling = 15m

Check Against 802.3dm Objectives

#	Objective	802.3ch	Comment
0	Support the IEEE 802.3/Ethernet frame format at the MAC client service interface	\odot	
1	Support the minimum and maximum frame size of the current IEEE 802.3 standard	\odot	
2	Support operation in automotive environments (e.g., EMC, temperature)	\odot	
3	Do not preclude meeting FCC and CISPR EMC requirements	\odot	
4	Do not preclude power delivery over balanced and unbalanced link segments	?	Shown to be feasible in silicon with native ch PHY
5	Define optional startup procedure which enables the time from power_on=FALSE to a state capable of transmitting and receiving valid data to be less than 100 ms	\odot	

Check Against 802.3dm Objectives continued

#	Objective	802.3ch	Comment
6	Define performance characteristics of link segments suitable for use with automotive balanced-pair cabling and automotive unbalanced coaxial cabling supporting use of up to 4 inline connectors and up to at least 15m reach on at least one type of automotive cabling	?	Shown to be feasible in silicon with native ch PHY
7	Define an electrical PHY to support up to 10 Gbps data rate point-to-point operation in one direction and up to 100 Mbps point-to-point operation in the other direction over the defined balanced-pair link segment.		
8	Define an electrical PHY to support up to 10 Gbps data rate point-to-point operation in one direction and up to 100 Mbps point-to-point operation in the other direction over the defined unbalanced coaxial link segment.	?	Shown to be feasible in silicon with native ch PHY
9	Define an electrical PHY to support up to 5 Gbps data rate point-to-point operation in one direction and up to 100 Mbps point-to-point operation in the other direction over the defined balanced-pair link segment.		

Check Against 802.3dm Objectives continued

#	Objective	802.3ch	Comment
10	Define an electrical PHY to support up to 2.5 Gbps data rate point-to-point operation in one direction and up to 100 Mbps point-to-point operation in the other direction over the defined balanced-pair link segment.		
11	Define an electrical PHY to support up to 2.5 Gbps data rate point-to-point operation in one direction and up to 100 Mbps point-to-point operation in the other direction over the defined unbalanced coaxial link segment.	?	Shown to be feasible in silicon with native ch PHY

Conclusion

- Existing CSI to 802.3ch Bridge chip with EEE mode as sensor PHY can achieve < 0.2W PHY power and < 0.3W serializer power based on silicon measurement</p>
- Native 802.3ch PHY can support unbalanced coaxial cable operation
- This presentation provides a baseline to evaluate alternate solutions

References

- https://www.ieee802.org/3/B10GAUTO/public/nov19/zimmerman_3B10G_01_1119.pdf
- https://www.ieee802.org/3/ch/public/jul17/zimmerman_3ch_02a_0717.pdf
- <u>https://standards.ieee.org/wp-content/uploads/import/documents/other/eipatd-presentations/2019/D1-08_BAR-</u>
 <u>NIV Power efficient Ethernet PHY features for camera and display.pdf</u>
- https://standards.ieee.org/wp-content/uploads/2022/12/D2_09_Ami-Bar-Niv-Thomas-Hogenmuller -Enhancing-Automotive-Ethernet-Efficiency-for-Emerging-Asymmetrical-Use-Cases.pdf
- https://www.ieee802.org/3/ch/public/mar19/Lo 3ch 03a 0319.pdf
- https://standards.ieee.org/wp-content/uploads/2023/10/14-realizing-asymmetric-datarates.pdf

Additional references for Asymmetry

- 802.3ch: Large number of contributions from many PHY designers
 - https://www.ieee802.org/3/ch/public/sep17/dalmia 3ch 01 0917.pdf
 - https://www.ieee802.org/3/ch/public/jul18/souvignier_3ch_01a_0718.pdf
 - https://www.ieee802.org/3/ch/public/sep18/souvignier_3ch_01_0918.pdf
 - https://www.ieee802.org/3/ch/public/nov18/souvignier_3ch_02_1118.pdf
 - https://www.ieee802.org/3/ch/public/adhoc/Lo 3ch 01 1218.pdf
 - https://www.ieee802.org/3/ch/public/adhoc/Lo_3ch_03_1218.pdf
 - https://www.ieee802.org/3/ch/public/adhoc/sedarat_3chah_01_013019.pdf
 - https://www.ieee802.org/3/ch/public/adhoc/Lo_3ch_01_adhoc_0119.pdf
 - https://www.ieee802.org/3/ch/public/adhoc/Lo_3ch_01_adhoc_0219.pdf
 - https://www.ieee802.org/3/ch/public/jan19/Lo_3ch_01_0119.pdf
 - https://www.ieee802.org/3/ch/public/mar19/Lo_3ch_03a_0319.pdf
 - https://www.ieee802.org/3/ch/public/mar19/sedarat_3ch_01a_0319.pdf

