

ACT and TDD comparison Contribution to 802.3dm Task Force

July 30, 2025

TJ Houck (Marvell) Jay Cordaro (ADI)

Introduction

- This is a continuation of May New Orleans Interim comparison done by TJ Houck and Jay Cordaro.
- **Objective #1**: Summarize presentations that have been given thus far and major areas of difference between ACT and TDD that impact relative cost and future system development
- Objective #2: Group past presentations into appropriate section and provide information on each topic of importance

Previous Comparison Presentation: May Interim IEEE 802.3dm PHY evolution Comparative Analysis for GMSLE, ACT, and TDD approaches

March Interim – Jay Cordaro - GMSLE FDD PHY Simulation Results and PHY Complexity

Comparison Table

	ACT – Proposal	TDD – Proposal	
Crystal-less	Proven working solution for ACT SERDES also has a proven working solution in mass production <u>GMSLE Baseline Proposal for IEEE 802.3dm</u> Lo_3dm_01_050125.pdf Razavi_3dm_01a_May_01_2025.pdf	Theorized – several subjects left open still <u>Ng_3dm_01_05122025.pdf</u>	
EMC – Radar Pulse	Proven ACT silicon – Passed 600V/m – <u>UNSHEILDED</u> Equal or <u>Surpasses</u> SERDES and Ethernet on the market today jonsson_3dm_01_07_15_24.pdf GMSLE FDD PHY Simulation Results and PHY Complexity	Did not test Radar pulse at 300V/m or 600V/m	
Power consumption	Best Power performance due to low complexity <u>Comparative Analysis for GMSLE/ACT, and TDD</u> <u>sedarat_3dm_02_202503.pdf</u> - contains 8 presentation links	Equal w/ power control or Higher w/ no power control >3x the power of ACT w/ no power control Requires power reduction circuitry that will cause die size increase to achieve near equal power to ACT Chini_3dm_02b_0325.pdf	
Size and complexity	Smallest die size shown in several presentations due to low complexity <u>Exploring Receiver Tradeoffs: 100Mbps and 3Gbps Implementations</u> <u>jonsson_3dm_02_06_26_25.pdf</u>	Larger die size due to higher speed rates and TDD complexity Chini 3dm_02b_0325.pdf	
Longer Cable Length	Capable of 20-30meters with standard coax Propagation Delay = 160nsecs – limited by insertion loss Link Propagation Delay in IEEE 802.3dm: System Implications and Trade offs	Capable of No more than 15meters – collisions possible jonsson_3dm_01_06_26_25.pdf Propagation Delay proposed = 84nsec Further Analysis of Link Segment Delay Considerations	
Future for 25Gbps	Less complexity solution for high-speed, full duplex payload delivery	Most complex path to 25Gbps – requires higher PHY rates, strict timing, and burst synchronization	
Interoperability	PHY vendors can leverage 802.3ch PHYs	TDD – ASA with changes and large compatibility issues IEEE 802.3dm PHY evolution Comparative Analysis for GMSLE, ACT, and TDD approaches	
Image and Switch Integration	Lowest complexity	More complex	
PoC complexity	1 inductor <u>GMSLE FDD PHY Simulation Results and PHY Complexity</u> <u>From Concept to Circuit: Designing Effective PoC Filters</u>	2 inductors – no 1 inductor solutions with 15m w/ 4inlines <u>Chini Tazebay 3dm 01a 0924.pdf</u> jingcong dm 2024Sep v2.pdf jonsson 3dm 02 06 26 25.pdf	

Crystal-less Summary

Crystal-less operation was passed as a motion to be an 802.3dm objective

Processor

- Crystal-less operation is achievable and proven in ACT
- TDD's time-duplex nature makes this significantly more challenging, requiring higher timing margin or oscillator solutions.

802.3dm

PHY

Sensor

Houck Ragnar Fuller 3dm 01 0917.pdf

802.3dm

Switch

- Going from 100KHz to 6GHz requires a multiplier of 60,000
- Typically requires a local crystal or high stability XO to maintain link fidelity between TX/RX cycles https://ieee802.org/3/dm/public/0924/Houck_Ragnar_Fuller_3dm_01_0917.pdf

<u>ACT Advantages</u>

- x1,250 easier clock recovery than TDD going from 117MHz to 5.625GHz is only a multiplier of 48
- Concurrent transmission allows for continuous timing updates (no guard bands needed for training)
- Receiver clock can be continuously steered

EMC – Radar Pulse

Radar Pulse test is one of the most difficult Radiated Immunity tests to pass in automotive.

Frequency Range (MHz)	Level 1 (V/m)	Level 2 (V/m)	Modulation	
400 - 800	50	100	CW, AM 80% Pulsed PRR= 18 Hz, PD= 28 msec ⁽¹⁾	
800 - 2000	50	70	CW, Pulsed PRR= 217 Hz, PD=0.57 msec	
1200 - 1400	n/a	300 600 ⁽²⁾	Pulsed PRR= 300 Hz, PD = 3 usec, (3)	
2700 - 3100	n/a	300 600 ⁽²⁾	with only 50 pulses output every 1 sec. (1.2)	
e Modulation limited to 400	– 470 MHz			
V/m requirements are only im including frontal crash se	applicable to s ensors. Contact F	elected compone MC EMC departs	ents associated with supplemental restraints ment for specific applicability	
 Pulse duration (PD) shall be extended to 6 usec when testing using the reverberation (mode tuned) method. See 11.4.2.2 for additional detail. 				
	Frequency Range (MHz) 400 - 800 800 - 2000 1200 - 1400 2700 - 3100 et Modulation limited to 4000 V/m requirements are only mincluding frontal crash se duration (PD) shall be et 11.4.2.2 for additional detail	Frequency Range (MHz) Level 1 400 - 800 50 800 - 2000 50 1200 - 1400 n/a 2700 - 3100 n/a c Modulation limited to 400 - 470 MHz V/m requirements are only applicable to so including front and sensors. Contact FI e duration (PD) shall be extended to 6 use 11.42.2 for additional detail.	Frequency Range (NHz) Level 1 (V/m) Level 2 (V/m) 400 - 800 50 100 800 - 2000 50 70 1200 - 1400 n/a $\frac{300}{600^{-23}}$ 2700 - 3100 n/a $\frac{300}{600^{-23}}$ et Modulation limited to 400 - 470 MHz V/m requirements are only applicable to selected compone minduling frontare rands sensors. Constact FMC EMC departs ed unraiso (PD) shall be estended to 6 uses: when testing us 14.3.2 for additional detail.	

https://www.elect-spec.com/download/EMC_CS_2009rev1.pdf

<u>TDD Limitations</u>

- TDD systems must precisely align their TX/RX windows every 8.667us A 600V/m radar pulse overlapping this turnaround window can disrupt timing calibration and analog front end biasing
- TDD is vulnerable during RX/TX transitions especially if a high-energy radar pulse hits
 - Just before or during RX startup
 - While RX bias is not yet stabilized
 - Weaker FEC than ACT

<u>ACT Advantages</u>

- Immediate absorption and correction of noise
- No dropouts or retraining
- Far more robust EMC behavior under 600V/m radar pulses

EMC – Radar Pulse

- Pulses are 1-3us wide ~10-30% of the TDD slot
 - If a pulse overlaps the mode switching it can
 - Disrupt bias stabilization
 - Break RX slicer threshold lock
 - Invalidate adaptive equalizer state
 - Cause TX/RX misalignment

	ACT	TDD	
RX stability during pulse	Continuous and adapts	Interrupted	
Impact of Pulse on TX/RX	No switching between TX/RX	High Risk	
EMC recovery	Real-time resilience	Requires resync	
Suitability for 600V/m	Robust	Weak	

Low Power Summary

- TDD claims lower average power due to TX/RX low duty cycle
- However practical PHY constraints (CDR, AGC, PLL, state retention) require always-on analog paths, limiting power savings
- ACT achieves similar or **better** power with less design risk complexity and overhead

	ACT	TDD	
Power Savings Mechanisms	Not needed - Continuous transmission	Analog bias throttling, retention logic, digital clock gating	
Analog Power Gating	Not required – Continuous	Not fully power down – CDR, PLLs. AGC, and DFE must remain biased	
Retention Overhead	None – does NOT need to shutdown	+10-15% Increase digital power for FSM + Analog state retention	
Die Area Impact	Baseline (1.00x)	+25-35% Increase due to retention, isolated cells, FSMs, power gating	
Relative Design Complexity	Low – No special power saving modes needed	High – due to above complexity for power savings	

802.3dm Sensor-side complexity: ACT vs TDD

	ACT	TDD
Camera Downstream highspeed TX Complexity	Least complex	More complex TDD
Camera Upstream lowspeed RX Complexity	Less Complex	Much more complex TDD BLW Comp DFE EQ LMS FEC FIFO
Camera Power Consumption	 Lowest 	In same geometry, higher power consumptionClock gating can lower power consumption but raises complexity
Camera LS RX FEC	n=50, k=46, m=6, t=2	n=130, k=122, m=8, t=4 n=130, k=124, m=8, t=3 no longer same code US/DS
Camera LS RX FEC decoder area complexity^	Baseline • 1.0x Least Complex^	 215%-540% additional complexity, depending on implementation and either fixed n and fixed r=n-k or reuse of (Chien) DS IP at US Chien Latency processing > 2x, but faster fill rate ~ draw Low latency combinatorial decoder possible but still much more complex than n=50, k=46, m=6 t=2 combinatorial decoder
Upstream burst protection	51.2ns	 10.6ns 8ns much less than ACT
Crystal-less Camera Serializer	Simple.	Possible, but more complex
Upstream latency (including FEC)	~8µs	~9.6µs (est., based on TDD presentation)
Summary	Lowest Complexity for 3MP 2.5Gbps and 8Mp 5Gbps cameras	 Highest complexity. Raises cost, power for 3MP 2.5Gbps and 8MP 5Gbps cameras. XTAL-less more complex. Lower burst protection margin

IEEE 802.3dm Task Force, March 2025 ^ equivalent area of num 2 input NAND gates + 2-port memory (sep read/write ptrs but same clock) in same geometry

8

Upstream Receiver Comparison TDD vs. ACT

Downstream BLW High-speed xmitter ACTIVE LARGE LPF 2xOSR HPF GAIN 🔫 CTLE OR То 117.1875 Mbps out -PASSIVE DME RX 2nd order 2nd order MDI FIFO 3Gbps HYBRID CDR DFE CDR LMS

The two PHYs largely have similar functional blocks

TDD Upstream Receiver

- ESD protection, MAC interface, PHY Control State Machine, GPIO, temp monitors, etc.
- The difference is in the duplexing, partial frequency overlap duplexing or time division duplexing of the channel
 - PLL, PMA RX (major DFE, LMS, FIFO size, power gating, as well as padring, FEC, CDR/PLL, baseline wander correction, clock tree)
- Let's evaluate the complexity of sensor PHY (high speed transmit, low speed receive)
 - Analog-based (no ADC) implementation for both
 - Consider the relative complexity of the PMA RX and associated blocks
 - Consider the relative complexity of the entire die
 - · For entire die analysis, consider everything (ESD, padring, test, calibration)

Evaluate both RX and total in same geometries

ACT Upstream Receiver

Sensor-side PHY Receive Portion and Overall Relative Area

- More detailed analysis than previous at 55nm and 28nm of all relevant blocks and entire die including padring
 40nm and 22nm extrapolated from 55nm and 28nm nodes, respectively
- 28nm and 22nm allow a more CMOS approach which helps reduce die area versus CML in larger nodes.
 - Helps reduce the complexity of BOTH PHYs, but comparatively helps TDD more since its receiver is much more complex.
- Sensor CMOS dies will stay at 40nm, 28nm and 22nm for the near future
- Additional relative complexity of RX and total die for TDD vs ACT in 40nm, 28nm, 22nm is significant

PHY integration in the Imager

Compared to TDD, ACT offers:

- Smallest size
- Lower complexity (no need for buffers and synchronization mechanism)
- Better suitability for older process nodes
- Crystal-less operation

https://www.ieee802.org/3/dm/public/0924/jonsson_razavi_3dm_01_09_15_24.pdf https://www.ieee802.org/3/dm/public/1124/Houck_Fuller_3dm_03_1111.pdf

Unlike TDD's 3Gbps receiver, ACT's 100Mbps receiver is much more cost-effective. ACT can be implemented in process nodes typically used for image sensors (40nm), while TDD implementation might require a more aggressive process node.

PHY integration in the Switch

Product considerations: To ensure flexibility and maximize utilization of all switch ports, it is highly desirable that **each Multi-Gig PHY port** supports either **asymmetrical 802.3dm** (camera link) or a **symmetric 802.3ch** connection.

Multi-mode port: 802.3ch + 802.3dm based on ACT

Ethernet Switch

Updates to make 802.3ch PHY multi-mode:

Add 100Mbps transmitter

802.3ch PHY

Multi-mode port: 802.3ch + 802.3dm based on TDD

Ethernet Switch Updates to make 802.3ch PHY multi-mode: • Add 3Gbps PAM2 transmit support • Add 3Gbps PAM2 receive support • Add 6Gbps PAM2 receive support • Add 12Gbps PAM4 receive support • Add TDD synchronization mechanism • Add TDD buffers for upstream and downstream

Interoperability between TDD and ASA

	TDD – Proposal #1	TDD – Proposal #2	TDD – Proposal #3	ASA 2.0 (MLE)	ASA 2.1 (MLE)
Released	Nov 2024	Jan 2025	May 2025	May 2024	Feb 2025
Baud rate	3.125 Gsps / 6.25 Gsps	3.0 Gsps / 6.0 Gsps	3.0 Gsps / 6.0 Gsps	SG1- SG5 2/4/6/8 Gsps	SG1- SG5 2/4/6/8 Gsps
Cycle timing and encoding	Fixed – 8.96usec – 896ns 64b65 and 80b/81b	Fixed – 9.6usec – 933ns 64b65b	Fixed – 9.6usec – 933ns 64b65b	2.5us – 26.832us (SG driven) 64b65b	2.5us – 26.832us (SG driven) 64b65b
FEC	8bit – RS – 3 FEC types 9bit – RS – 3 FEC types	1 FEC for all speeds 8bit – RS – 130,122	2 FECs needed UL/DL 8bit – RS – 130,122 (UL) OAM – 1bit 8bit – RS – 130,124 (DL) OAM – 17bit	240,214	240,214
Link start up procedure	Fixed time slot w/ predefined burst	Fixed time slot w/ predefined burst	Fixed time slot w/ predefined burst	Multi-phase dynamic training with OAM message exchanges and PTB clock alignment	Multi-phase dynamic training with OAM message exchanges and PTB clock alignment
Burst timing and switch logic	Fixed – PTB?	Fixed time slot w/ predefined burst	Fixed time slot w/ predefined burst	Deterministic – PTB based 6844 – PTB tics Fixed Quiet gap Anchored to StartTDD	More robust startup Variable w/ (628-6708) PTB tics Refined for shorter Upstream Same – better startup phases
OAM	Not defined	Not defined	Not defined	Occurs during startup and dynamical for updates	Occurs during startup and dynamical for updates
Clock leader and PTB	Not defined	Not defined	Not defined	Foundation for synchronization and timing accuracy	Foundation for synchronization and timing accuracy
ASEP	Needs DLL extensions, config. space, and stream sync procedures	Needs DLL extensions, config. space, and stream sync procedures	Needs DLL extensions, config. space, and stream sync procedures	Supports	Supports

Future for 25Gbps

- TDD requires significantly more PHY bandwidth than ACT to deliver the same payload
- Inefficiency compounds with speed
 - As speed increases IBGs, burst turnaround, and resync framing consume proportional larger data
- ACT uses continuous full-duplex streaming avoiding:
 - Resync bursts and Guard bands
- Higher PHY speed for TDD = MORE die area and MORE power
- TDD breaks down above 10Gbps "it's inefficiencies scale faster than data"

14

Longer Cable Length Summary

- Insertion Loss must drive link length requirement NOT delay.
 - This will limit markets outside of automotive Trucking, bussing, aero, industrial, robotics, agricultural, biomedical, etc.
- This is an issue on 802.3ch which prevents customers from achieving longer cable length and will become problematic for the standard if STP/SDP cable want further than 15meters.

802.3ch Link Delay = 94ns

Current TDD proposal does not even exceed 802.3ch = 84ns

149.7.1.6 Maximum link delay

The propagation delay of a link segment shall not exceed 94 ns at all frequencies between 2 MHz and $F_{\rm max}$ MHz.

recommend the value of no more than 84ns for coaxial cable, which already a compromise in that it adds >7ns of margin to the calculated value for 15m

Longer Cable Length Summary

• Key statement was **not** included on past presentation favoring <15meter cabling are the PAR stakeholders

5.6 Stakeholders for the Standard: End-users, automotive Original Equipment Manufacturers (car makers) and Tier x automotive suppliers, system integrators, and providers of systems and components (e.g., cameras, sensors, actuators, artificial intelligence (AI) processors, instruments, controllers, network infrastructure, user interfaces, and servers) for automotive and other transportation, building and industrial automation, and biomedical applications.

 Automotive cable presentations have shown further length is achievable with standard AGED CX44 <u>https://ieee802.org/3/dm/public/adhoc/062625/Koeppendoerfer_3dm_coax_performanve_01_06262025.pdf</u>

802.3dm May Interim Link Delay Presentation

Cable (CX44) Insertion Loss at 2.8GHz ~0.8dB/m (above presentation)

Proposed IL @2.8GHz = -23.08dB boyer sharma-3dm xx 05-14-25 3.pdf

Total Achievable Length = -23.08dB/-0.8dB/m = 28.9meters

Proposed propagation delay for ACT: 160nsecs Total Link delay ~5ns/m x 28.9meters = 144nsec + 4-8nsecs = 152nsec

PoC Complexity

- Current SERDES solutions have 1 inductor size and ACT shifted the lower frequency and upper frequency to create a smaller 1 inductor solution
- ACT DME (Differential Manchester Encoding) which raises the lower frequency corner
 - This helps minimize the inductance value and achieve relative lower cost than existing SERDES
- ACT has LESS Total Bandwidth <u>needed high Impedance PoC filter = 2.77GHz</u>

TDD Questions:

- Have not seen TDD solution with 1 inductor operating at 10Gbps with 15meters and 4 inline connectors
 - Silicon available for 3 years with NO 1 inductor solution
- There has been no impedance proposal for TDD for frequency of interest
- Solutions suggested for TDD DO NOT offer lower frequency protection as shown in with baseline wander issue
 - jonsson_3dm_02_06_26_25.pdf
- TDD has MORE Total bandwidth <u>needed</u> for high Impedance PoC filter = <u>2.97GHz</u>

