

Considerations for Crystal-less PHY

IEEE 802.3dm

July, 2025

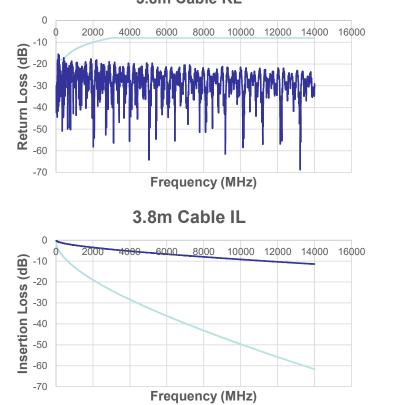
Hiok Tiaq Ng, Kamal Dalmia Aviva Links Inc.

Page 1

Contributor

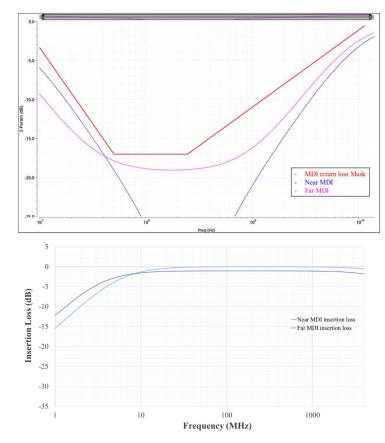
• Ramanjit Ahuja - onSemi

Introduction


- Crystal-less operation of 802.3dm PHY is desirable to achieve lower relative costs in sensor applications*
- This contribution looks at several factors impacting ability of PHY RX to operate in a crystal-less manner
- Simple no transistor model used for an ACT analog implementation in SPICE
- BCI noise was injected**
- References
 - * https://www.ieee802.org/3/dm/public/0525/Ng_3dm_01_05122025.pdf
 - ** https://www.ieee802.org/3/dm/public/1124/Pischl_3dm_01a_1124.pdf

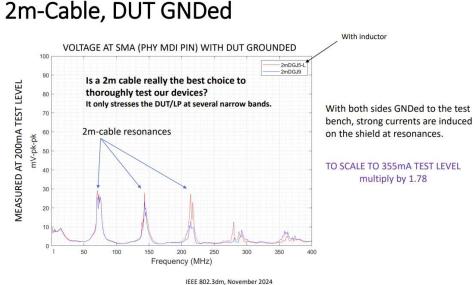
PHY RX considerations

- Clock must be extracted from incoming low frequency data
 - Eye diagram should be maximally open for ease of clock extraction
- Some factors impacting eye closure
 - Return Loss, Insertion Loss of MDI and Cable
 - BCI noise
 - Jitter in Clock/Data signals of SER and DES (not addressed here)
 - Residual supply noise through PoC inductors (not addressed here)
 - Implementation losses (not addressed here)


MDI and Cable models

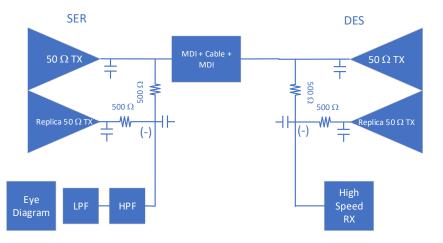
• Cable RL and IL

3.8m Cable RL


• MDI RL and IL

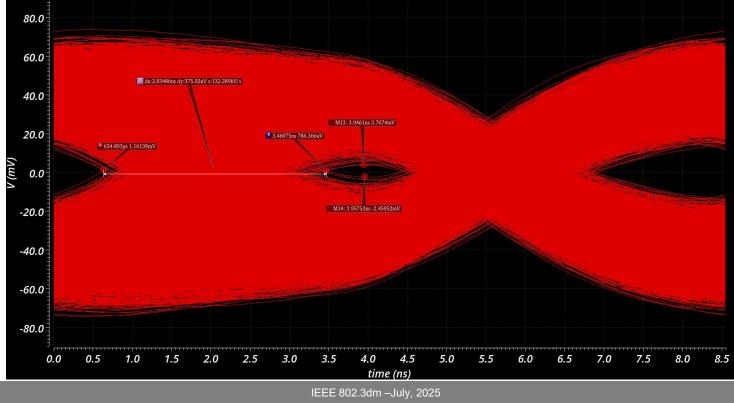
IEEE 802.3dm –July, 2025

BCI Noise Levels


- Injected BCI 2m noise levels from Pischl_3dm_01a_1124 excerpted below
 - Lowest grounded DUT noise level in presentation
 - Did not scale up to 355mA test level
 - Used the lower non-inductor peak-to-peak noise level
 - Used the lowest 3 noise frequencies

IEEE 802.3dm –July, 2025

Link Model


- PAM4 5.625GSps ↓, 234Mbps ↑
 - 0.65Vppse, 0.32Vppse TX output swings
- 50 Ω TX/RX, 500 Ω resistive Hybrid
- MDI limits already assume losses from coupling cap and PoC
- 30MHz HPF and 2 Pole 234MHz LPF post Hybrid
- Implemented in differential fashion, but using single ended Coax

Cable Segment Characteristics	Char Impedance (Ohms)
RG174 – 0.35m	48
RTK031 – 0.4m	52
RTK031 – 2.4m	48
RTK031 – 0.35m	52
RG174 – 0.35m	48

Observed Eye

- ~100us of ACT upstream data
- One eye is basically closed
- Jitter as simulated ~ 2.8ns

Summary

- Simple analog model of ACT RX shows eye closure
 - Other impairments not added
- Lower level of BCI noise used
- Easy IL channel. Cable RL peaks above limit of proposed mask.
- High speed TX jitter requirements expected to be in 1ps rms range.
- For crystal-less operation, the CDR has to recover a clean clock from the eye
 - Is a simple receiver architecture sufficient for ACT RX ?

Thank You!

IEEE 802.3dm –July, 2025