IEEE 802.3dm

Time-Domain Analysis of Analog-Based ACT Receiver

Hossein Sedarat

July 2025 (

Background

- Partial list of contributions showing the simplicity of the upstream ACT receiver
 - https://www.ieee802.org/3/dm/public/adhoc/062625/jonsson_3dm_02_06_26_25.pdf
 - https://www.ieee802.org/3/dm/public/0325/sedarat_3dm_02_202503.pdf
 - https://ieee802.org/3/dm/public/0125/sedarat_3dm_202501.pdf
 - https://ieee802.org/3/dm/public/0125/jonsson_3dm_01b_01_20_25.pdf
 - https://ieee802.org/3/dm/public/1124/razavi_fung_jonsson_3dm_01a_11_07_20204.pdf
 - https://ieee802.org/3/dm/public/0924/sedarat_3dm_202409.pdf
 - https://ieee802.org/3/dm/public/0924/jonsson_razavi_3dm_01_09_15_24.pdf
 - <u>https://ieee802.org/3/dm/public/0924/jonsson_3dm_01_09_15_24.pdf</u>
 - https://ieee802.org/3/dm/public/0724/sedarat_3dm_202407.pdf
 - https://ieee802.org/3/dm/public/0524/sedarat_3dm_02_202405.pdf
- Many present time-domain analysis
- Many (if not all) do not require digital signal processing with ADC

Overview

Further analysis of the ACT upstream receiver:

- Analog-based receiver
- Time-domain analysis
 - More conservative echo channel models
 - More realistic model of Hybrid canceller
- Address and clarify points made in slide 7 of <u>Chini_2505</u>

High-Level Receiver Architecture

- HPF: high-pass filter to remove low frequency transients
- LPF: to remove out of band noise
- FFE: Feed-forward equalizer
- FBE: Feedback equalizer
- MF: DME matched filter
- HYB: hybrid canceller

FBE is a discrete filter while all others may be implemented in digital or analog domain

Analog-Based Receiver

Matched filter and slicer may easily be implemented in analog with S/H and comparator

ACT receiver does not require ADC and digital signal processing

Time-Domain Simulation Environment

PHY Filter Responses

- PoC: 2^{nd} order, Fc = 10MHz
- HPF: 1^{st} order, Fc = 40 MHz
- LPF: 2^{nd} order, Fc = 100MHz
- Hybrid:
 - Poor cancellation at low frequency due to PoC circuit
 - Poor cancellation at high frequency due to parasitics
 - Limited in-band cancellation

Channel Response

- Cable model meets the latest <u>proposal</u> for limit line on insertion loss
 - 24 dB loss at 3 GHz
- Additional 4 dB for loss of PCBs
- Total loss 28 dB at 3 GHz

Echo Response

With the <u>latest proposal</u> for limit line on return loss, considered three extremely powerful echo channels:

- 1. Artificially generated channel meeting, or exceeding, limit line at all frequencies
- 2. Unrealistically strong echo channel labelled as "Ugly" in <u>Ragnar_202504</u>
- 3. Reasonably bad echo channel touching limit line by scaling the "Ugly" channel

Transmit Power

Following the latest transmit power specifications in <u>Sedarat_202505</u>, and considering extreme imbalance in transmit power:

- Upstream: minimum power of -3 dBm
- Downstream: maximum power of 2 dBm

➔ Worst condition with the <u>lowest</u> signal-to-echo power ratio

PSD of Signal Components

SNR and Eye Diagram

12

Echo Channel Type	SNR (dB)	Margin [*] (dB)
Artificial	22.6	5.6
Unrealistic	22.2	5.2
Reasonably Extreme	25.0	8.0

* FEC coding gain not included in SNR margin

Under the worst-case conditions:

- Insertion loss of 28 dB at 3 GHz
- Strongest echo channel
- Worst imbalance in transmit power
- Poor hybrid cancellation

Eye diagram with unrealistically strong echo channel

ETHERNOV

Conclusions for ACT Upstream Receiver

- All-Analog receiver is possible
 - No need for ADC or digital signal processing
- Time-domain analysis confirms high operating margin
- No need for echo cancellation
- No need for equalization
- Very narrow bandwidth and very low clock frequency
- Very small dynamic range with trivial Analog signal path
- No baseline-wander effect
- Tolerant of simple and imperfect hybrid cancellation
- Not sensitive to MDI return loss and double-reflections

ETHERNOVIA®

Thank You