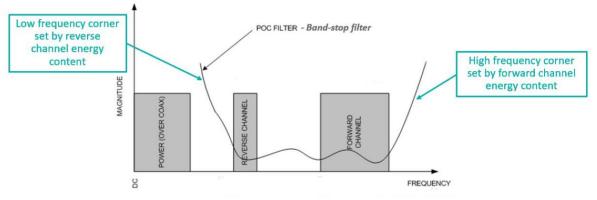
Power over Coaxial Cable Optimization and Signaling Trade-off

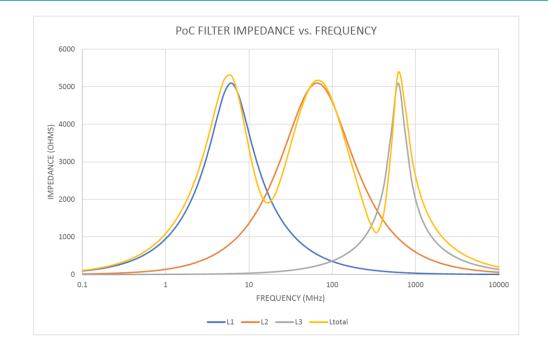
September 10th, 2024

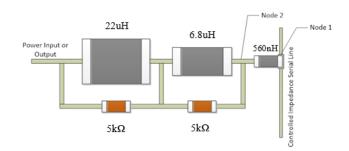
Ahmad Chini & Mehmet Tazebay Broadcom Corporation


Outline

- Foreword
- PoC filter design principle and examples for GMSL2
- PoC filer examples and total DCR for GMSL2
- PoC filter based on the MDI-RL proposed to 802.3dm
- PoC filter examples and total DCR for 802.3dm
- Power and board space savings for 802.3dm vs GMSL2
- 4-port cross-talk measurement using PFL1609-102 for 802.3dm
- Channel IL/RL resulting from PoC filtering
- Signal dynamic range and distortion resulting from PoC filtering
- Summary
- Conclusions

Foreword


- Power over coaxial (PoC) cable is widely used in automotive image sensor applications.
- Early automotive SerDes solutions used larger and multiple inductors in the PoC filter. A good example is GMSL1 that supported 1Mbps in reverse link and required PoC inductors larger than 100µH.
- Newer generation, GMSL2 optimized PoC inductor size to 22µH range using higher reverse link speed of 187.5MHz and 9b10b encoding. A series of power inductors are proposed in order to cover both higher speed forward channel and lower speed reverse channel.
- For 802.3dm, the particular specification that affects power inductor size is MDI Return Loss (RL). There is already a proposal for MDI-RL to 802.3dm that allows small and power efficient PoC filter design.
- This presentation discusses the significant benefits of the optimized PoC filter as compared to some existing solutions. There is, however, a trade-of in signaling and baud rate which should be observed.


PoC filter design principle and examples for GMSL2-ADI¹

Three main users of bandwidth

- Power over Coax
- Reverse channel
- Forward channel

Cascading multiple inductors to cover the whole bandwidth

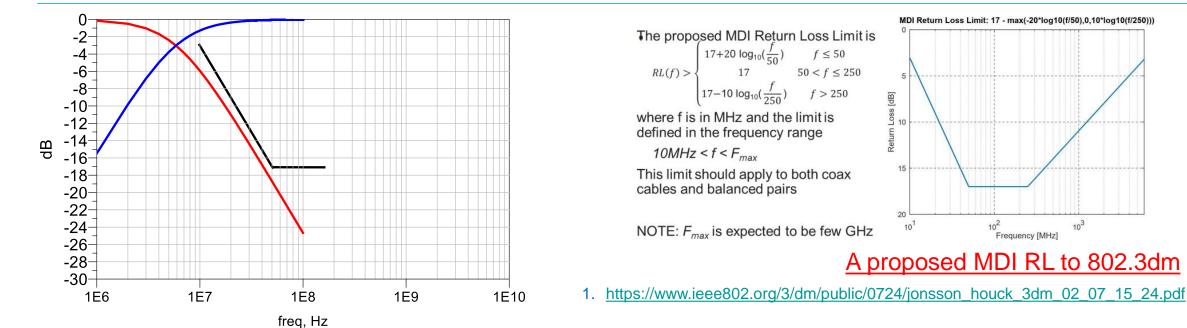
1. <u>https://www.analog.com/media/en/technical-documentation/user-guides/gmsl2-hardware-design-guide.pdf</u>

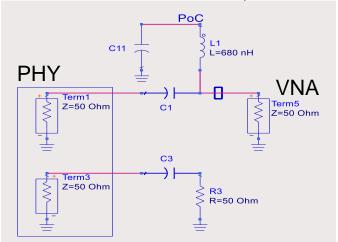
PoC filer examples¹ and total DCR for GMSL2

 Examples of optimized PoC solutions for GMSL2 are shown in "gmsl2-hardware-designguide.pdf"¹

1	C-2L-300 2 Coilcraft	L1: PFL1005-561 L2: 1210POC-223 5.1kΩ	560nH – 620MHz 22uH – 66MHz	440mA – 20% 520mA – 105C	<u>300 mA @ 105C</u>	Verified on EV kits
---	-------------------------	---	--------------------------------	-----------------------------	----------------------	---------------------

PFL1005-561 : 540mΩ @25°C


1210POC-223: 880mΩ @25°C


4

PFL1609-471	:	100mΩ @25°C
PFL1609-471	1	100mΩ @25°C
1210POC-682	÷	240mΩ @25°C
MSS6132T-223	:	160mΩ @25°C

- DCR at 105C is increased by 31% from which maximum power loss on the PoC filter components may be calculated.
- 1. https://www.analog.com/media/en/technical-documentation/user-guides/gmsl2-hardware-design-guide.pdf

PoC filter based on a MDI-RL proposed¹ to 802.3dm

- The inductance of a real inductor drops by temperature and current. The simulated value of 0.68µH is an assumed minimum inductance that does not violate the proposed RL limit.
- It is seen that the proposed RL limit results in a high pass filter of about 6MHz.
- Also, note that noises below 1MHz are attenuated by more than 15dB when inductance is at 0.68 μ H. (would be 12dB rejection at 1 μ H)

103

Frequency [MHz]

PoC filter examples and total DCR for 802.3dm

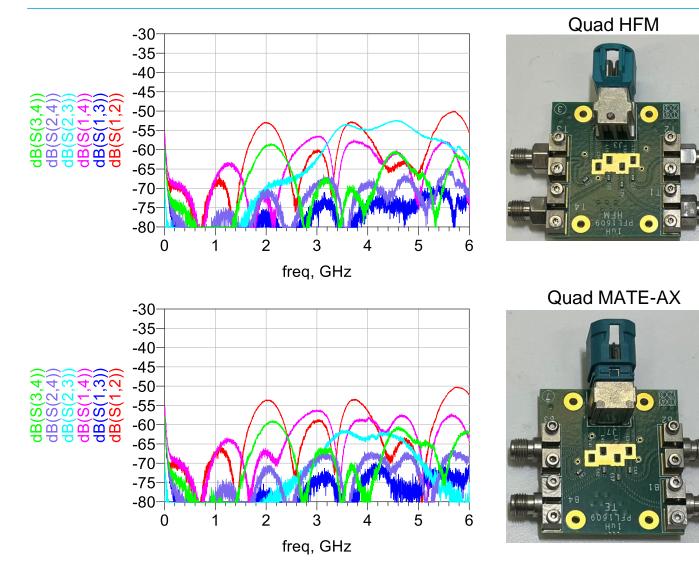
A single 1µH inductor may be used for 802.3dm.

- PFL1609-102 (**up to 500mA**)
 - AEC-Q200 (-40°C to +125°C)
 - 1.8 x 1.1 x 1 mm
 - DCR: 230mΩ @25°C
 - SRF: 460MHz
- WCLA2520V1-1R0-R (up to 800mA)
 - AEC-Q200 (-55°C to +125°C)
 - 2.9 x 2.5 x 2.1 mm
 - DCR: 130mΩ @25°C
 - SRF: 345MHz
- PFL3215-102 (**up to ~2000mA**)
 - Industrial (-40°C to 85°C)
 - 3.2 x 2.5 x 1.5 mm
 - DCR: 38mΩ @25°C
 - SRF: 375MHz

- Single inductor PoC filter
- Lower DCR
- Smaller board area
- High SRF to provide higher BW

- For Industrial applications
- Current may be limited by connector and cable types

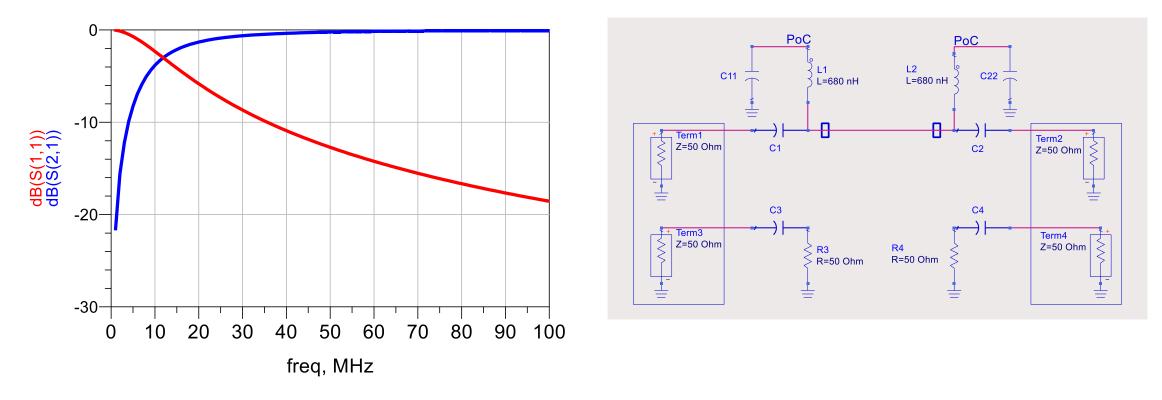
Power and Board space savings for 802.3dm vs GMSL2


Current	GMSL2	@ 105C	802.3dm* @ 105C		
Level	C-2L-300	C-4L-1000	PFL1609	WCLA2520	
300mA	167mW	70mW	27mw	15mw	
500mA	-	197mW	75mw	43mW	
800mA	-	503mW	-	109mW	
	GMSL2		802.3dm*		
	GM	SL2	002.	30M	
Size	C-2L-300	SL2 C-4L-1000	PFL1609	WCLA2520	
Size Total Footprint					

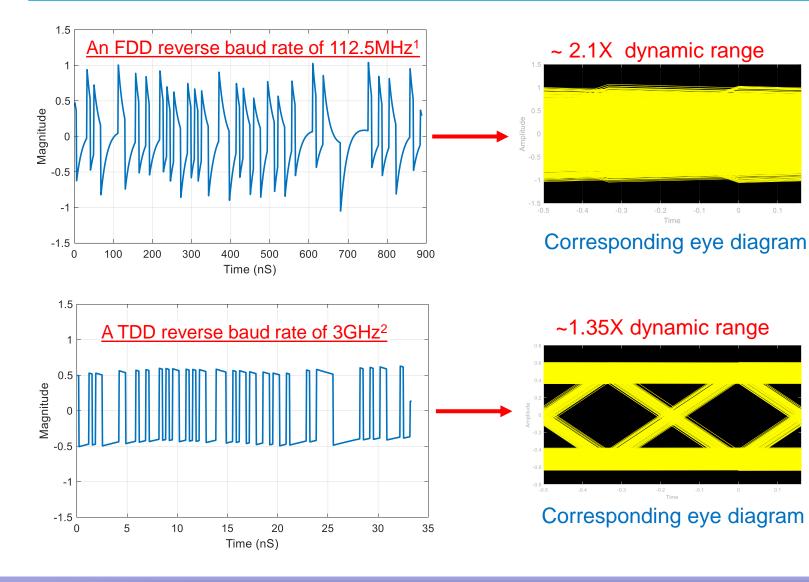
- Using a single 1µH inductor, power saving in PoC filter alone may be more than a transceiver power designed based on SerDes technologies¹.
- Power, size and relative cost are optimized all at the same time using a single 1µH inductor.
- For implementation based on GMSL2, see the evaluation boards which are publicly available^{2,3}.
- 1. <u>https://grouper.ieee.org/groups/802/3/dm/publi</u> <u>c/0724/Chini_Tazebay_3dm_01a_0724.pdf</u>
- 2. <u>https://www.analog.com/media/en/technical-</u> documentation/data-sheets/max96717ev.pdf
- 3. <u>https://www.analog.com/media/en/technical-documentation/data-sheets/max96724-bak-evk-max96724r-bak-evk.pdf</u>

- Compare numbers in red to red and blue to blue.
- Footprint does not include practical space between inductors
- * Using single 1µH inductor.

IEEE 802.3dm, September 2024


4-port Cross-talk measurements using PFL1609-102 for 802.3dm

- The cross talk between ports is less than 50dB for frequencies below 5GHz while PoC inductors placed within half an inch area on the board.
- Compare with the PoC filters for a Quad deserializer that supports both GMSL1 and GMSL2 in the link referenced below.


https://www.analog.com/media/en/techni cal-documentation/datasheets/max96724-bak-evk-max96724rbak-evk.pdf

Channel IL/RL resulting from PoC filtering

- A simulated value of 0.68µH is an assumed minimum inductance that does not violate the proposed RL limit.
- The additional effect of link segment return loss, imperfect PHY terminations (+/-10%) and Hybrid circuit (if required) should be considered for the analysis of total channel return loss.
- The effect of the high return loss on the FDD reverse link should be analyzed.

Signal dynamic range and distortion resulting from PoC filtering

- Large dynamic range requires higher transceiver voltage and affects power consumption in the PHY (1V, 1.8 or more?).
- In the case of FDD, the eye is completely closed at the input of the receiver while it is open for TDD (Just for PoC filer effect)
- 1. <u>https://www.ieee802.org/3/dm/public/07</u> 24/sedarat_3dm_202407.pdf
- 2. <u>https://www.ieee802.org/3/dm/public/07</u> 24/Chini_Tazebay_3dm_01a_0724.pdf

Summary

- The proposed MDI-RL helps with PoC filter design with the following benefits:
 - Inductors with higher SRF (smaller parasitic capacitance) and thus high bandwidth with a single inductor.
 - Smaller footprints on the board.
 - Lower DCR which means less power loss and self-heat from the PoC inductors.
 - Lower noise and better reliability due to load variations (L $\frac{di}{dt}$).
 - Better rejection of low frequency noises (12-15dB noise rejection for frequencies below 1MHz).
 - Less cross talk coupling, allowing for compact board design in a quad deserializer.
 - Lower complexity (relative cost).
- In return for all the benefits, there is a trade-off between signal baud rate and lower part of return loss limit that should be observed.

Conclusions

- PoC is essential in automotive imaging sensor applications.
- Therefore, there is an opportunity for 802.3dm to address this need with optimized techniques which will yield to a more competitive solution.
- There is an inherent disadvantage for PoC in FDD solutions, on the other hand, TDD provides a significant advantage in terms of simplicity, power efficiency, cross talk, low frequency noise rejection and relative cost for PoC implementation.

Thank you!