

Power and Latency Considerations, 802.3ch case study

KY-ANH TRAN 09/18/24

Agenda

- Motivation
- Assumptions
- Analysis
- Comparison with TDD approach
- Conclusion

Motivation

- Power mentioned to be important for 802.3dm, especially with respect to thermal performance of the sensor.
 - "Sensor quality degrades exponentially with increased temperature." <u>https://www.ieee802.org/3/cfi/0723_1/CFI_01_0723.pdf</u>
 - https://www.ieee802.org/3/ISAAC/public/091423/2023-09-18 Automotive%20camera%20PHY%20requirements%20study V2.3.pdf
- Previous contribution raised questions on more work needed to evaluate power/latency: "We propose that further analysis is needed to address the questions identified in this presentation."
 - https://www.ieee802.org/3/dm/public/0724/kang_3dm_01b_2407.pdf
- We will show that traffic profiles can affect latency/power.
 - Use 802.3ch as example. There is considerable system simplification if existing automotive ethernet PHY can service 802.3dm objectives.
 - https://www.ieee802.org/3/dm/public/0524/Relative%20Cost%20Analysis%20of%20802.3ch%20as%20Asymmetri c%20PHY_Huang_05122024.pdf

Acronyms.

- US: Upstream
- DS: Downstream
- WS: Wake Sleep (event)
- ECU: Electronic Control Unit
- ACF: AVTP (Audio Video Transport Protocol) Control Format (IEEE1722)
- GBB: Generic Byte Bus (IEEE1722)
- IPG: Inter Packet Gap

System setup

- Consider 802.3ch sensor PHY inside camera module.
 - 802.3ch sensor PHY assumed to operate in 10Gbps mode, interleaving L = 1, slow_wake = 0.
- No periodic schedule of EEE wake up needed.

5 🗹 AEONSEMI

Camera Uplink Traffic Profile

- Previous study mention:
 - Intermittent transmission for tunneling I2C and GPIO (periodic shutter control) signal could bring challenges to existing camera system design" <u>https://www.ieee802.org/3/dm/public/0724/kang_3dm_01b_2407.pdf</u>
- We will include both in our analysis:
 - I2C burst to control camera based on image received at most once per frame (e.g. exposure control)
 - Frame sync is also sent once per frame.

I2C transaction

- I2C CCI protocol commonly used, with 16bit reg address for camera sensors
- Single byte write at random location example below
 - 4 bytes total + ACK/Start[S]/Stop[P]

@1000kHz > 36us

Traffic benchmark

- I2C control burst uplink every frame.
- Typical number of I2C register writes for this is 1-20.
- Assume:
 - 10 x I2C byte reg write at random locations.
 - Update every single frame (worst case)
- This is an initial strawman to get ballpark numbers and may need to be refined!:
 - In real life, not every frame has control updates to camera, depends on image condition changes and tuning algorithm.
 - In real life, contiguous byte address writes can use I2C sequential write which improves tunneling efficiency.

IEEE1722 I2C protocol

- I2C ACF (we will call **Byte mode**) tunnels each byte individually as an ethernet frame.
 - Stretching the clock and wait until the ACK packet comes back from the target is expected.
- I2C GBB, Annex XXX (we will call Bulk mode) tunnels a reg write transaction in an ethernet frame.
 - ECU side device can autonomously acknowledge the I2C bus (auto-ACK).
- **Byte mode** throughput for I2C write limited by the round-trip delay.

IEEE1722 I2C data

- In Bulk mode, each byte write can fit 84 byte frame (including IPG).
- 10 byte writes = 840 bytes of data.
 - < 4 RS-FEC frames which is minimum 802.3ch PHY data transmission time.</p>

IEEE1722 I2C Bulk timing

- Heuristic: PHY starts wake up after i2c transactions complete by "Twait"
 - ECU PHY automatically ACK's.
- Sensor PHY RX receives 8 RS-FEC frame WAKE before receiving the packetized payload.
- Full duplex time:

11

- Twake = 8 RS frame
- Tdata = 4 RS frame (minimum transmission)
- Tsleep = 8 RS frame / bit rate

IEEE1722 Byte timing

- One can choose to use byte mode tunneling as well. No wait time needed. I2C clock is stretched until ACK is received.
- Each i2c byte is transmitted uplink individually.
- Assume worst case, each byte leads to individual WS (Wake-Sleep) event.
 - Worst case full duplex time due to maximum **WS** events.

IEEE1722 Frame sync tunneling uplink

- Tunnel the timestamp of the frame sync edge signal with IEEE1722 (Annex N IEEE1722b)
 - 2 x 84 byte frame is sufficient (posedge/negedge) for 1 FSYNC pulse
- Single WS event used for each edge tunneled.

EEE with no periodic schedule

- Note the PHY does not need to rely on pre-arranged periodic schedule
- Wake up behavior responds to data activity instead.

- Save power thanks to long inactive time on the order of the frame time
- Decouple latency with power consumption (Latency set by wake up time rather than artificial periodic schedule)
- Realistic data activity leads to realistic power/latency estimate.

Full duplex time

- Power consumption of the Sensor PHY needs to account time spent in full duplex
- Fullduplex time = Refresh time (in LPI) + WAKE/DATA/SLEEP time

Full duplex time, I2C Bulk mode

- 2 X FSYNC packets per frame
- 1 X I2C GBB packet per frame
- Add up all the full duplex time, including Refresh during LPI

Frame rate	% time full duplex
30fps	< 1.10%
60fps	< 1.16%
90fps	< 1.21%

Camera frame rate [fps]	60		
i2c # of commands / frame	10		
i2c data [byte]	840		
Frame sync packet size [byte]	84		
S (scaling factor)	1		
Data rate [Gb/s]	10.00		
		Multiplicity per frame	Time per frame [us]
Twake [us]	2.56	3	7.68
Tsleep [us]	2.56	3	7.68
Tdata mode, i2c bus [us]	1.28	1	1.28
Tdata mode, fsync transmit [us]	1.28	2	2.56
		Total time per frame [us]	19.20
Trefresh / Tqr	1.04%		
Camera frame time [us]	16666.67		
Time full duplex per frame [us]	192.61		
% time in full duplex	1.16%		

Full duplex time, I2C Byte mode

- 1 I2C packet / byte x 4 bytes / reg write X 10 reg write / frame
 = 40 I2C packets / frame.
- 2 FSYNC packets.

Frame rate	% time full duplex
30fps	< 1.84%
60fps	< 2.64%
90fps	< 3.44%

Camera frame rate [fps]	60		
i2c # of commands / frame	10		
i2c data [byte]	84		
Frame sync packet size [byte]	84		
S (scaling factor)	1		
Data rate [Gb/s]	10.00		
		Multiplicity per frame	Time per frame [us]
Twake [us]	2.56	42	107.52
Tsleep [us]	2.56	42	107.52
Tdata mode, i2c bus [us]	1.28	40	51.20
Tdata mode, fsync transmit [us]	1.28	2	2.56
	1	Total time per frame [us]	268.80
Trefresh / Tqr	1.04%		
Camera frame time [us]	16666.67		
Time full duplex per frame [us]	439.61		
% time in full duplex	2.64%		

4 bytes / I2C trans x 10 transactions. Each byte cause wake up event (worst case)

Sensor PHY Power discussion

- 802.3ch sensor PHY Power includes:
 - In full duplex, ECHO + RX + TX + bias + clock
 - Else, TX + bias + clock
- In bulk mode, > 98.8% the time 802.3ch sensor PHY power is TX + bias + clock
 - PHY Power comparable to half duplex transmitter
- Explains how measured 802.3ch sensor PHY power is competitive to incumbent serializers (<u>https://www.ieee802.org/3/dm/public/0524/Evaluation%20of%20802.3ch</u> Tran 050142024a.pdf)
- Further power savings possible:
 - EEE allows going to LPI during frame blanking (5-30% TX power saving depend on frame blanking ratio).

Latency metric

- Use definition of "Frame Latency" in previous adhoc: <u>https://www.ieee802.org/3/dm/public/adhoc/080724/turner_dm_01_system_08072024.pdf</u>
- "Frame Latency" includes PHY/channel delay, any wait time for PHY II interface to be available for transmission, but also "packet latency" discussed in https://www.ieee802.org/3/dm/public/0724/matheus_dm_02b_latency_07152024.pdf

Analysis scope

802.3ch Latency, normal operation

- Time for XGMII to be available bounded by EEE spec: (T_w_sys_tx).
 - Can use wake after sleep complete for I2C data.
- US latency = T_w_sys_tx + packet delay + PHY delay
 - Example 84 byte packet latency = 0.068us @ 10G.
- DS latency = packet latency + PHY delay + channel delay (< 94ns from 802.3ch spec)</p>

Latency US		Later	ncy DS
Latency	Value	Latency	Value
T_w_sys_tx	6.400us	PHY delay	1.024us
PHY delay	1.024us	Channel delay	0.094us
Channel delay	0.094us	Packet latency	0.068us
Packet latency	0.068us	Total Latency	1.186us
Total Latency	7.586us		

802.3ch Latency, initialization

- Camera initialization speed mentioned to be important in previous contribution.
 - https://www.ieee802.org/3/dm/public/0724/houck fuller 3dm 01 0724.pdf
- 802.3ch has flexibility run full duplex during initialization.
 - Latency is for 84 byte frame 1.186us DS/US

Latency with ASA-MLE TDD

- Latency US = US gap + resync header + [frame size / MII data rate](*) + PHY delay + channel delay
- Latency DS = DS gap + resync header + [frame size / MII data rate](*) + PHY delay + channel delay
- (*) Under discussion.

Comparison with TDD ASA-MLE

- Consider 60fps, 10G downstream use case, Byte mode.
- Consider small 84byte frame (typical for i2c byte or timestamp). Larger frames gives advantages to EEE for frame latency, wake up is amortized.
- We compare against ASA-MLE 10G/100M mode, which has comparable line rate to 802.3ch at 10G. Assume channel delay < 94 ns.

Comparison	10G 802.3ch (w/ EEE US)	10G/100M ASA TDD (w/ 10Gbps xMII)	10G/100M ASA TDD (w/ 100Mbps xMII)
Latency US (initialization)	1.186us	26.67us + PHY delay US	33.33us + PHY delay US
Latency DS (initialization)	1.186us	1.07us + PHY delay DS	7.73us + PHY delay DS
Latency US (normal mode)	7.586us	26.67us + PHY delay US	33.33us + PHY delay US
Latency DS (normal mode)	1.186us	1.07us + PHY delay DS	7.73us + PHY delay DS
Line rate for 10Gbps DS payload	11.25Gbps	12Gbps	12Gbps

Conclusion

- Traffic profiles can affect power/latency estimates. For realistic estimates, realistic traffic profiles are needed.
 - Recommend 802.3dm to benchmark solutions using realistic traffic profiles.
- 802.3ch sensor PHY power similar to TX only power with realistic traffic. Time spent in full duplex bounded by:
 - Ising I2C Bulk mode
 - < 3.4% using I2C Byte Mode.</p>
- 802.3ch sensor PHY frame latency can achieve <1.2us / 1.2us (US/DS) during initialization, and <7.6us / 1.2us (US/DS) after initialization.

