TDD Baseline Proposal for 802.3dm

November 11th, 2024 Vancouver, Canada

Ahmad Chini & Mehmet Tazebay Broadcom Corporation

Contributors

- Peiqing Wang, Broadcom
- Wei Lou, Broadcom
- Mike Tu, Broadcom
- Mehdi Kilani, Broadcom
- Neven Pischl, Broadcom
- Bilal Kobeissy, Broadcom
- Henry Kuo, Broadcom
- Seong-Ho Lee, Broadcom
- Sang Bui, Broadcom

Supporters

- Charles Wu, Omnivision
- Ching-Yen Lee, Realtek
- Christoph Arnd, Continental
- Claude Gauthier, NXP
- Conrad Zerna, Aviva Links
- David Bollati, C&S
- Debu Pal, Onsemi
- Dongok Kim, Hyundai
- Frank Wang, Realtek
- Gumersindo Cauce Veloso, BMW
- Guy Nicholson, Onsemi
- Hideki Goto, Toyota

Supporters (cntd.)

- Hoai Hoang Bengtsson, Volvo Cars
- Jamila Borda, In-tech
- Johannes Nachtrab, Leoni
- Jonathan Silvano de Sousa, GG Group
- Junichi Takeuchi, JAE Connectors
- Kamal Dalmia, Aviva Links
- Kevin Kershner, Keysight Technologies
- Kirsten Matheus, BMW
- Korhan Tanc, NXP
- Masayuki Hoshino, Continental
- Mathias Kleinwaechter, In-tech
- Ramanjit Ahuja, Onsemi
- Scott Muma, Microchip

Supporters (cntd.)

- Stan He, JLSemi
- Stefan Gianordoli, GG Group
- Steve Gorshe, Microchip
- Sven Bergdolt, Leoni
- Ten Zhang, JLSemi
- Thomas Stueber, Teledyne LeCroy
- Tiaq Ng, Aviva Links
- Yasuhiro Kotani, Denso
- YJ Won, VSI
- Yoshifumi Kaku, Denso

Foreword

- Previously, it was shown that the high speed half duplex transceivers (e.g. 10Gbps SerDes) are widely
 available and very cost effective compared to full duplex communication systems¹
 - This technology has matured over the last 20+ and gotten really cost and power efficient with smaller and smaller process geometries
 - The half duplex communication transceivers can provide significant performance advantages and cost efficiencies for 802.3dm project.
- This contribution proposes using a TDD-based solution for 802.3dm.
- Two options are provided using a 8-bit or a 9-bit Reed-Solomon FEC.
- The proposals are compared with a well established and widely tested camera solution over coaxial cables (GMSL2).
- The proposed solution provides optimization on PoC, Ethernet packet encoding, up to 10Gbps support and two choices of FEC.

1. <u>https://www.ieee802.org/3/dm/public/0724/Chini_Tazebay_3dm_01a_0724.pdf</u>

Outline

- Existing Solution (GMSL2)
- TDD Baseline Option #1
- TDD Baseline Option #2
- System Parameters
- Implementation Considerations
- Advantages of a TDD-based Solution
- Conclusions

Existing Solution: GMSL2^{1,2}

- Forward link of 3 Gbps/6Gbps with (9b to 10b) encoding (net forward data rate, slightly above 2.5Gbps /5Gbps 802.3dm target rates)
- Reverse link of 187.5Mbps
- Adaptive Equalizer both sides of the link (updated every ~1s)
- Echo cancellation circuit are used on both the serializer and deserializer
- Maximum channel insertion loss of -21dB at 3GHz.
- 1.8V Analog supply, about 180mW typical power.

^{1.} https://www.analog.com/media/en/technical-documentation/data-sheets/max96717.pdf

^{2.} https://www.analog.com/media/en/technical-documentation/data-sheets/max96724.pdf

TDD Baseline Option #1 (w/8bit RS FEC)

Ethernet Packets Boundary	64b/65b encoding
Speed Grades (@ xMII)	Forward Link: 2.5Gbps, 5Gbps & 10Gbps Reverse Link: 100Mbps (PAM2, 2.5Gbps line rate)
Modulation	PAM2 for 2.5Gbps and 5Gbps PAM4 for 10Gbps
Baud Rate	3.125Gsps for 2.5Gbps (forward and reverse link) 6.250Gsps for 5Gbps and 10Gbps (forward link)
TDD Cycle	8.96µs for ALL speed grades
FEC block period	161.28ns for ALL speed grades

TDD Baseline Option #1 (w/8bit RS FEC) (cntd.)

FEC Type	S=8bit Reed-Solomon RS(63S, 57S) for 2.5Gbps (56Byte at XGMII, 7 x 65b+1b reserve) RS(126S, 114S) for 5.0Gbps (112Byte at XGMII, 14 x 65b+2b reserve) RS(252S, 228S) for 10Gbps (224Byte at XGMII, 28 x 65b+4b reserve) Each FEC block per TDD-cycle carries 50Mbps/100Mbps/200Mbps depending on the line rate		
IBG (Inter Burst Gap)	104ns between each side transmit time		
Total refresh sequence	1142bit at 3.125Gsps or 2284bit at 6.25Gsps		
FIFO	Forward Link :280-Bytefor 2.5Gbps560-Bytefor 5.0Gbps1120-Bytefor 10GbpsReverse Link :108-Byteat 100Mbps		
Latency	Forward link: ~1.06µs (including one FEC block) Reverse link: ~8.80µs (including one FEC block)		

TDD Baseline Option #2 (w/9bit RS FEC)

Ethernet Packets Boundary	80b/81b encoding
Speed Grades (@ xMII)	Forward Link: 2.5Gbps, 5Gbps & 10Gbps Reverse Link: 100Mbps (PAM2, 2.5Gbps line rate)
Modulation	PAM2 for 2.5Gbps and 5Gbps PAM4 for 10Gbps
Baud Rate	3.0Gsps for 2.5Gbps (forward and reverse link) 6.0Gsps for 5Gbps and 10Gbps (forward link)
TDD Cycle	9.6µs for ALL speed grades
FEC block period	345ns for ALL speed grades

TDD Baseline Option #2 (w/9bit RS FEC) (cntd.)

FEC Type	S=9bit Reed-Solomon RS(115S, 108S) for 2.5Gbps (120Byte at XGMII, 12 x 81b) RS(230S, 216S) for 5.0Gbps (240Byte at XGMII, 24 x 81b) RS(460S, 432S) for 10Gbps (480Byte at XGMII, 48 x 81b) Each FEC block per TDD-cycle carries 100Mbps/200Mbps/400Mbps depending on the line rate
IBG (Inter Burst Gap)	104ns between each side transmit time
Total refresh sequence	1266b at 3Gsps 2532b at 6Gsps
FIFO	Forward link : 304-Byte for 2.5Gbps 608-Byte for 5.0Gbps 1216-Byte for 10Gbps Reverse link : 116-Byte at 100Mbps
Latency	Forward link: ~1.3us (including one FEC block) Reverse link: ~9.6us (including one FEC block)

System Parameters

	GMSL2	TDD w/9b FEC	TDD w/8b FEC
2.5Gbps Modulation & Baud rate	PAM2, 3Gsps	PAM2, 3Gsps	PAM2, 3.125Gsps
5.0Gbps Modulation & Baud rate	PAM2, 6Gsps	PAM2, 6Gsps	PAM2, 6.25Gsps
10Gbps Modulation & Baud rate	Х	PAM4, 6Gsps	PAM4, 6.25Gsps
GPIO Delay Compensated Reverse link	10-15µs	~10µs	~9.2µs
GPIO Jitter	+/-10ns	+/-4ns	+/-4ns
Low cost and power equalizer	Yes	Yes+ lower Voltage	Yes+ lower Voltage
Echo Canceller	Yes, both sides	No	No
Ethernet	Х	Yes	Yes
PoC	Ok (+22µH)	Best (1µH)	Best (1µH)
Linkup time From power up	45ms	<45ms	<45ms

System Parameters (cntd.)

	GMSL2	TDD w/9b FEC	TDD w/8b FEC
Crystal-less Camera	Yes	Yes	Yes
FEC	RS-7bit, ~5% parity Optional	RS-9bit, ~6% parity	RS-8bit, ~10% parity
Video Latency	+(1-2)µs	1.3µs	1.1µs
Reverse link	187.5Mbps	100 Mbps	100 Mbps
FIFO, forward link	No	Yes (see Implementation)	Yes (see Implementation)

Implementation Considerations

- FIFO Implementation cost: A 1200B FIFO running at 6GHz (16b x 750MHz) takes ~0.006mm² to build in 16nm technology. That is less than 5% of a SerDes type transceiver design¹ which is the most cost efficient implementation used in many image sensor applications.
- **OAM:** One or more RS FEC symbols may be dedicated to OAM.
- **Camera side FEC decoding:** Error correction is optional in the camera side. Algebraic single symbol RS decoding along with syndrome calculation for error detection may be considered.
- Delay Compensated GPIO: The inherent time accuracy of TDD cycles may be compensated for propagation delay to drive GPIO with about 10µs delay and with +/-4ns accuracy for time critical synchronization.
- Crystal-less Camera: TDD signaling sent to reverse link is from a free running transmitter that is based on a local crystal. The signaling provides two accurate clock reference for camera to tune its local VCO. A continuous TDD cycling (~100kHz) and a 3GHz high resolution bursts. Together, they are used to track frequency and set the VCO input Voltage. Similar to SerDes type receivers, fast tracking capability of TDD allows rejecting low frequency jitter and baseline wander (if any). Initial tuning and locking of the camera frequency happens during start up.

¹⁻ https://www.ieee802.org/3/dm/public/0724/Chini_Tazebay_3dm_01a_0724.pdf

Advantages of a TDD-based Solution

- Modulation: PAM2 is considered with <u>highest ingress noise margin</u> for 2.5G/5G. It has been proven in the field over coaxial with a very large number of successful implementations even with an optional FEC and low power low complexity equalizers¹ (GMSL2 and others).
- **Synchronization:** The inherent timed operation of TDD simply allows for multi camera synchronization in a typical implementation. For a large network development, PTP may be used as well.
- **Camera initialization:** Startup can be a lot faster for reverse link than normal mode using reduced TDD cycles (TBD, up to 10X). That helps initialize cameras much quicker than normal.
- PoC: TDD allows using a small inductor down to 1µH which in-turn allows for much smaller boards with lower power and complexity as well as improved cross talk.
- **Loop Timing:** Loop timing is not a requirement for TDD but the camera frequency may be locked through the link instead of using a local crystal.

¹⁻ https://www.ieee802.org/3/dm/public/0724/Chini_Tazebay_3dm_01a_0724.pdf

Advantages of a TDD-based Solution (cntd.)

- Single Chip Solution: While a camera use case may benefit from a two-chip solution, many
 applications may be addressed with a single configurable chip given 2.5Gbps rate is used in both sides
 of a TDD PHY
- Clock Requirement: Unlike 802.3ch which requires longer term stable clocking (measured over 1ms), TDD uses fast SerDes type clock recovery (e.g. measured above ~1MHz and over ~1-2us) in forward link.
- Flexible Rates: For camera use cases, 100Mbps reverse link is sufficient. For applications requiring higher reverse rates, the TDD examples in this document, are flexible enough to support (e.g. 10G/400M, 9.6G/1G, 2G/600M, etc.) and subject to consideration.

Conclusions

- Two TDD baseline examples provided to show possibilities and also to make it clear the solution is flexible and open to incorporate contributions from other 802.3dm participants.
- For modulation, the proposal follows the well established practice of using PAM2 for baud rates up to about 6Gsps. PAM2 provides highest margin for ingress noise for 2.5Gbps and 5Gbps xMII rates.
- While GMSL2 FEC is optional, stronger FEC incorporated into the TDD baselines.
- The proposed TDD baselines allow simple and power efficient analog type equalization used in SerDes and most of the existing camera solutions.
- The additional advantages of TDD enable flexible and single chip PHY solutions for many other application beyond camera (including display).
- Constructive comments and contributions are very welcome.

Thank you for your attention!

Questions?