

# **EMI considerations and measurement**

KY-ANH TRAN – AEONSEMI YORK LIU – AEONSEMI HENG ZHAO – AEONSEMI (11/11/24)

#### **Supporters**

Hoai Hoang Bengtsson, Volvo Cars



# Agenda

- Motivation
- Measurement Setup
- Measurement Parameter Summary
- Measurement Result
- Conclusion



# **Motivation**

- EMI (Electromagnetic Interference) has been mentioned to be an important factor for 802.3dm task group:
  - https://www.ieee802.org/3/dm/public/0524/Chini Tazebay 3dm 01a 0524.pdf
  - https://www.ieee802.org/3/dm/public/0524/jonsson\_etal\_3dm\_01\_05\_16\_24.pdf
  - https://www.ieee802.org/3/dm/public/0724/jonsson\_3dm\_01\_07\_15\_24.pdf
- There is currently a discussion regarding the modulation choice for 802.3dm. PAM4 802.3ch modulation downstream has been proposed by multiple individuals.
  - https://www.ieee802.org/3/dm/public/adhoc/101024/jonsson\_3dm\_01\_10\_10\_24.pdf
  - https://www.ieee802.org/3/dm/public/0924/Lo\_3dm\_02\_0924.pdf
  - https://www.ieee802.org/3/dm/public/0924/jonsson\_3dm\_01\_09\_15\_24.pdf
  - https://www.ieee802.org/3/dm/public/0924/sedarat\_3dm\_202409.pdf
- There are considerable advantages to re-use ratified IEEE specification if possible.
- Concern has been expressed with using 802.3ch on Coax medium especially with respect to EMI performance.
- We would like to submit additional EMI measurement data to the task force to help informed decision making.

#### 

#### Setup



5

#### Setup



6 🗹 AEONSEMI

### **Measurement Output**



# **Measurement Lab Setup**

802.3ch

based

camera

module

- Used short 0.25m patch cable to match connector to injection apparatus.
- Probing at ECU DUT pin was done at multiple injected frequencies to confirm injected power was similar on both SerDes and 802.3ch signal path.



Proprietary SerDes based camera module



# **Summary Parameters**

• 5Gpbs mode allows similar (payload) data rate comparison with proprietary SerDes solution.

| Parameter                     | 802.3ch                         | Proprietary SerDes |
|-------------------------------|---------------------------------|--------------------|
| Camera module PoC             | 1 inductor                      | 3 inductors        |
| ECU PoC                       | 1 inductor                      | 3 inductors        |
| Camera module Board           | 2cm x 2cm                       |                    |
| Downstream Maximum<br>Payload | 5Gbps                           | 5.2Gbps            |
| Upstream Payload              | Control data                    |                    |
| Cable(s)                      | 8.25m, 15.25m (Coax, DACAR 302) |                    |
| Frequency sweep               | 150MHz -> 3GHz                  |                    |



### Measurement Results: 15.25m coax



 Data clipped at 20dBm due to maximum signal generator output power reached

- The measurement allows for direct comparison between volume shipping SerDes and 802.3ch implementation.
- At 15.25m coax reach, 802.ch PHY implementation has much better EMI tolerance than incumbent SerDes implementation.



### Measurement Results: 8.25m coax



Repeat similar measurement at 8.25m reach

🖉 AEONSEMI

11

# Conclusion

- Data submitted to task group show 802.3ch silicon implementation is competitive in power and latency to proprietary incumbent SerDes
  - https://www.ieee802.org/3/dm/public/0924/Power and Latency 8023ch Tran 09182024.pdf
  - https://www.ieee802.org/3/dm/public/0524/Evaluation%20of%20802.3ch\_Tran\_050142024a.pdf
- Additional measurement results show 802.3ch PHY outperforms incumbent proprietary SerDes on EMI tolerance as well.
  - How much more EMI tolerance is needed relative to incumbent solutions?
- Additional measurements can be made to provide more coverage/data points.

