Complexity Considerations for Camera Systems

IEEE P802.3dm February 27, 2025

Felix Fellhauer, Robert Bosch GmbH Dominik Brödel, Robert Bosch GmbH Thomas Hogenmüller, Robert Bosch GmbH

Agenda

- 1. Motivation
- 2. Relevant Sub-systems
- 3. Complexity drivers
- 4. Complexity Analysis of example systems
- 5. Comparison
- 6. Conclusions

Motivation

- .3dm PAR contains in "Need for Project: (...) end-nodes are highly constrained on complexity and power (...)" [1]
- There have been multiple presentations in ISAAC TF/ .3dm on camera ECU complexity, covering various aspects of camera system design
 - camera size and imager integration [2], package and PCB size [3], crystal-less operation [4], PoC/ PoDL filter design [5]
- There is uncertainty in which directions, optimization is required on order to meet "complexity reduction" goals stated in .3dm PAR
- Multiple directions have been considered, such as: silicon area for Camera-side PHY, reduction of PoC/PoDL coupling circuitry, camera-side PHY peripherals (e.g. crystal-less)
- This contribution intends to give orientation in terms of which aspects are worth being optimized to have a
 relevant impact from system integration perspective

[1]: P802.3dm PAR ec-24-0014-01-00EC-draft-ieee-p802-3dm-par.pdf

^{[2]: &}quot;Call For Interest (CFI) consensus meeting presentation" CFI 01 0723.pdf

^{[3]: &}quot;Automotive cameras and size" broedel_matheus_dm_01_size_07152024.pdf

^{[4]: &}quot;Link Synchronization for Crystal-less Camera Links" Zherebtsov_razavi_Ragnar_3dm_01_Jan_2025.pdf

^{[5]: &}quot;From Concept to Circuit: Designing Effective PoC Filters" Houck 3dm_02_0121_5.pdf

Relevant Electronics Sub-systems

Sub-systems

- Power Supply
 - DC/DC converter
 - Provisioning of n supply rails
 - Power monitoring
 - (Load-dump HSS)
- Power-over circuitry
 - Inductors, coupling, ...
- Connector
- PHY/ Bridge
 - PHY-Chip
 - PHY-Peripherals
 - Clock, Decoupling
- (Imager) not considered
- (Imager Memory) not considered

- Number of passives
- Sub-system PCB footprint

Analysis of example systems

Incumbent Reference design

- single-PCB design, no PMIC used, in general comparable to a state-of-the-art camera design
- Ethernet (IEEE 802.3ch w/ STP)
 - 3-PCB prototype (connector, PHY, Imager),

- slightly larger overall footprint,
- debugging-aspects not covered in comparison
- more details, already shown in [1]
- Ethernet (IEEE 802.3ch w/ Coax)
 - early 3-PCB prototype,
 - slightly larger overall footprint,
 - debugging-aspects not covered in comparison

[1]: "Measurements and Simulations on MDI Return Loss including PoC/PoDL", 11 July 2023 https://grouper.ieee.org/groups/802/3/dm/public/adhoc/101024/strohmeier_dm_measure_sim_rl_101024_v03.pdf

Complexity Analysis - Incumbent Solution [1]

	Comment	# Parts	PCB Area
Power Supply	2 rails imager 1 rail serializer 3 rails total	14	≈ 101 mm ²
Power Management	-	11	$\approx 43 \text{ mm}^2$
PHY	4 Gbps	1	$\approx 26 \text{ mm}^2$
PHY- peripherals	no crystal, passives only	24	$\approx 109 \text{ mm}^2$
Power-over-x	L5 rather large, 2 ferrites should be sufficient	5	$\approx 26 \text{ mm}^2$
Imager	-	30	$\approx 219 \text{ mm}^2$

[1]: "SerDes Reference Design" https://www.ti.com/tool/TIDA-020002

Complexity Analysis - 802.3ch (STP)

	Comment	# Parts	PCB Area
Power Supply	3 rails imager (2V8, 1V2, 1V8) 3 rails PHY (1V8, <u>0V8</u> , 1V2) 4 rails total	29	≈ 238 mm ²
Power Management	included in power management IC	-	-
РНҮ	5GBASE-T1	1 Active 27 Passive	$\approx 234 \text{ mm}^2$
PHY- peripherals	crystal (+4 components)	1 Active 4 Passive	$\approx 20 \text{ mm}^2$
Power-over-x	minimalistic	2 Inductors 7 HSS	$\approx 27 \text{ mm}^2$
Imager	-	-	-

Complexity Analysis - 802.3ch (Coax)

	Comment	# Parts	PCB Area
Power Supply	3 rails imager (2V9, 1V1, 1V8) 3 rails PHY (<u>0V8, 1V0,</u> 1V8) 5 rails total	2 active 26 passive	≈ 301 mm ²
Power Management	included in power management IC	-	-
РНҮ	5GBASE-T1	1 active 20 passive	≈ 142 mm ²
PHY- peripherals	crystal (comp.)	1 active 4 passive	$\approx 18 \text{ mm}^2$
Power-over-x	minimalistic	2 Inductors 7 HSS	$\approx 32 \text{ mm}^2$
Imager	-	-	-

Additional supply rail adds complexity Overall PHY footprint is rather large

Comparison - Main complexity drivers

- Incumbent solutions allow for low footprint PHY integration (approx. factor 2)
- Main complexity drivers for system implementations of .3ch are
 - 1. Number of supply rails
 - 2. PHY-Size
 - 3. PHY-Peripherals (discretes)
 - 4. PoC/PoDL circuitry
 - 5. PHY-Clock circuitry

Conclusions

For what should .3dm be optimized to have an impact on camera ECU complexity?

IEEE 802.3dm should (in descending order):

- 1. Allow for implementation with low number of supply rails (matched with typical imager rails)
- 2. Allow for implementation with low pin count (small PHY/Bridge footprint size)
- 3. Allow for **minimal footprint Power-over filters**
- 4. Allow for crystal-less operation
- 5. Allow for **minimalistic MDI** (no discrete filters, no CMC)

Thank You!