

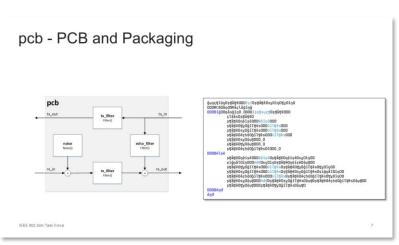
Simulating Noise Environment

Contribution to 802.3dm Task Force

February 24, 2025

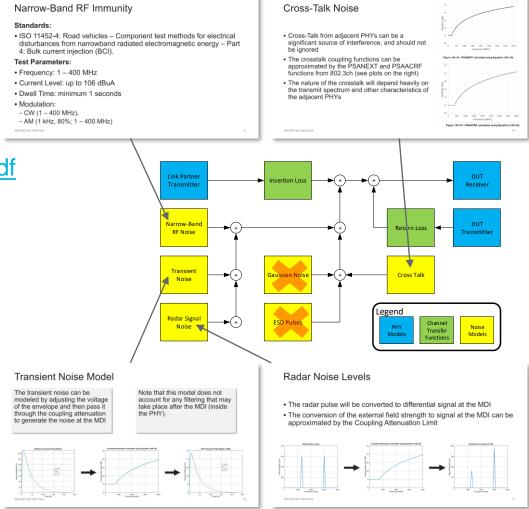
Ragnar Jonsson - Marvell

Introduction


- Specific noise models were proposed in jonsson_3dm_01_07_15_24.pdf
- The simDM simulation environment was introduced and then used in
 - jonsson_3dm_01_12_19_24.pdf
 - jonsson_3dm_02a_12_19_24.pdf
 - jonsson_3dm_01b_01_20_25.pdf
- This presentation discusses how the environmental noise models can be included in the simDM simulations

Summary

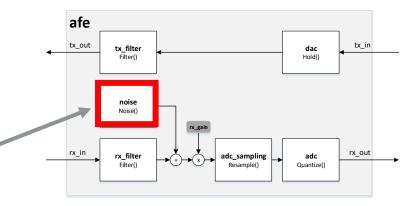
- This presentation describes model of the environmental noise that may impact 802.3dm line code evaluation
- Specific models have been proposed to describe the environmental noise
- The model is intended to be comprehensive enough to describe the relevant noise sources, without over complicating the model
- Noise modeling may require dedicated ad hoc meeting

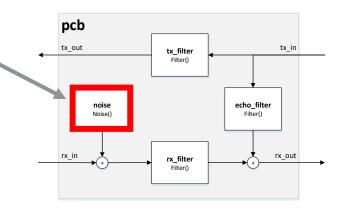


From https://www.ieee802.org/3/dm/public/0724/jonsson_3dm_01_07_15_24.pdf

Environmental Noise

- Narrow-Band RFI
- Transient Noise
- Radar Noise
- Cross Talk




All figures above are from https://www.ieee802.org/3/dm/public/0724/jonsson 3dm 01 07 15 24.pdf

3

Hooks for Noise Injection in simDM

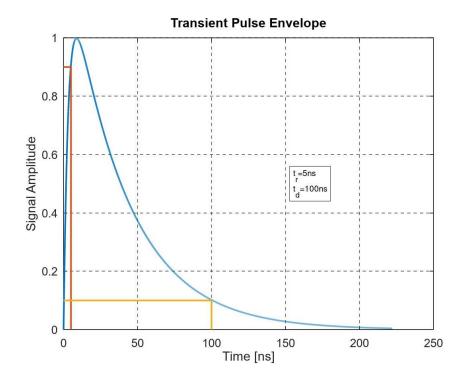
- The simDM simulation code has hooks to inject noise at the PCB input and in the AFE (see block diagrams)
- The noise injection point in the AFE is intended to model the AFE internal noise ' (e.g. Gaussian noise)
- The noise injection point in the PCB is intended to inject the environmental noise:
 - Narrow-Band RF Noise
 - Transient Noise
 - Radar Signal Noise
 - Cross Talk

Noise Hooks in Test Code

99> %%% Configure the PCB impairments %%%	
<pre>100> pcb_config.hybrid_echo = h_hybrid_echo;</pre>	% Set hybrid echo for PCB
101> pcb_config.cutoff = pcb_cutoff;	% Set PCB cutoff frequency
102> pcb_config.noise = '0;';	% Set PCB noise to zero

- The Test1.m function in the simDM V1.1 code [1] shared in the January meeting has hooks for configuring the PCB noise
- In the Test1.m code the PCB noise is explicitly set to zero (see line 102 above)
- All that is needed to enable the environmental noise models is to add MATLAB code to generate the noise

Transient Pulse Envelope


It was suggested in [2] to use transient pulse envelope to shape a modulated tone to model Transient Noise

Such pulse envelope can be modeled with $f(t) = K \times (e^{-at} - e^{-bt})$

where a, b, and K are chosen based on the desired rise and decay times.

In some cases, it is desirable to modulate the tone with a square wave

$$f(t) = \begin{cases} 1 & 0 \le t < t_c \\ 0 & else \end{cases}$$

New function was added to simDM to support such modulated pulse

IEEE 802.3dm Task Force

[2] https://www.ieee802.org/3/dm/public/0724/jonsson_3dm_01_07_15_24.pdf

function h = simDM modulated pulse(t, t r, t d, A, f 1, t interval) % Function to generate modulated pulse (transient noise) signal % Arguments: % t - time vector % tr - rise time constant in ns % t d - decay time constant in ns % A - amplitude of the transient noise in mV % f 1 - frequency of the tone in MHz (default is 0) % t interval - time interval for modulation in ms (default is new transient every call) % Returns: % h - modulated pulse signal % Zero t r means that the pulse becaumes a square pulse % If t interval is not provided, a new transient is generated every call % Usage: % h = simDM modulated pulse(t, t r, t d, A, f 1, t interval) % Example: % t = [0:1000]*1e9: % Time vector in ns % h = simDM modulated pulse(t, 10, 100, 100, 10); % plot(t, h): % xlabel('Time [ns]'); % ylabel('Amplitude [mV]'); % title('Modulated Pulse Signal'); % grid on; % This will plot modulated pulse with rise time of 10ns, decay time of 100ns, % amplitude of 100mV, and tone frequency of 10MHz. % % This is simulation code provided to help with the development of % IEEE 802.3dm. % % This code is provided for reference to allow independent evaluation % of the accuracy and applicability of the simulation results shared in % IEEE 802.3dm presentations by the author. % % Written by Ragnar Jonsson, affiliated with Marvell Technology, Inc. % Version 1.1.1, February 24th, 2025 % % THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS % OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, % FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL % THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER % LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING % FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER % DEALINGS IN THE SOFTWARE.

```
% Set default frequency if not provided
if ((nargin < 5) || isempty(f 1))</pre>
    f 1 = 0;
end
```

% Set default time interval if not provided if ((nargin < 6) || isempty(t interval))</pre> t interval = t(1)*1e9 + 100; % Default to new transient 100ns into every call end

```
% change argument units
t r = t r * 1e-9; % Convert rise time to seconds
t d = t d * 1e-9; % Convert decay time to seconds
t interval = t interval * 1e-9; % Convert time interval to seconds
A = A * 1e-3; % Convert amplitude to V
f 1 = f 1 *1e6; % Convert frequency to MHz
```

% Modulate time vector by the time interval t = mod(t, t interval);

```
% Generate the pulse shape
    if(t r == 0)
        pulse = (t <= t_d); % Generate a square pulse</pre>
else
```

```
% Calculate rise and decay constants
a r = log(0.1 * 2.45) / t r;
a d = log(0.1 / 1.35) / t d;
```

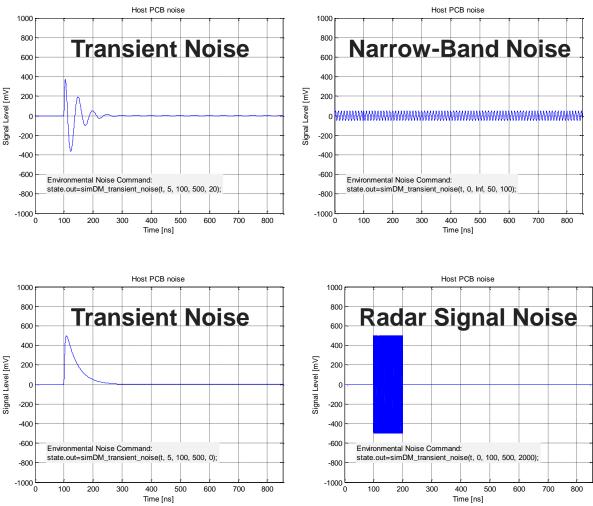
```
% Generate the rising and decaying pulse shape
   h = ((1 - exp(a r * t)) .* exp(a d * t));
   pulse = h ./ max(h(:)); % Normalize the pulse
end
```

```
% Generate the tone
tone = cos(2 * pi * t * f 1);
```

% Combine pulse and tone to create transient noise transient = A * (pulse .* tone); h = transient; % Output the transient noise signal

end

- New test function Test4.m was added to the simDM code, that takes the environmental noise as an argument
- The new Test4.m function is identical to Test1.m, except for the addition of the new noise argument


function Test4(hdr rate, pam levels, cable name, env noise, pcb cutoff, print plot) % Simulation of ACT transmit and receive signals - Test 4 Test4(hdr rate,pam levels,cable name,env noise,pcb cutoff,print plot) % % Function arguments: % hdr rate - Data rate in Gbps (default: 2.5) pam levels - Number of PAM levels (default: 4) % cable name - Cable model name (default: 'good') % % env noise - Environmental noise (default: '0') New argument % pcb cutoff - PCB cutoff frequency in MHz (default: 10) print plot - Flag to save plots (default: 0) %

Examples

The new functions can now be used to generate three different kinds of noise:

- Narrow-Band RF Noise
- Transient Noise
- Radar Signal Noise

Cros-talk noise is not yet supported in the simDM

- The simDM simulation code has been updated to more easily support environmental noise
- The supported environmental noise types are
 - Narrow-Band RF Noise
 - Transient Noise
 - Radar Signal Noise
- Cross-talk noise has not yet been added to the simDM
- Separate presentations will use the new noise models to evaluate the performance of different PHY candidates in the presence of environmental noise

The updated MATLAB code will be made available to the 802.3dm Task Force

Essential technology, done right[™]