System Comparison

IEEE 802.3dm

Ad-Hoc Call October 10th 2024

Conrad Zerna (Aviva Links Inc.)

Agenda Overview

- Introduction to ASA Motion Link ... a system built for Automotive
- MLE is leveraging the physical layer of ASA Motion Link
- Direct comparison for volume use cases

- ASA ML is a complete communication stack, slim and optimized for Automotive
 - Physical layer, Security layer, Link layer, Adaptation layers (encapsulation)
- ASEPs
 - Video Data
 - I²C ... Byte Mode ... Bulk Mode
 - GPIO
 - VESA eDP® *
 - SPI
 - Ethernet Layer 2 frames
 - I2S
 - MIPI CSI-2[®] **

* specification developed under liaison with and approved by VESA ** specification developed under liaison with and approved by MIPI

- ASAsec specified Automotive tailored key hierarchy and interoperable Key Exchange messages / primitives
- and leveraged proven industry standard symmetric AES algorithms

- ASA Precision Time Base (PTB)
 - Root node is clock leader
 - All Branch and Leaf devices synchronize their logical clocks (with tic=4ns) to the clock leader
- PTB only takes payload bandwidth for initialization; synchronization is tied to physical layer and thus is highly accurate
- Precision Time Base enables
 - Data time stamping (for sensor fusion)
 - Event synchronization through presentation time stamp (for sensor cycle trigger)

	DOWNSTREAM	TRAFFIC (Forw	vard Chan	UPSTREAM TRAFFIC (Reverse Channel)					
Speed Grade	Downstream Line Rate	Modulation	Baud Rate	Payload Data rate (after ASAsec)	Upstream Line Rate	Modulation	Baud Rate	Payload Data rate (after ASAsec)	
SG1	2 Gbps	PAM2	2G	> 1.8 Gbps	2 Gbps	PAM2	2G	50 Mbps	
SG2	4 Gbps	PAM2	4G	> 3.6 Gbps	2 or 4 Gbps	PAM2	2G or 4G	50 or 100 Mbps	
SG3	8 Gbps	PAM2	8G	> 6.4 Gbps	2 or 4 Gbps	PAM2	2G or 4G	50 or 100 Mbps	
SG4	12 Gbps	PAM4	6G	> 9.7 Gbps	2 or 4 Gbps	PAM2	2G or 4G	50 or 100 Mbps	
SG5	16 Gbps	PAM4	8G	> 13 Gbps	2 or 4 Gbps	PAM2	2G or 4G	50 or 100 Mbps	

- ASA ML physical layer combines
 - Low cost on PHY
 - Low cost on system level (PoC)
 - Better EMC performance
 - Low power scalability into deep submicron and low supply voltages

- Half-duplex physical layer adds parameters, which can be changed very cheaply
 - Downstream burst time
 - Upstream burst time
 - Interburst Gap
- For instance, adjust payload data rate to fit Ethernet MAC
- Many parameter combinations are possible to prioritize different properties
- ASA Light Sleep skips over TDD cycles to save power beyond absolute minimum data rate requirement

• These are MLE asymmetric modes, which were settled on for different priorities / reasons

•	These prioritize short cycle time		Downstream Payload Rate	Upstream Payload Rate	Downstream Burst time	Upstream Burst time
		+	2.5G	100M	2.88 us	0.48 us
			5G	100M	2.16 us	0.24 us
			10G	1G	2.16 us	0.24 us
• Tł	This one is for		10G	100M	25.92 us	0.32 us
	smallest line rate	overhead ate				•

- For any system consideration, the most suitable parameter set should be picked
- Many more parameter combinations are possible to address other priorities

Volume Use Cases

- By volume, the top tier resolutions for cameras in Automotive are 1Mpxl, 3Mpxl, 5Mpxl and 8Mpxl
- Together, these make up the VAST majority of volume
- Within this vast majority
 - Higher volume of 3Mpxl cameras than 5Mpxl cameras
 - Higher volume of 5Mpxl cameras than 8Mpxl cameras
- Even though these resolutions were introduced one after the other from lower to higher resolution, with years between the upgrades
 ... 3Mpxl still outsells the later upgrades

Comparison for Volume Use Cases

Imager						MLE							ch + FDD				
Moyle	fps	bpp	emb	Payload rate	MAC	Dn	Dn Line	Up	Up Line	Dn	Up	Dn	Dn Line	Up	Up Line		
ivipxis			data	[Gbps]	Rate	Levels	Rate	Levels	Rate	burst	burst	Levels	Rate	Levels	Rate		
3	15	12	1.05	0.57	2.5G	2	4	2	4	2.88	0.48	4	2.8125	2	0.117		
	30	12	1.05	1.13													
	60	12	1.05	2.27													
5	30	12	1.05	1.89													
	60	12	1.05	3.78	5G	2	8	2	8	2.16	0.24		5.625	2	0.117		
8	30	12	1.05	3.02								4					
	45	12	1.05	4.54													

- ALL volume use cases require only 2.5G and 5G MAC rate
 → These are the important configurations to pay attention to!
- MLE is still PAM2 for Downstrean and Upstream
- ch-based proposal is PAM4 for even 2.5G

Summary

- Introduction to ASA Motion Link ... a system built for Automotive application end-to-end
- MLE is leveraging the physical layer of ASA Motion Link, with all its advantages
- Direct comparison for volume use cases: 2.5G and 5G MAC rate have to be in focus!

Thank You!

