
IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
1 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

99. Media Access Control for physical links with multiple MACs

99.1 Functional model of the MAC method

99.1.1 Overview

The architectural model described in Clause 1 is used in this clause to provide a functional description of the
MAC sublayer for physical links with multiple MACs.

The MAC sublayer defines a medium-independent facility, built on the medium-dependent physical facility
provided by the Physical Layer, and under the access-layer-independent LAN LLC sublayer (or other MAC
client). It is applicable to a general class of local area media suitable for use with media access mechanisms
supporting multiple MACs over a single physical link.

The LLC sublayer and the MAC sublayer together are intended to have the same function as that described
in the OSI model for the Data Link Layer alone. In a network with multiple MACs and a single physical
link, a distinct physical connection may correspond to multiple data links between two or more network
entities. In this type of network, the major functionality in the MAC sublayer is limited to data encapsulation
(transmit and receive) along with the associated minor functions including:

a) Framing (frame boundary delimitation, frame synchronization)
b) Addressing (handling of source and destination addresses)
c) Error detection (detection of physical medium transmission errors)

This MAC does not support the half duplex mode of operation so there is no need for collision avoidance or
handling. Also, with multiple data links over a single physical link, one MAC cannot be responsible for
media access and contention. The responsibility for coordinating multiple data streams over the one link lies
with sublayers other than this MAC. Therefore, Media Access Management is limited to the transmission of
bits to the physical layer and delaying any transmission for an interframe gap.

An optional MAC control sublayer, architecturally positioned between LLC (or other MAC client) and the
MAC, is specified in Clause 31 and Clause 65. This MAC Control sublayer is transparent to both the under-
lying MAC and its client (typically LLC). The MAC sublayer operates independently of its client; i.e., it is
unaware whether the client is LLC or the MAC Control sublayer. This allows the MAC to be specified and
implemented in one manner, whether or not the MAC Control sublayer is implemented. References to LLC
as the MAC client in text and figures apply equally to the MAC Control sublayer, if implemented.

The remainder of this clause provides a functional model of this MAC method.

99.1.2 Full duplex operation

This subclause provides an overview of frame transmission and reception in terms of the functional model of
the architecture. This overview is descriptive, rather than definitional; the formal specifications of the opera-
tions described here are given in 99.2 and 99.3. Specific implementations for full duplex mechanisms that
meet this standard are given in 99.4. Figure 1–1 provides the architectural model described functionally in
the subclauses that follow.

The Physical Layer Signaling (PLS) component of the Physical Layer provides an interface to the MAC sub-
layer for the serial transmission of bits onto the physical media. For completeness, in the operational
description that follows some of these functions are included as descriptive material. The concise specifica-
tion of these functions is given in 99.2 for the MAC functions and in Clause 7 for PLS.

Transmit frame operations are independent from receive frame operations.

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
3 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

99.1.4 Access method functional capabilities

The following summary of the functional capabilities of the MAC sublayer is intended as a quick reference
guide to the capabilities of the standard, as shown in Figure 99–1:

a) For Frame Transmission
1) Accepts data from the MAC client and constructs a frame.
2) Presents a bit-serial data stream to the Physical Layer for transmission on the medium.
NOTE—Assumes data passed from the client sublayer are octet multiples.

b) For Frame Reception
1) Receives a bit-serial data stream from the Physical Layer.
2) Presents to the MAC client sublayer frames that are either broadcast frames or directly

addressed to the local station.
3) Discards or passes to Network Management all frames not addressed to the receiving station.

c) Appends proper FCS value to outgoing frames and verifies full octet boundary alignment.
d) Checks incoming frames for transmission errors by way of FCS and verifies octet boundary alignment
e) Delays transmission of frame bit stream for specified interframe gap period.
f) Discards received transmissions that are less than a minimum length.
g) Appends preamble, Start Frame Delimiter, DA, SA, Length/Type field, and FCS to all frames, and

inserts PAD field for frames whose data length is less than a minimum value.
h) Removes preamble, Start Frame Delimiter, DA, SA, Length/Type field, FCS, and PAD field (if nec-

essary) from received frames.

TRANSMIT
DATA ENCAPSULATION

RECEIVE
DATA DECAPSULATION

TRANSMIT MEDIA
ACCESS MANAGEMENT

RECEIVE MEDIA
ACCESS MANAGEMENT

TRANSMIT
DATA ENCODING

RECEIVE
DATA DECODING

PHYSICAL LAYER SIGNALING

MAC CLIENT SUBLAYER

a1 c g b2 b3 d f h

a2 e b1

ACCESS TO PHYSICAL INTERFACE

ACCESS TO MAC CLIENT

Figure 99–1—CSMA/CD Media Access Control functions

NOTE—a1, b2, etc., refer to functions listed in 99.1.4.

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
5 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

99.2.2.2 Use of Pascal in the procedural model

Several observations need to be made regarding the method with which Pascal is used for the model. Some
of these observations are as follows:

a) The following limitations of the language have been circumvented to simplify the specification:
1) The elements of the program (variables and procedures, for example) are presented in logical

groupings, in top-down order. Certain Pascal ordering restrictions have thus been circumvented
to improve readability.

2) The process and cycle constructs of Concurrent Pascal, a Pascal derivative, have been intro-
duced to indicate the sites of autonomous concurrent activity. As used here, a process is simply
a parameterless procedure that begins execution at “the beginning of time” rather than being
invoked by a procedure call. A cycle statement represents the main body of a process and is
executed repeatedly forever.

3) The lack of variable array bounds in the language has been circumvented by treating frames as
if they are always of a single fixed size (which is never actually specified). The size of a frame
depends on the size of its data field, hence the value of the “pseudo-constant” frameSize should
be thought of as varying in the long term, even though it is fixed for any given frame.

4) The use of a variant record to represent a frame (as fields and as bits) follows the spirit but not
the letter of the Pascal Report, since it allows the underlying representation to be viewed as two
different data types.

b) The model makes no use of any explicit interprocess synchronization primitives. Instead, all
interprocess interaction is done by way of carefully stylized manipulation of shared variables. For
example, some variables are set by only one process and inspected by another process in such a
manner that the net result is independent of their execution speeds. While such techniques are not
generally suitable for the construction of large concurrent programs, they simplify the model and
more nearly resemble the methods appropriate to the most likely implementation technologies
(microcode, hardware state machines, etc.)

99.2.2.3 Organization of the procedural model

The procedural model used here is based on five cooperating concurrent processes. The Frame Transmitter
process and the Frame Receiver process are provided by the clients of the MAC sublayer (which may
include the LLC sublayer) and make use of the interface operations provided by the MAC sublayer. The
other three processes are defined to reside in the MAC sublayer. The five processes are as follows:

a) Frame Transmitter process
b) Frame Receiver process
c) Bit Transmitter process
d) Bit Receiver process
e) Deference process

This organization of the model is illustrated in Figure 99–2 and reflects the fact that the communication of
entire frames is initiated by the client of the MAC sublayer, while the timing of individual bit transfers is based
on interactions between the MAC sublayer and the Physical-Layer-dependent bit time.

Figure 99–2 depicts the static structure of the procedural model, showing how the various processes and pro-
cedures interact by invoking each other. Figures 99–3a, 99–3b, and 99–4 summarize the dynamic behavior
of the model during transmission and reception, focusing on the steps that shall be performed, rather than the
procedural structure that performs them. The usage of the shared state variables is not depicted in the fig-
ures, but is described in the comments and prose in the following subclauses.

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
7 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The Layer Management facilities provided by the MAC and Physical Layer management definitions provide
the ability to manipulate management counters and initiate actions within the layers. The managed objects
within this standard are defined as sets of attributes, actions, notifications, and behaviors in accordance with
IEEE Std 802.1F-1993, and ISO/IEC International Standards for network management.

99.2.3 Frame transmission model

Frame transmission includes data encapsulation and Media Access management aspects:

a) Transmit Data Encapsulation includes the assembly of the outgoing frame (from the values provided
by the MAC client) and frame check sequence generation.

b) Transmit Media Access Management includes interframe spacing and bit transmission.

99.2.3.1 Transmit data encapsulation

The fields of the MAC frame are set to the values provided by the MAC client as arguments to the Transmit-
Frame operation (see 99.3) with the following possible exceptions: the padding field and the frame check
sequence. The padding field is necessary to enforce the minimum frame size. The frame check sequence
field may be (optionally) provided as an argument to the MAC sublayer. It is optional for a MAC to support
the provision of the frame check sequence in such an argument. If this field is provided by the MAC client,
the padding field shall also be provided by the MAC client, if necessary. If this field is not provided by the

TransmitFrame

Transmit
ENABLE?

assemble frame

deferring on?

start transmission

transmission
done?

Done:
transmitOK

no

yes

yes

no

no

yes

‡

‡ For Layer Management Done:
transmitDisabled

‡

a) TransmitFrame

Figure 99–3a—Control flow summary

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
9 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

MAC client, or if the MAC does not support the provision of the frame check sequence as an external argu-
ment, it is set to the CRC value generated by the MAC sublayer, after appending the padding field, if neces-
sary.

no

yes

yes

no transmission
started?

transmit a bit

end of
frame?

transmission done

BitTransmitter process

yes

no receiving
started?

receive a bit

receiving done

BitReceiver process

fill interframeyes

no receiveDataValid
off or frameFinished

on?

Figure 99–4—Control flow

deferring on

channel busy?

no

deferring off

wait
interframe spacing

frameWaiting?

yes

yes

no

Deference process

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
11 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The MAC sublayer is capable of activating some number of group addresses as specified by higher layers.
The MAC sublayer recognizes and accepts any frame whose Destination Address field contains an active
group address. An active group address may be deactivated.

The MAC sublayer may also provide the capability of operating in the promiscuous receive mode. In this
mode of operation, the MAC sublayer recognizes and accepts all valid frames, regardless of their Destina-
tion Address field values.

99.2.4.1.2 Frame check sequence validation

FCS validation is essentially identical to FCS generation. If the bits of the incoming frame (exclusive of the
FCS field itself) do not generate a CRC value identical to the one received, an error has occurred and the
frame is identified as invalid.

99.2.4.1.3 Frame disassembly

Upon recognition of the Start Frame Delimiter at the end of the preamble sequence, the MAC sublayer
accepts the frame. If there are no errors, the frame is disassembled and the fields are passed to the MAC cli-
ent by way of the output parameters of the ReceiveFrame operation.

99.2.4.2 Receive media access management

99.2.4.2.1 Framing

The MAC sublayer recognizes the boundaries of an incoming frame by monitoring the receiveDataValid
signal provided by the Physical Layer. Two possible length errors can occur that indicate ill-framed data: the
frame may be too long, or its length may not be an integer number of octets.

a) Maximum Frame Size. The receiving MAC sublayer is not required to enforce the frame size limit,
but it is allowed to truncate frames longer than maxUntaggedFrameSize octets and report this event
as an (implementation-dependent) error. A receiving MAC sublayer that supports tagged MAC
frames (see 3.5) may similarly truncate frames longer than (maxUntaggedFrameSize + qTagPrefix-
Size) octets in length, and report this event as an (implementation-dependent) error.

b) Integer Number of Octets in Frame. Since the format of a valid frame specifies an integer number of
octets, only an error can produce a frame with a length that is not an integer multiple of 8 bits. Com-
plete frames that do not contain an integer number of octets are truncated to the nearest octet bound-
ary. If frame check sequence validation detects an error in such a frame, the status code
alignmentError is reported.

99.2.5 Preamble generation

In a LAN implementation, most of the Physical Layer components are allowed to provide valid output some
number of bit times after being presented valid input signals. Thus it is necessary for a preamble to be sent
before the start of data, to allow the PLS circuitry to reach its steady state. Upon request by TransmitLink-
Mgmt to transmit the first bit of a new frame, BitTransmitter shall first transmit the preamble, a bit sequence
used for physical medium stabilization and synchronization, followed by the Start Frame Delimiter. The pre-
amble pattern is:

10101010 10101010 10101010 10101010 10101010 10101010 10101010

The bits are transmitted in order, from left to right. The nature of the pattern is such that, for Manchester
encoding, it appears as a periodic waveform on the medium that enables bit synchronization. It should be
noted that the preamble ends with a “0.”

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
13 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

HeaderViewPoint = (headerFields, headerBits);
Frame = record {Format of Media Access frame}

case view: ViewPoint of
fields: (

destinationField: AddressValue;
sourceField: AddressValue;
lengthOrTypeField: LengthOrTypeValue;
dataField: DataValue;
fcsField: CRCValue);

bits: (contents: array [1..frameSize] of Bit)
end; {Frame}

Header = record {Format of preamble and start frame delimiter}
case headerView: HeaderViewPoint of

headerFields: (
preamble: PreambleValue;
sfd: SfdValue);
headerContents: array [1..headerSize] of Bit)

headerBits: (headerContents: array [1..headerSize] of Bit)
end; {Defines header for MAC frame}

99.2.7.2 Transmit state variables

The following items are specific to frame transmission. (See also 99.4.)

const
interFrameSpacing = ...; {In bit times, minimum gap between frames. Equal to interFrameGap,

see 99.4}
ifsStretchRatio = ...; {In bits, determines the number of bits in a frame that require one octet of

interFrameSpacing extension, when ifsStretchMode is enabled; implementation
dependent, see 4.4}

var
outgoingFrame: Frame; {The frame to be transmitted}
outgoingHeader: Header;
currentTransmitBit, lastTransmitBit: 1..frameSize; {Positions of current and last outgoing bits in

outgoingFrame}
lastHeaderBit: 1..headerSize;
deferring: Boolean; {Implies any pending transmission must wait}
frameWaiting: Boolean; {Indicates that outgoingFrame is deferring}
ifsStretchMode: Boolean; {Indicates the desired mode of operation, and enables the lowering of the

average data rate of the MAC sublayer (with frame granularity), using
extension of the minimum interFrameSpacing. ifsStretchMode is a static
variable; its value shall only be changed by the invocation of the Initialize
procedure}

ifsStretchCount: 0..ifsStretchRatio; {In bits, a running counter that counts the number of bits during a
frame’s transmission that are to be considered for the minimum
interFrameSpacing extension, while operating in ifsStretchMode}

ifsStretchSize: 0..(((maxUntaggedFrameSize + qTagPrefixSize) x 8 + headerSize + interFrameSpacing
+ ifsStretchRatio – 1) div ifsStretchRatio);
{In octets, a running counter that counts the integer number of octets that are to be
added to the minimum interFrameSpacing, while operating in ifsStretchMode}

p2mpMode: Boolean; {Indicates the desired mode of operation, and disables waiting for the deferring
variable before transmitting}

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
15 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

variables are appropriately reinitialized before each use.) Initialize then waits for the medium to be idle, and
starts operation of the various processes.

If Layer Management is implemented, the Initialize procedure shall only be called as the result of the initial-
izeMAC action (30.3.1.2.1).

procedure Initialize;
begin

frameWaiting: Boolean; {Indicates that outgoingFrame is deferring}
deferring := false;
transmitting := false; {An interface to Physical Layer; see below}
receiving := false;
passReceiveFCSMode := ...; {True when enabling the passing of the frame check sequence of all

received frames from the MAC sublayer to the MAC client is desired and
supported, false otherwise}

ifsStretchMode := ...; {True for operating speeds above 1000 Mb/s when lowering the average data rate
of the MAC sublayer (with frame granularity) is desired and supported, false
otherwise}

ifsStretchCount := 0;
ifsStretchSize := 0;
p2mpMode := ...; {True for Point-to-Multi-Point implementations, false otherwise}
while receiveDataValid do nothing
{Start execution of all processes}

end; {Initialize}

99.2.8 Frame transmission

The algorithms in this subclause define MAC sublayer frame transmission. The function TransmitFrame
implements the frame transmission operation provided to the MAC client:

function TransmitFrame (
destinationParam: AddressValue;
sourceParam: AddressValue;
lengthOrTypeParam: LengthOrTypeValue;
dataParam: DataValue;
fcsParamValue: CRCValue;
fcsParamPresent: Bit): TransmitStatus;

procedure TransmitDataEncap; {Nested procedure; see body below}
begin

if transmitEnabled then
begin

TransmitDataEncap;
TransmitFrame := TransmitLinkMgmt

end
else TransmitFrame := transmitDisabled

end; {TransmitFrame}

If transmission is enabled, TransmitFrame calls the internal procedure TransmitDataEncap to construct the
frame. Next, TransmitLinkMgmt is called to perform the actual transmission. The TransmitStatus returned
indicates the success or failure of the transmission attempt.

TransmitDataEncap builds the frame and places the 32-bit CRC in the frame check sequence field:

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
17 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

function TransmitLinkMgmt: TransmitStatus;
begin

frameWaiting := true;
if not p2mpMode then while deferring do nothing {Defer to ensure proper interframe spacing}
StartTransmit;
frameWaiting := false;
while transmitting do nothing {Full duplex mode}
LayerMgmtTransmitCounters; {Update transmit and transmit error counters in 5.2.4.2}
TransmitLinkMgmt := transmitOK

end; {TransmitLinkMgmt}

If the p2mpMode is enabled, then IPG is enforced outside this sublayer. If it is not enabled, then the IPG is
timed using the Deference process.

Each time a frame transmission attempt is initiated, StartTransmit is called to alert the BitTransmitter pro-
cess that bit transmission should begin:

procedure StartTransmit;
begin

currentTransmitBit := 1;
lastTransmitBit := frameSize;
transmitting := true;
lastHeaderBit:= headerSize

end; {StartTransmit}

The Deference process runs asynchronously to continuously compute the proper value for the variable defer-
ring. Interframe spacing may be used to lower the average data rate of a MAC at operating speeds above
1000 Mb/s in the full duplex mode, when it is necessary to adapt it to the data rate of a WAN-based physical
layer. When interframe stretching is enabled, deferring remains true throughout the entire extended inter-
frame gap, which includes the sum of interFrameSpacing and the interframe extension as determined by the
BitTransmitter:

process Deference;
var realTimeCounter: integer; wasTransmitting: Boolean;

begin
while not transmitting do nothing; {Wait for the start of a transmission}
deferring := true; {Inhibit future transmissions}
while transmitting do nothing; {Wait for the end of the current transmission}
Wait(interFrameSpacing + ifsStretchSize x 8); {Time out entire interframe gap and IFS extension}
if not frameWaiting then {Don’t roll over the remainder into the next frame}

begin
Wait(8);
ifsStretchCount := 0

end
deferring := false {Don’t inhibit transmission}

end; {Deference}

If the ifsStretchMode is enabled, the Deference process continues to enforce interframe spacing for an addi-
tional number of bit times, after the completion of timing the interFrameSpacing. The additional number of

Editors note: To be removed prior to final publication

This test for p2mpMode is option #1 to making the IPG optional for P2MP.

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
19 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

If enabled, ReceiveFrame calls ReceiveLinkMgmt to receive the next valid frame, and then calls the internal
function ReceiveDataDecap to return the frame’s fields to the MAC client if the frame’s address indicates
that it should do so. The returned ReceiveStatus indicates the presence or absence of detected transmission
errors in the frame.

function ReceiveDataDecap: ReceiveStatus;
‡ var status: ReceiveStatus; {Holds receive status information}

begin
‡ with incomingFrame do
‡ begin
‡ view := fields;
‡ receiveSucceeding := LayerMgmtRecognizeAddress(destinationField);

if receiveSucceeding then
begin {Disassemble frame}

destinationParam := destinationField;
sourceParam := sourceField;
lengthOrTypeParam := lengthOrTypeField;
dataParam := RemovePad(lengthOrTypeField, dataField);
fcsParamValue := fcsField;
fcsParamPresent := passReceiveFCSMode;
exceedsMaxLength := ...; {Check to determine if receive frame size exceeds the maximum

permitted frame size. MAC implementations may use either
maxUntaggedFrameSize or (maxUntaggedFrameSize +
qTagPrefixSize) for the maximum permitted frame size,
either as a constant or as a function of whether the frame being
received is a basic or tagged frame (see 3.2, 3.5). In
implementations that treat this as a constant, it is recommended
that the larger value be used. The use of the smaller value
in this case may result in valid tagged frames exceeding the
maximum permitted frame size.}

if exceedsMaxLength then status := frameTooLong
else if fcsField = CRC32(incomingFrame) then

‡ if validLength then status := receiveOK else status := lengthError
‡ else if excessBits = 0 then status := frameCheckError
‡ else status := alignmentError;
‡ LayerMgmtReceiveCounters(status); {Update receive counters in 5.2.4.3}

view := bits
end {Disassemble frame}

‡ end; {With incomingFrame}
‡ ReceiveDataDecap := status

end; {ReceiveDataDecap}

function RecognizeAddress (address: AddressValue): Boolean;
begin

RecognizeAddress := ...; {Returns true for the set of physical, broadcast,
and multicast-group addresses corresponding
to this station}

end; {RecognizeAddress}

function LayerMgmtRecognizeAddress(address: AddressValue): Boolean;
begin

if {promiscuous receive enabled} then LayerMgmtRecognizeAddress := true;
if address = ... {MAC station address} then LayerMgmtRecognizeAddress := true;
if address = ... {Broadcast address} then LayerMgmtRecognizeAddress := true;

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
21 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

process BitReceiver;
var b: PhysicalBit;

incomingFrameSize: integer; {Count of all bits received in frame including extension}
frameFinished: Boolean;
enableBitReceiver: Boolean;
currentReceiveBit: 1..frameSize; {Position of current bit in incomingFrame}

begin
cycle {Outer loop}

if receiveEnabled then
begin {Receive next frame from physical layer}

currentReceiveBit := 1;
incomingFrameSize := 0;
frameFinished := false;
enableBitReceiver := receiving;
PhysicalSignalDecap; {Skip idle and extension, strip off preamble and sfd}
while receiveDataValid and not frameFinished do

begin {Inner loop to receive the rest of an incoming frame}
b := ReceiveBit; {Next bit from physical medium}
incomingFrameSize := incomingFrameSize + 1;
if enableBitReceiver then {Append to frame}
begin

incomingFrame[currentReceiveBit] := b;
currentReceiveBit := currentReceiveBit + 1

end
end; {Inner loop}

if enableBitReceiver then
begin

frameSize := currentReceiveBit – 1;
receiveSucceeding := true;
receiving := false

end
end {Enabled}

end {Outer loop}
end; {BitReceiver}

procedure PhysicalSignalDecap;
begin

{Receive one bit at a time from physical medium until a valid sfd is detected, discard bits and return.}
end; {PhysicalSignalDecap}

99.2.10 Common procedures

The function CRC32 is used by both the transmit and receive algorithms to generate a 32-bit CRC value:

function CRC32(f: Frame): CRCValue;
begin

CRC32 := {The 32-bit CRC for the entire frame, excluding the FCS field (if present)}
end; {CRC32}

Purely to enhance readability, the following procedure is also defined:

procedure nothing; begin end;

The idle state of a process (that is, while waiting for some event) is cast as repeated calls on this procedure.

IEEE Draft P802.3ahTM/D3.1 Amendment to IEEE Std 802.3-2002™
January x, 2004 Ethernet in the First Mile

Copyright © 2003 IEEE. All rights reserved.
23 This is an unapproved IEEE Standards Draft, subject to change

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The TransmitFrame operation is synchronous. Its duration is the entire attempt to transmit the frame; when
the operation completes, transmission has either succeeded or failed, as indicated by the resulting status
code:

‡ type TransmitStatus = (transmitDisabled, transmitOK);

The transmitDisabled status code indicates that the transmitter is not enabled. Successful transmission is
indicated by the status code transmitOK.. TransmitStatus is not used by the service interface defined in
2.3.1. TransmitStatus may be used in an implementation dependent manner.

The MAC client accepts incoming frames by invoking ReceiveFrame:

function ReceiveFrame (
var destinationParam: AddressValue;
var sourceParam: AddressValue;
var lengthOrTypeParam: LengthOrTypeValue;
var dataParam: DataValue;
var fcsParamValue: CRCValue;
var fcsParamPresent: Bit): ReceiveStatus;

The ReceiveFrame operation is synchronous. The operation does not complete until a frame has been
received. The fields of the frame are delivered via the output parameters with a status code:

‡ type ReceiveStatus = (receiveDisabled, receiveOK, frameTooLong, frameCheckError,
lengthError, alignmentError);

The receiveDisabled status indicates that the receiver is not enabled. Successful reception is indicated by the
status code receiveOK. The frameTooLong error indicates that a frame was received whose frameSize was
beyond the maximum allowable frame size. The code frameCheckError indicates that the frame received
was damaged by a transmission error. The lengthError indicates that the lengthOrTypeParam value was both
consistent with a length interpretation of this field (i.e., its value was less than or equal to maxValidFrame),
and inconsistent with the frameSize of the received frame. The code alignmentError indicates that the frame
received was damaged, and that in addition, its length was not an integer number of octets. ReceiveStatus is
not mapped to any MAC client parameter by the service interface defined in 2.3.2. ReceiveStatus may be
used in an implementation dependent manner.

Note that maxValidFrame represents the maximum number of octets that can be carried in the MAC client
data field of a frame and is a constant, regardless of whether the frame is a basic or tagged frame (see 3.2 and
3.5). The maximum length of a frame (including all fields from the Destination address through the FCS,
inclusive) is either maxUntaggedFrameSize (for basic frames) or maxUntaggedFrameSize + qTagPrefix-
Size, for tagged frames.

99.3.3 Services required from the physical layer

The interface through which the MAC sublayer uses the facilities of the Physical Layer consists of a func-
tion, a pair of procedures and two Boolean variables:

Function Procedures Variables

ReceiveBit TransmitBit receiveDataValid

Wait transmitting

Amendment to IEEE Std 802.3-2002™ IEEE Draft P802.3ahTM/D3.1
Ethernet in the First Mile January x, 2004

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

99.4.2 Allowable implementations

The following parameter values shall be used for all implementations:

NOTE 1—For 10 Mb/s implementations, the spacing between two successive packets, from start of idle at the end of the
first packet to start of preamble of the subsequent packet, can have a minimum value of 47 BT (bit times), at the AUI
receive line of the DTE. This interFrameGap shrinkage is caused by variable network delays, added preamble bits, and
clock skew.

NOTE 2—For 1BASE-5 implementations, see also DTE Deference Delay in 12.9.2.

NOTE 3—For 1 Gb/s implementations, the spacing between two packets, from the last bit of the FCS field of the first
packet to the first bit of the preamble of the second packet, can have a minimum value of 64 BT (bit times), as measured
at the GMII receive signals at the DTE. This interFrameGap shrinkage may be caused by variable network delays, added
preamble bits, and clock tolerances.

NOTE 4—For 10 Gb/s implementations, the spacing between two packets, from the last bit of the FCS field of the first
packet to the first bit of the preamble of the second packet, can have a minimum value of 40 BT (bit times), as measured
at the XGMII receive signals at the DTE. This interFrameGap shrinkage may be caused by variable network delays and
clock tolerances.

Parameters

Values

10 Mb/s
1BASE-5
100 Mb/s

1 Gb/s P2MP 10 Gb/s

interFrameGap 96 bits 96 bits 0 bits 96 bits

maxUntaggedFrameSize 1518 octets 1518 octets 1518 octets 1518 octets

minFrameSize 512 bits (64 octets) 512 bits (64 octets) 512 bits (64 octets) 512 bits (64 octets)

ifsStretchRatio not applicable not applicable not applicable 104 bits

Editors note: To be removed prior to final publication

This P2MP column in the parameter table is option #2 to making the IPG optional for P2MP.

WARNING

Any deviation from the above specified values may affect proper operation of the network.

