Why the Half-Duplex MAC Doesn't Work for P2MP (And what to do about it!)

Ben Brown Eric Lynskey Glen Kramer Hidekazu Miyoshi

How we got here!

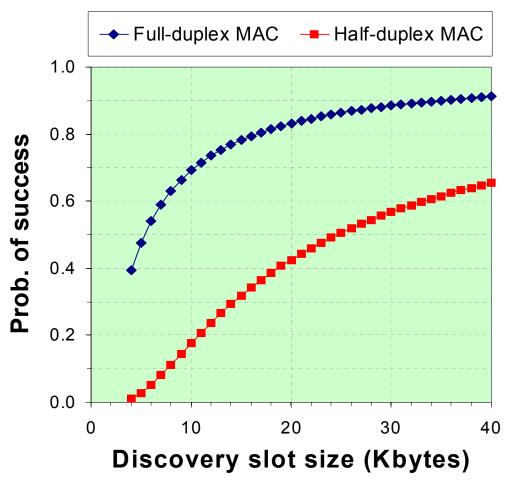
D2.0 Comment #337: Inter-Packet Gap (IPG) is enforced by MAC deferral process. But the OLT has multiple independent MACs. IPG is not enforced between packets from different MACs.

Solution adopted in September meeting in Portonovo:

- P2MP should use half-duplex (CSMA/CD) MAC
- Extend PCS to control MACs in parallel using Carrier Sense (CRS) signal

Half-Duplex Impact on Efficiency

- Half-duplex MAC uses carrier extension
- Shorter frames are extended to minimum size of 512 octets (clause 4.2.3.4)
- Detrimental impact on efficiency


	Worst-case (only 64-byte packets)	Empirical packet size distribution
Carrier extension overhead	84%	31.6%
Overall EPON efficiency	10.2%	55.6%

Setup parameters: Number of ONUs = 32, Cycle time = 1 ms, Guard band (including laser_on, T_{AGC} , and T_{CDR}) = 1 μ s, No frame delineation loss, No discovery overhead, One grant per ONU per cycle

Half-Duplex Impact on Discovery

- Every
 REGISTER_REQ
 message will be
 extended to 512
 octets
 - Probability of successful discovery is considerably lower
 - Discovery window should be very large, or many more discovery attempts required

Probability that an ONU will be discovered in current attempt if a total of 16 ONUs contend for discovery

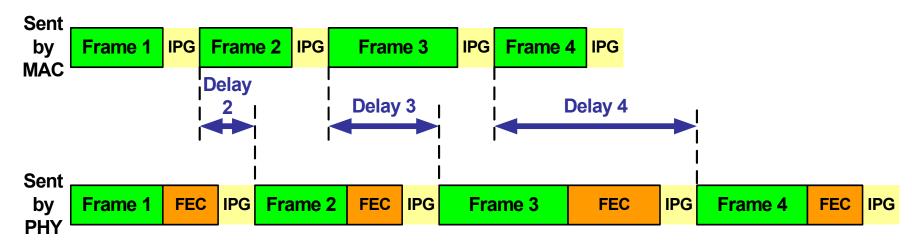
November 2003

Half-Duplex Impact on Grants

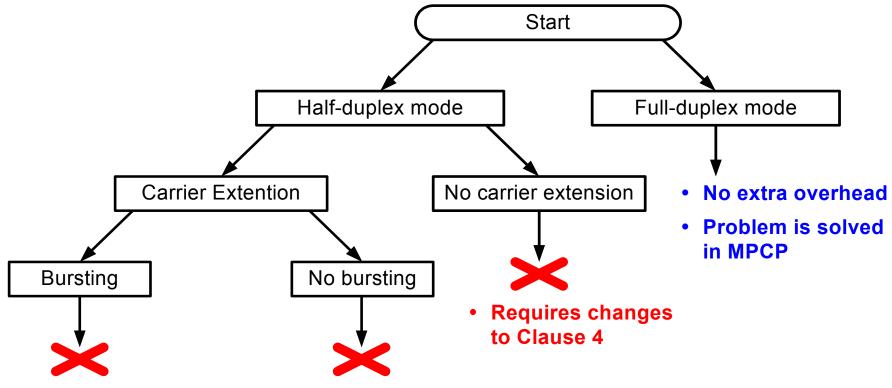
- OLT doesn't know the length of carrier extension or individual packet sizes in the reported QueueLength. How can the OLT account for net user bandwidth?
- Subscribers are penalized for carrier extension overhead.
- Bandwidth guarantees per subscriber are very difficult or not possible (overhead depends on packet size mix).

Bursting Helps: ONU Efficiency

- ONU transmits entire grant as one burst (up to 8k octets). Only the first frame in a burst is extended, if needed.
- Bursting improves upstream efficiency:


	Worst-case (only 64-byte packets)	Empirical packet size distribution
Carrier extension overhead	11.3%	6.3%
Overall EPON efficiency	63.5%	85.2%

Bursting Doesn't Help:

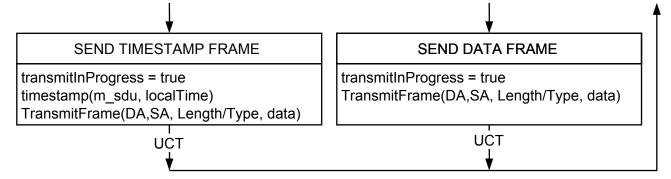

- OLT Efficiency
 - Downstream is unlikely to burst from the same MAC (to the same ONU)
- Registration
 - REGISTER_REQs are not transmitted in bursts
- Grants
 - Bursts do nothing to remove the variability of the first packet carrier extension

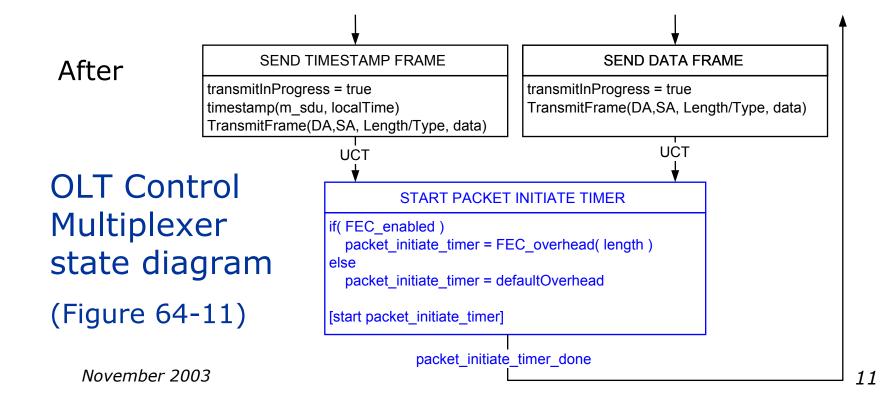
Bursting+FEC breaks MPCP

- PHY buffer must accept entire burst while appending FEC parity to individual packets.
- Packet delay in PHY buffer is equal to the amount of parity symbols required by preceding packets.
- MPCP timing mechanism relies on constant packet delay between OLT and ONU. <u>Variable delay in</u> <u>PHY breaks MPCP!</u>

Decision tree

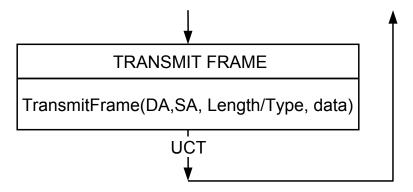
- Downstream is inefficient
- Discovery is very inefficient
- FEC adds variable delay in PHY

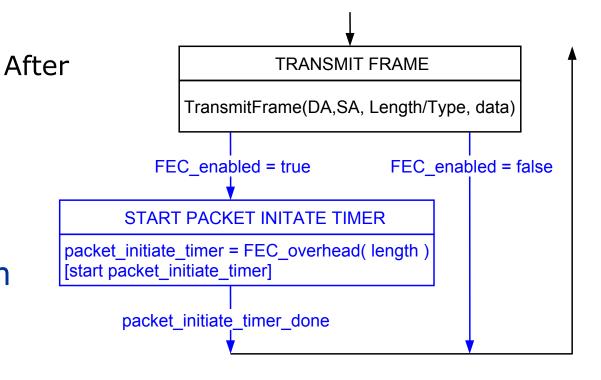

- Very inefficient
- Large overhead for MPCPDU
- Variable overhead depends on packet sizes


Proposed Solution

- Only MPCP has a top view of all the logical links, therefore, only MPCP can properly time packet transmissions.
- Multi-Point MAC Control times packet starts
 - Ensures appropriate operation and efficiency
 - Lower layers create IPG exactly as they would with intermittent traffic on any full duplex link
- Removes throughput inefficiencies
- Removes discovery inefficiencies
- Compatible with frame-based FEC

Necessary changes in OLT


Before


Necessary changes in ONU

ONU Control Multiplexer state diagram

(Figure 64-12)

November 2003

Conclusion

- Half-duplex MAC creates more problems than it solves
- All problems can be solved in MPCP with minimal changes
- The proposed solution keeps full-duplex MAC and does not change Clause 4
 - No changes to deference
 - No changes to IPG methods