
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Residential Ethernet (RE)
(a working paper)

The following paper represents an initial attempt to codify the content of
multiple IEEE 802.3 Residential Ethernet (RE) Study Group slide presenta-
tions. The author has also taken the liberty to expand on various slide-based
proposals, with the goal of triggering/facilitating future discussions.

For the convenience of the author, this paper has been drafted using the style
of IEEE standards. The quality of the figures and the consistency of the
notation should not be confused with completeness of technical content.

Rather, the formality of this paper represents an attempt by the author to
facilitate review by interested parties. Major changes and entire clause
rewrites are expected before consensus-approved text becomes available.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 1

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Contribution from: dvj@alum.mit.edu.
2 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
JggDvj2005Apr16
June 1024, 2005

Residential Ethernet (RE)
(a working paper)

Draft 0.092121

Contributors:
Alexei Beliaev Gibson
Dirceu Cavendish NEC Labs America
George Claseman Micrel
Jim Haagen-Smit HP
David V V. James JGG
Michael D. Johas Teener Broadcom

Abstract: This working paper provides background and introduces possible higher level concepts
for the development of Residential Ethernet (RE).
Keywords: residential, Ethernet, isochronous, real time
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 3

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Contributors

This working paper is based on contributions or review comments from the people listed below. Their listing
doesn't necessarily imply they agree with the entire content or the author's interpretation of their input.

Alexei Beliaev Gibson
Dirceu Cavendish NEC Labs America
George Claseman Micrel
Jim Haagen-Smit HP
David V James JGG
Michael D. Johas Teener Broadcom

Version history

Version Data Author Comments

0.082 2005Apr28 DVJ Updates based on 2005Apr27 meeting discussions
– Restructure document presentation order
– Provide list of contributors, with appropriate disclaimer
– Provide version history, for convenience of frequent reviewers
– Fix page numbering for easy review (continuous count from start)
– Fix clause numbering cross-reference bug (period after number)
– Urban recording session (see 5.1.4) added for completeness
– Conflicting traffic (see 5.1.5) added for completeness
– Changed ‘ping’ to ‘refresh’, within the context of SRP
– Changes the multicast addressing for classA frames
– Refined state machines

0.085 2005May11 DVJ – Updated front-page list of contributors
– Updated book for continuous pages (Clause 1 discontinuity fixed)
– Miscellaneous editing fixes
– Initial pinging description added.
– Previous Clause 9 (identifier assignments) moved to format clause.
– The subType identifier assignments now specified in 6.7.2.
– The bunching annex (work in progress) now includes:
 A more typical age-based classA prioritization assumption.
 Other parameters of interest (idle and full-load durations).
 (Further thought on queue sizing, to avoid discards, is needed.)

0.088 2005Jun03 DVJ – Application latency scenarios clarified.
 Generalized based on Norm Finn concerns.
 Clarified/corrected based on Kevin Gross comments.
– Subscription revised, to converge with Felix presentation.
– Bursting and bunching scenarios revised for applicability and clarity.

0.090 2005Jun06 DVJ – Misc editorials in bursting and bunching annex.

0.092 2005Jun10 DVJ – Extensive cleanup of Clause 5 subscription protocols, based on
 2005Jun08 teleconference review comments.

— — — TBDs
Contribution from: dvj@alum.mit.edu.
4 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Version Data Author Comments

0.082 2005Apr28 DVJ Updates based on 2005Apr27 meeting discussions
– Restructure document presentation order
– Provide list of contributors, with appropriate disclaimer
– Provide version history, for convenience of frequent reviewers
– Fix page numbering for easy review (continuous count from start)
– Fix clause numbering cross-reference bug (period after number)
– Urban recording session (see 5.1.4) added for completeness
– Conflicting traffic (see 5.1.5) added for completeness
– Changed ‘ping’ to ‘refresh’, within the context of SRP
– Changes the multicast addressing for classA frames
– Refined state machines

0.085 2005May11 DVJ – Updated front-page list of contributors
– Updated book for continuous pages (Clause 1 discontinuity fixed)
– Miscellaneous editing fixes
– Initial pinging description added.
– Previous Clause 9 (identifier assignments) moved to format clause.
– The subType identifier assignments now specified in 6.7.2.
– The bunching annex (work in progress) now includes:
 A more typical age-based classA prioritization assumption.
 Other parameters of interest (idle and full-load durations).
 (Further thought on queue sizing, to avoid discards, is needed.)

0.088 2005Jun03 DVJ – Application latency scenarios clarified.
 Generalized based on Norm Finn concerns.
 Clarified/corrected based on Kevin Gross comments.
– Subscription revised, to converge with Felix presentation.
– Bursting and bunching scenarios revised for applicability and clarity.

0.090 2005Jun06 DVJ – Misc editorials in bursting and bunching annex.

0.092 2005Jun10 DVJ – Extensive cleanup of Clause 5 subscription protocols, based on
 2005Jun08 teleconference review comments.

0.121 2005Jun24 DVJ – Extensive cleanup of clock-synchronization protocols, base on
 2005Jun22 teleconference review comments. Affected areas include:
 Subclause 5.1: Revised, based comments from Alexei
 Subclause 5.5: Time-synchronization overview updated
 Clause 7: Time-synchronization descriptions added
 Note that the state machines have now become obsolete.
 Annex J: Time-synchronization code added

— — — TBDs
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 5

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Background

This working paper is highly preliminary and subject to changed. Comments should be sent to its editor:

David V. James
3180 South Ct
Palo Alto, CA 94306
Home: +1-650-494-0926
Cell: +1-650-954-6906
Fax: +1-360-242-5508
Email: dvj@alum.mit.edu

Formats

In many cases, readers may elect to provide contributions in the form of exact text replacements and/or
additions. To simplify document maintenance, contributors are requested to use the standard formats and
provide checklist reviews before submission. Relevant URLs are listed below:

General: http://grouper.ieee.org/groups/msc/WordProcessors.html
Templates: http://grouper.ieee.org/groups/msc/TemplateTools/FrameMaker/
Checklist: http://grouper.ieee.org/groups/msc/TemplateTools/Checks2004Oct18.pdf

Topics for discussion

Readers are encouraged to provide feedback in all areas, although only the following areas have been identi-
fied as specific areas of concern.

a) Terminology. Is classA an OK way to describe the traffic within an RE stream? Alternatives:
synchronous traffic? isochronous traffic? RE traffic? quasi-synchronous traffic?

TBDs

Further definitions are needed in the following areas:

a) The concept of cycles and periodic transmissions is used before being introduced (from MJT).

b) Consider whether the cycleStart transmissions should be every cycle or N’th cycle (from MJT), and
how the cycle count would be transmitted/implied if these were not every cycle.

c) Better describe the benefits of bridge pacing:

1) Easy to enforce 75% usage limits.
2) Easier to detect timeouts by classA traffic absence.
3) Easier to ensure sufficient classA queue sizes.

d) Better describe the per-cycle clockSync benefits:

1) Simplified bridge pacing.
2) Low latency clock synchronization.
Contribution from: dvj@alum.mit.edu.
6 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Contents

List of figures... 9

List of tables... 12

1. Overview... 13

1.1 Scope and purpose... 13
1.2 Introduction ... 13

2. References... 17

3. Terms, definitions, and notation ... 18

3.1 Conformance levels ... 18
3.2 Terms and definitions .. 18
3.3 Service definition method and notation... 20
3.4 State machines ... 21
3.5 Arithmetic and logical operators ... 24
3.6 Numerical representation... 24
3.7 Field notations ... 25
3.8 Bit numbering and ordering... 26
3.9 Byte sequential formats ... 27

3.10 Ordering of multibyte fields .. 27
3.11 MAC address formats.. 28
3.12 Informative notes... 29
3.13 Conventions for C code used in state machines .. 29

4. Abbreviations and acronyms .. 30

5. Architecture overview .. 31

5.1 Latency constraints .. 31
5.2 Service classes ... 3534
5.3 Architecture overview ... 3635
5.4 Subscription... 3837
5.5 Synchronized time-of-day clocks .. 46
5.5 Pacing .. 47
5.6 Formats .. 4950
5.7 Synchronized time-of-day clocksPacing ... 5152

6. Frame formats... 57

6.1 ClassA vClassA frames ... 57
6.2 clockSync frame format .. 58
6.3 RequestRefresh subscription frame... 60
6.4 RequestLeave subscription frame.. 61
6.5 ResponseError subscription frame .. 62
6.6 Common info field format ... 63
6.7 Unique identifier values .. 64

7. Clock synchronization .. 65
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 7

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.1 Clock Clock-synchronization informationoverview ... 65
7.2 Terminology and variables .. 6574
7.3 Clock synchronization state machines... 6675

8. Subscription state machines.. 7281

8.1 Terminology and variables .. 7281
8.2 Subscription state machines .. 7382

Annex A (informative) Bibliography .. 8593

Annex B (informative) Background material ... 8694

Annex C (informative) Encapsulated IEEE 1394 frames ... 9199

C.1 Hybrid network topologies .. 9199
C.2 1394 isochronous frame formats ... 92100
C.3 Frame mappings .. 94102
C.4 CIP payload modifications .. 95103

Annex D (informative) Review of possible alternatives ... 98106

D.1 Higher level flow control... 98106
D.2 Over-provisioning.. 98106
D.3 Strict priorities ... 98106
D.4 IEEE 1394 alternatives .. 99107

Annex E (informative) Time-of-day format considerations ... 100108

E.1 Possible time-of-day formats... 100108
E.2 Time format comparisons.. 102110

Annex F (informative) Bursting and bunching considerations... 103111

F.1 Topology scenarios.. 103111
F.2 Bursting considerations ... 105113

Annex G (informative) Denigrated alternatives.. 120132

G.1 Stream frame formats .. 120132
G.2 Subscription... 122134

Annex H (informative) Frequently asked questions (FAQs) .. 129141

H.1 Unfiltered email sequences.. 129141
H.2 Formulated responses .. 130142

Annex I (informative) Comment responses... 131143

I.1 Recent review-comment resolutions ... 131143

Annex J (informative) C-code illustrations.. 137147

Index .. 139155
Contribution from: dvj@alum.mit.edu.
8 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
List of figures

Figure 1.1—Topology and connectivity .. 15

Figure 3.1—Service definitions ... 20

Figure 3.2—Bit numbering and ordering .. 26

Figure 3.3—Byte sequential field format illustrations .. 27

Figure 3.4—Multibyte field illustrations ... 27

Figure 3.5—Illustration of fairness-frame structure .. 28

Figure 3.6—MAC address format ... 28

Figure 3.7—48-bit MAC address format... 29

Figure 5.1—Interactive audio delay considerations .. 31

Figure 5.2—Home recording session .. 3231

Figure 5.3—Garage jam session.. 3332

Figure 5.4—Urban recording session .. 3433

Figure 5.5—Conflicting data transfers .. 3534

Figure 5.6—Hierarchical control ... 3635

Figure 5.7—Hierarchical flows ... 3736

Figure 5.8—Controller activation.. 3938

Figure 5.9—Agents on an established path ... 4039

Figure 5.10—Periodic registration messages .. 4140

Figure 5.11—Secondary registrations ... 4241

Figure 5.12—Side-path deregistration... 4342

Figure 5.13—Final-path deregistration.. 4342

Figure 5.14—Streaming data over registered paths... 4443

Figure 5.15—Insufficient bandwidth conditions ... 4443

Figure 5.16—Periodic registration messages .. 4645

Figure 5.17—ClassA traffic pacingTime synchronization principles ... 4748

Figure 5.18—Quasi-synchronous classA deliveries: delay and jitterTimer snapshot locations................ 4849

Figure 5.19—ClassA bandwidth considerationsBridge PLL possibilities .. 4849

Figure 5.20—Content framing methods .. 4950

Figure 5.21—Plug addressing.. 5051

Figure 5.22—ClassA frame format and associated data.. 5051

Figure 5.23—Time synchronization principlesClassA traffic pacing ... 5152

Figure 5.24—Quasi-synchronous classA deliveries: delay and jitter.. 53

Figure 5.2425—Time synchronizationClassA bandwidth considerations .. 5253

Figure 56.251—Timer snapshot locationsClassA frame formats.. 5357

Figure 56.262—Bridge PLL possibilitiesclockSync frame format ... 5358

Figure 56.273—Example timer implementationprecedence format ... 5459

Figure 6.14—ClassA frame formatsComplete seconds timer format.. 5760

Figure 6.25—clockSync RequestRefresh frame format .. 5860

Figure 6.36—cycleCounts RequestLeave subscription frame format ... 5961

Figure 6.47—precedence ResponseError subscription frame format.. 5962

Figure 6.58—Complete seconds timer Common info field format ... 6063
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 9

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 6.69—RequestRefresh frame formatprotocolType field value .. 6064

Figure 67.71—RequestLeave subscription frame formatHierarchical flows .. 6166

Figure 67.82—ResponseError subscription frame formatOffset synchronization 6268

Figure 7.3—Cascaded offsets (a possible scenario) .. 69

Figure 67.94—Common info field formatRate synchronization ... 6370

Figure 7.5—Cascaded rate differences (a possible scenario) .. 71

Figure 7.6.10—protocolType field valueRate-adjustment effects... 6472

Figure B7.17—SerialBus topologiesflexTimer implementation example ... 8673

Figure B7.28—Isochronous data transfer timingbaseTimer implementation example 8773

Figure B.31—RPR ringsSerialBus topologies... 8894

Figure B.42—RPR resilienceIsochronous data transfer timing... 8995

Figure B.53—RPR destination strippingrings ... 8996

Figure B.64—RPR spatial reuseresilience... 9097

Figure B.75—RPR service classesdestination stripping.. 9097

Figure CB.16—IEEE 1394 leaf domainsRPR spatial reuse .. 9198

Figure CB.27—IEEE 802.3 leaf domainsRPR service classes ... 9198

Figure C.31—IEEE IEEE 1394 isochronous packet formatleaf domains ... 9299

Figure C.42—Encapsulated IEEE 1394 frame payload802.3 leaf domains.. 9299

Figure C.53—Conversions between IEEE 1394 packets and RE framesisochronous packet format 94100

Figure C.64—Multiframe groupsEncapsulated IEEE 1394 frame payload .. 95100

Figure C.75—Isochronous Conversions between IEEE 1394 CIP packet formatpackets and RE frames........
95102

Figure C.86—Time-of-day format conversionsMultiframe groups .. 96103

Figure C.97—Grand-master precedence mappingIsochronous 1394 CIP packet format........................ 97103

Figure C.8—Time-of-day format conversions .. 104

Figure 5C.19—Complete seconds timer formatGrand-master precedence mapping 100105

Figure 5.1—Complete seconds timer format... 100108

Figure E.2—IEEE 1394 timer format.. 100108

Figure E.3—IEEE 1588 timer format.. 101109

Figure E.4—EPON timer format ... 101109

Figure E.5—Compact seconds timer format ... 101109

Figure E.6—Nanosecond timer format.. 101109

Figure F.1—Bridge design models .. 103111

Figure F.2—Three-source topology .. 104112

Figure F.3—Six-source topology .. 104112

Figure F.4—Three-source bunching timing; input-queue bridges .. 105113

Figure F.5—Cumulative coincidental burst latencies.. 106114

Figure F.6—Three-source bunching; input-queue bridges.. 115

Figure F.7—Six source bunching timing; input-queue bridges... 116

Figure F.8—Cumulative bunching latencies; input-queue bridge... 117

Figure F.9—Three-source bunching; output-queue bridges.. 118

Figure F.610—Three-Six source bunching; inputoutput-queue bridges ... 107119

Figure F.711—Six source Cumulative bunching timinglatencies; inputoutput-queue bridgesbridge... 108120
Contribution from: dvj@alum.mit.edu.
10 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure F.812—Cumulative bunching latenciesThree-source bunching; inputvariable-rate output-queue
bridgebridges109121

Figure F.913—Three-Six source bunching; variable-rate output-queue bridges 110122

Figure F.1014—Six source bunchingCumulative bunching latencies; variable-rate output-queue bridges-
bridge111123

Figure F.1115—Cumulative bunching latenciesThree-source bunching; throttled-rate output-queue bridge-
bridges112124

Figure F.1216—Three-Six source bunching; variablethrottled-rate output-queue bridges................... 113125

Figure F.1317—Six source bunchingCumulative bunching latencies; variablethrottled-rate output-queue
bridgesbridge114126

Figure F.1418—Cumulative bunching latenciesThree-source bunching; variablethrottled-rate output-queue
bridgebridges115127

Figure F.1519—Three-source bunching; throttled-rate output-queue bridges 116128

Figure F.1620—Six source bunching; classA throttled-rate output-queue bridges............................... 117129

Figure F.1721—Cumulative bunching latencies; classA throttled-rate output-queue bridge 118130

Figure G.1—classA frame formats .. 120132

Figure G.2—classA frame formats .. 121133

Figure G.3—Agents on an established path .. 123135

Figure G.4—Controller activation ... 124136

Figure G.5—Pinging the talker.. 124136

Figure G.6—Path creation ... 125137

Figure G.7—Side-path extensions ... 125137

Figure G.8—Side-path demolition .. 126138

Figure G.9—Released path.. 126138

Figure G.10—Error responses ... 127139

Figure G.11—Side-path demolition .. 128140
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 11

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

Contribution from: dvj@alum.mit.edu.
12 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

List of tables

Table 3.1—State table notation example... 22

Table 3.2—Called state table notation example .. 23

Table 3.3—Special symbols and operators.. 24

Table 3.4—Names of fields and sub-fields ... 25

Table 3.5—wrap field values ... 26

Table 5.1 —Service classes and their quality-of-service relationships .. 3534

Table 6.1 —Assigned subType identifiers.. 64

Table Table 7.1 —ClockAgent state tableExternal clock-synchronization pairs... 66

Table Table 7.2 —ClockSyncReceive state tableClock-synchronization intervals 6867

Table 7.3 —ClockSyncTransmit ClockAgent state table... 7075

Table 87.14 —AgentAction ClockSyncReceive state table... 7477

Table 87.25 —AgentTalker ClockSyncTransmit state table.. 7679

Table 8.31 —AgentTimer AgentAction state table.. 8083

Table 8.42 —AgentListener AgentTalker state table... 8385

Table 8.3 —AgentTimer state table ... 89

Table 8.4 —AgentListener state table .. 92

Table C.1—flag field values .. 93101

Table C.2—counts field values.. 101

Table CE.21—counts field valuesTime format comparison ... 93110

Table EF.1—Time format comparisonCumulative bursting latencies .. 102114

Table F.12—Cumulative bursting bunching latencies; input-queue bridge .. 106117

Table F.23—Cumulative bunching latencies; inputoutput-queue bridge .. 109120

Table F.34—Cumulative bunching latencies; variable-rate output-queue bridge................................. 112123

Table F.45—Cumulative bunching latencies; variablethrottled-rate output-queue bridge 115126

Table F.56—Cumulative bunching latencies; classA throttled-rate output-queue bridge..................... 118130

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5. Architecture overview

5.1 Latency constraints

5.1.1 Interactive audio delay considerations

The latency constraints of the RE environment are based on the sensitivity of the human ear. To be comfort-
able when playing music, the delay between the instrument and the human ear should not exceed
10-to-15 ms, as illustrated in Figure 5.1. The individual hop delays must be considerably smaller, since
instrument-sourced audio traffic may pass through multiple links and processing devices before reaching the
ear, as illustrated in 5.1.2 and 5.1.3.

Figure 5.1—Interactive audio delay considerations

Editors’ Notes: To be removed prior to final publication.
Alexei Beliaev has suggested that 10ms-to-15ms is the audible range.
Kevin Gross has suggested that an acceptable delay range is 5ms-to-50ms
How should these two acceptable latency ranges be reconciled?

t < 10ms~15ms
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 31

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.1.2 Home recording session

To illustrate hop-latency requirements, consider RE usage for a home recording session, as illustrated in Fig-
ure 5.2. The audio inputs (microphone and guitar) are converted, passed through a bridge, mixed within a
laptop computer, converted at the speaker, and return to the performer’s ear through the air.

A fixed time T is assumed for each passage through a link, based on potential buffering and
conflicting-traffic delays. Due to multiple link hops and the latency contributions, the constraints on the
value of T are much less than the constraining 15ms instrument-to-ear latency, as illustrated in Equation 5.1.

 t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7 < 15 ms (5.1)
1ms+ T + T +5ms+ T + T +1ms+6ms < 15ms
4 × T + 13ms < 15ms
T < 0.5 ms

To better understand the range of possible latencies, consider how an extremely aggressive implementation
of end-point stations could reduce the link-latency requirements, as illustrated in Equation 5.2. While this
stretches the limits of processing delays, the acceptable link latencies remain within the few milliseconds
range.

 t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7 < 15 ms (5.2)
0.25ms+ T + T +2ms+ T + T +0.25ms +6ms < 15ms
4 × T + 8.5ms < 15ms
T < 1.6 ms

To better understand the range of possibilities, consider an extremely aggressive implementation of
end-point stations could reduce the link-latency requirements. For example, {t0=0.25 ms, t3=2 ms,
t6=0.25 ms, t7=6 ms} would yield a constraint of T<1.6 ms. Even with aggressively small processing
delays, the link latency constraint remains within the few milliseconds range.

Note that these aggressive processor delays are unlikely to decrease as the MIPs rating of processors
increase, due to the inherent delays associated with finite input response (FIR) filters and efficiencies
achieved through block-processing. For example, 16-sample block processing of a 128-point FIR filter
implies an inherent 80-cycle delay (16 for input block accumulation, 64 for filtering). With a 40 kHz
sampling rate, this corresponds to a theoretical processing-latency limitation of 2 ms.

Figure 5.2—Home recording session

t0 = 1 ms
A/D conversion

delay

t1 = T
link delay

t5 = T

t2 = T

t4 = T

t3 = 5 ms
processing

delay

t6 = 1 ms
D/A conversion

delay

t7 = 6ms (air delay for 6’ distance)
Contribution from: dvj@alum.mit.edu.
32 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
These numbers are only approximations; actual values (as determined by the marketplace) could vary
substantially. For professionalsaudiophiles, an overall processing latency of 5 ms may be desired; for dis-
count shoppers, an overall latency of 50 15 ms may be tolerable. Larger ad-hoc networks of cascaded 4-port
or 8-port bridges may be present. As with golden speaker cables, purchases may be based on perceptions of
quality (the bridge latency specification), rather than reality (perceivable latencies).
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 33

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.1.3 Garage jam session

As another example, consider RE usage for a garage jam session, as illustrated in Figure 5.3. The audio
inputs (microphone and guitar) are converted, passed through a guitar effects processor, two bridges, mixed
within an audio console, return through two bridges, and return to the ear through headphones.

Again, a fixed time T is assumed for each passage through a link, based on potential buffering and
conflicting-traffic delays. Due to multiple hops and the latency contributions, the constraints yield a T value
that is much less than the constraining 15ms instrument-to-ear latency (see Equation 5.2).

 t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9 + t10 + t11 + t12 < 15 ms (5.3)
1ms+ T + T +1ms+ T + T + T +2ms+ T + T + T + 1ms+ 6ms < 15ms
8 × T + 11ms < 15ms
T < 0.5 ms

To better understand the range of possible latencies, consider how an extremely aggressive implementation
of end-point stations could reduce the link-latency requirements, as illustrated in Equation 5.3. While this
stretches the limits of processing delays, the acceptable link latencies remain within the millisecond range.

 t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9 + t10 + t11 + t12 < 15 ms (5.4)
0.25ms+ T + T +0.25ms+ T + T + T +2ms + T + T + T + 0.25ms+ 6ms< 15ms
8 × T + 8.75ms < 15ms
T < 0.78 ms

Figure 5.3—Garage jam session

t0 = 1 ms
A/D conversion

delay

t1 = T
link delay

t2 = T

t4 = T
t5 = T

t9 = T t6 = T
t8 = T

t7 = 2 ms
processing

delay

t12 = 6 ms
(air delay for
6’ distance)

t3 = 1 ms
processing

delay

t11 = 1 ms
D/A conversion

delay

t10 = T
Contribution from: dvj@alum.mit.edu.
34 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
To better understand the range of possible latencies, consider extremely aggressive implementations of
end-point stations. For example, {t0=0.25 ms, t3=0.25 ms, t7=2 ms, t11=0.25 ms, t12=6 ms} would yield a
constraint of T<0.78 ms. Even with aggressively small processing delays, the acceptable link latencies
remain within the millisecond range.

5.1.4 Urban home recording session

Within urban environments, headphones may be preferred to audio speakers, as illustrated in Figure 5.4 (a
small modification of Figure 5.2). The audio inputs (microphone and guitar) are converted, passed through a
bridge, mixed within a laptop computer, converted at the headphones, and near immediately presented to the
performer’s ear.

While the earphones eliminate the air-to-ear hop-count delays, the sensitivity to delays is increased for the
case of a vocal performer due to a comb filter formed by the interaction of headphone sound and sound
conducted through the head. Remaining below the 0.5 to 5 ms range where comb filtering is prevalent is
impractical, as illustrated by Equation 5.5. Due to multiple hops and since the latency
contributions{t0=1 ms, t3=5 ms, t6=1 ms} values already exceed the implied T-value constraint is impos-
sible to achieve0.5 ms limitation.

 t0 + t1 + t2 + t3 + t4 + t5 + t6 < 0.5 ms (5.5)
1ms+ T + T +5ms+ T + T +1ms < 0.5 ms
4 × T + 7ms < 0.5ms
T < −1.6 ms

Some professionals Professionals believe that increasing latency to 5 ms or more within such
headphone-feedback environments is preferred over operation in the 0.5 to 5 ms range where comb filtering
is prevalent. Again, due to multiple hops and the latency contributions, the constraints yield a T value that is
much less than the constraining 15ms instrument-to-ear latency (see Equation 5.3).

 t0 + t1 + t2 + t3 + t4 + t5 + t6 < 15 ms (5.6)
1ms+ T + T +5ms+ T + T +1ms < 15 ms
4 × T + 7ms < 15 ms
T < 2ms

To better understand the range of possible latencies, consider how an extremely aggressive implementation
of end-point stations could reduce the link-latency requirements, as illustrated in Equation 5.3. While this

Figure 5.4—Urban recording session

t0 = 1 ms
A/D conversion

delay

t1 = T
link delay

t5 = T

t2 = T

t4 = T

t3 = 5 ms
processing

delay

t6 = 1 ms
D/A conversion

delay
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 35

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
stretches the limits of processing delays, the acceptable link latencies remain within the few milliseconds
range.

 t0 + t1 + t2 + t3 + t4 + t5 + t6 < 15 ms (5.7)
0.25ms+ T + T +2ms+ T + T +0.25ms < 15 ms
4 × T + 2.5ms < 15 ms
T < 3.1 ms

To better understand the range of possible latencies, consider extremely aggressive implementations of
end-point stations. For example, {t0=0.25 ms, t3=2 ms, t6=0.25 ms} would yield a T<3.1 ms constraint.
Even with aggressively small processing delays, the acceptable link latencies remain within the few milli-
seconds range.
Contribution from: dvj@alum.mit.edu.
36 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.1.5 Conflicting data transfers

Home networks may carry data traffic as well as time-sensitive traffic, as illustrated in Figure 5.3. During
musical performances (or evening A/V screenings), high bandwidth computer-to-server transfers could
occur over the same data-transfer links, as illustrated in Figure 5.5.

With the high data-transfer rates of disks and disk-array systems, the bandwidth capacity of residential
Ethernet links could (if not otherwise limited) easily be reached. Thus, some form of prioritized bridging is
necessary to ensure robust delivery of time-sensitive traffic.

5.2 Service classes

This working paper defines three service classes (A, B, or C) with which the data transfer is associated, as
summarized in Table 5.1. The classA service provides low-jitter transfer of traffic (and therefore lower
worst-case delays) up to its allocated rate. Traffic above the allocated rate is rejected. The classB service
provides bounded delay transfer of traffic. The classC service provides best-effort data-transfer services.

Link capacity required to support the classA and classB service is allocated via provisioning and these
services can be characterized as allocated services. The provisioning activity is expected to ensure that the

Figure 5.5—Conflicting data transfers

Editors’ Notes: To be removed prior to final publication.
The classA and classC service classes have consensus among the contributors to this working paper. The
concept of classB services was included in IEEE Std 802.17-2004 and is being included for consideration
by universal plug and play (UP&P), congestion management (CM), or legacy applications.

Table 5.1 — Service classes and their quality-of-service relationships

class of service qualities of service

class examples of use jitter guaranteed
bandwidth type

A real time low yes allocated

B near real time bounded

unbounded no opportunisticC best effort

writes

reads
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 37

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
aggregate service commitment on each link does not exceed that link’s capacity. The allocation rates
distributed by provisioning regulates access to these guaranteed services.

Link capacity has to be ensured to support classA and classB service guarantees. This is done by allocating
bandwidth through provisioning that prevents over-provisioning the links, using a subscription protocol
(see 5.4).

5.3 Architecture overview

5.3.1 Abstract concepts

From the perspective of end-point stations, RE systems supports classA data-frame traffic, called streams.
Each stream has one talker and one or more listeners, as illustrated in Figure 5.6-a.

The delay between the talker and listener(s) is nominally a fixed number of 125µs cycles, although the num-
ber of cycles may be cable-length and/or bridge topology dependent. Additional delays can be inserted by
the application(s), when synchronization between multiple listeners is required, since the talker’s data can be
time-stamped and all clocks are synchronized.

To reduce costs (and support GPS-inaccessible locations), synchronized clocks are provided by the intercon-
nect. All classA talkers provide clock references, but only one of these stations is nominated to be the clock
master; the others are called clock slaves (see Figure 5.6-b). The selected clock master is called the grand
clock master, oftentimes abbreviated as “grand master”.

Clock synchronization involves synchronizing the clock-slave clocks to the reference provided by the grand
clock master. Tight accuracy is possible with matched-length duplex links, since bidirectional messages can
cancel the cable-delay effects.

Figure 5.6—Hierarchical control

a) Synchronous frame-transfer model

network or subnets

talker listener

fr[n] fr[n-b]

listener

fr[n-a]
…

b) Synchronous clock-sync model

network or subnets

…slave master slave slave slavegrand
Contribution from: dvj@alum.mit.edu.
38 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.3.2 Detailed illustrations

In many cases, abstract illustrations (see Figure 5.6) are insufficient to illustrate expected behaviors. Thus,
more detailed illustrations are oftentimes used to also show bridges and spans within the network cloud, as
illustrated in Figure 5.7.

5.3.3 Architecture components

The architecture of a home RE system involves the following protocols:

a) Discovery (beyond the scope of this working paper).
A controller discovers the proper streamID/bandwidth parameters to allow the listener to subscribe
to the desired talker-sourced stream.

b) Subscription. The controller commands the listener to establish a path from the talker.
Subscription may pass or fail, based on availability of routing-table and link-bandwidth resources.

c) Synchronization. The distributed clocks in talkers and listeners are accurately synchronized.
Synchronized clocks avoid cycle slips and playback-phase distortions.

d) Pacing. The transmitted classA traffic is paced to avoid other classA traffic disruptions.

Figure 5.7—Hierarchical flows

a) Talker-to-listener(s) data flow

Legend:
talker other listener

existing conversation

LT

LT

b) Grand-master synchronization flows

Legend:
grand master other slave

established synchronization flow

SS

SG

G
S

S

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 39

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.4 Subscription

5.4.1 Simple Reservation Protocol (SRP) overview

Subscription involves explicit negotiation for bandwidth resources, performed in a distributed fashion,
flowing over the paths of intended communication. This subscription protocol are called the Simple
Reservation Protocols (SRP). SRP represents an instance of the Generic Attribute Registration Protocol
(GARP), with similar objectives to the layer-3 based Resource Reservation Protocol (RSVP). SRP shares
many of the baseline RSVP and GARP features, including the following:

— SRP is simplex, i.e. reservations apply to unidirectional data flows.
— SRP is receiver-oriented, i.e., the receiver of a stream initiates and maintains the resource reser-

vation used for that stream.
— SRP maintains “soft” state in bridges, providing graceful support for dynamic membership changes

and automatic adaptations to changes in network topology.
— SRP is not a routing protocol, but depends on transparent bridging and STP routing protocols.

SRP simplicity is derived from its restricted layer-2 ambitions, as follows.

— SRP is symmetric, i.e. the listener-to-talker path is the inverse of the talker-to-listener path.
— SRP does not provide for transcoding; any stream is fully characterized by its streamID and

bandwidth.

The viability of SRP is enhanced by basing its protocols on GARP, a protocol defined within IEEE Std
802.1D. Specifically, the RequestJoin and RequestLeave messages correspond to primitives defined within
GARP.

SRP is defined to be a general 1-to-N resource-reservation scheme, although this discussion focuses on
subscription of classA bandwidth resources. The SRP protocols could, however, be used to reserve other
resource-limited resources, such as buffer allocations, latency targets, and frame-loss rates.

NOTE—SRP is thought to be applicable to N-to-N topologies, as well as 1-to-N topologies. However, the detailed
review of N-to-N topologies (which would be necessary to verify the feasibility of such extensions) is beyond the scope
of this working paper.

5.4.2 Soft reservation state

SRP takes a “soft state” approach to managing the reservation state in bridges. SRP soft state is created and
periodically refreshed by listener generated RequestJoin messages; this state is deleted if no matching
RequestJoin messages arrive before the expiration of a “cleanup timeout” interval. Listener’s may also force
state deletions by generating an explicit RequestLeave message.

RequestJoin messages are idempotent. When a route changes, the next RequestJoin message will initialize
the path state to the new route, and future RequestJoin messages will establish state there. The state on the
now-unused segment of the route will be deleted after a timeout interval. Thus, whether a RequestJoin
message is “new” or a “refresh” is determined separately by each station, depending upon the existence of
state at that station.

SRP soft state is also deleted in the continued absence of associated talker-generated ConfirmJoin messages;
the listener’s registration is discarded if no matching ConfirmJoin indication arrives before the expiration of
a “cleanup timeout” interval. Thus, talker stations or agents may implicitly deregister by stopping its
ConfirmJoin confirmations, or explicitly deregister by sending distinct ConfirmGone messages.
Contribution from: dvj@alum.mit.edu.
40 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
SRP sends it messages as layer-2 datagrams with no reliability enhancement. Periodic transmissions by
listener/talker stations and agents is expected to handle the occasional loss of an SRP message.

In the steady state, state is refreshed on a hop-by-hop basis to allow merging. Propagation of a change stops
when and if it reaches a point where merging causes no resulting state change. This minimizes the SRP con-
trol traffic and is essential for scaling to large audiences.

5.4.3 Subscription bandwidth constraints

The SRP subscription protocols limit cumulative bandwidth allocations to a fixed percentage less than the
capacity of the link, much like IEEE 1394 limits isochronous traffic to less than the capacity of its bus. This
guarantees that high priority management information can be transmitted across the link. For RE systems,
classA traffic is limited to 75% of the capacity of any RE link. Enforcement of such a limit is done in multi-
ple ways:

a) Subscription. Requests for establishing classA transmission paths are rejected if the cumulative
bandwidths of all paths would consume more than 75% of the link bandwidth.

b) Transmit queue hardware of RE stations (including bridges) discards classA content that (if trans-
mitted) would cause classA traffic to exceed 75% of the transmit link capacity. Details are TBD.

Method (b) is desired to recovery from unexpected transient conditions (typically topology changes) that
result in admission control violations, and is also useful for managing misbehaving devices

5.4.4 Controller entities

Subscription when a relative-intelligent controller discovers the need to establish a classA path between
talker and listener entities. For example, user interactions with a television (called the controller) may cause
streams flowing between the content source (called the talker) and speakers (the listeners), as illustrated in
Figure 5.8.

A controller can potentially simplify the listener by reducing the need to providing user interface and
device-discovery capabilities. However, a controller could also reside within talker and/or listener
components. However, actions between controllers and talker/listener stations are beyond the scope of this
working paper.

Editors’ Notes: To be removed prior to final publication.
Additional discussions may be appropriate to discuss operation of the ConfirmGone messages.

Figure 5.8—Controller activation

Legend:
controller talker listener other communication flowL

T L

C

C T
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 41

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.4.5 Bridge-resident agents

Subscription facilities register classA communication paths from a talker to one or more listeners. Streams
of time-sensitive data can then flow over these established paths, as illustrated by the dark arrow paths in
Figure 5.9-a. Maintaining these established paths involves active participation of agents within the end-point
talker, local listener, local talker, and end-point listener entities, as illustrated in Figure 5.9-b.

The talker stations/agents are responsible for maintaining an account consisting of {streamID, bandwidth}
pairs, one for each of their distinct flows. Requests for additional link bandwidth are checked against these
accounts and denied if the cumulative bandwidth would exceed 75% of the link capacity.

For each of the registered talker agents within a bridge, the listener agent remains active until all but the last
talker agent registration is discarded. Thus, the talker agent in an upstream station receives its deregistration
notice only after the last of the downstream listener stations has been deregistered.

The listener agent uses the same RequestJoin messages to establish and to maintain the path. This reduces
design complexity and (most importantly) automatically re-routes stream flows after topology changes.

Figure 5.9—Agents on an established path

b0

b1

b2

b3

c0 c1 c2 c3

d1 d2

e0

e1

e2

L

L
e3

T

a) Streaming data flows

Legend:
talker listener other
streaming data

T L

b) Agents on the stream’s path

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

Legend:
talker station listener station
talker agent listener agent
internal coupling streaming data
Contribution from: dvj@alum.mit.edu.
42 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.4.6 Registration

Registering a new listener and talker starts with a RequestJoin message sent from the listener f 0 towards the
talker a0, as illustrated by the dark arrow (1a) in Figure 5.10-a. These registration messages are not for-
warded directly, but activate cooperative listener and talker agents with the bridge.

In response to the received RequestJoin message (1a), bridgeE reserves talker-agent and listener-agent
registration table entries in ports e0 and e1 respectively. A cascaded RequestJoin message (2a) is then sent
towards talker station a0.

The cascaded forwarding continues through bridgeC. In response to the received RequestJoin message (2a),
bridge C reserves talker-agent and listener-agent registration table entries in ports c3 and c0 respectively. A
cascaded RequestJoin message (3a) is then sent towards talker station a0.

The cascaded forwarding continues through bridgeB. In response to the received RequestJoin message (3a),
bridge B reserves talker-agent and listener-agent registration table entries in ports b1 and b0 respectively. A
cascaded RequestJoin message (4a) is then sent towards talker station a0.

Referring now to Figure 5.10-b, the talker and talker agents are responsible for providing confirming
ConfirmJoin messages, to confirm their continued presence. In this example, the RequestJoin messages
{1a,2a,3a,4a} of Figure 5.10-a are continually confirmed by the ConfirmJoin messages {1b,2b,3b,4b} of
Figure 5.10-b), respectively. In the continued absence of the expected ConfirmJoin messages, the talker (or
talker-agent) assumes the listener (or listener-agent) is absent or has been deactivated.

Another timeouts is associated with the absence of periodic RequestJoin messages. In the continued absence
of these expected messages, the talker assumes the listener is absent or has been deactivated. Based on this
assumption, the associated talker (station or agent) registration resources are released.

Figure 5.10—Periodic registration messages

a) Phase 1: RequestJoin messages

c0 c1 c2 c3

d1 d2

e0

e1

e2

e3

a2

a3

a0
b0

b1

b2

b3

f0

f3

f2

(1a)

(3a) (2a)

(4a)

Legend:
talker station listener station
talker agent listener agent
internal coupling RequestJoin flow

b) Phase 2: ConfirmJoin messages

Legend:
talker station listener station
talker agent listener agent
internal coupling ConfirmJoin flow

c0 c1 c2 c3

d1 d2

f0

f3

f2

e0

e1

e2

e3

a2

a3

a0
b0

b1

b2

b3

(1b)

(3b) (2b)

(4b)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 43

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.4.7 Secondary listener registrations

A second listener registers by sending a RequestJoin message towards the talker, as illustrated by the
dark-arrow path in Figure 5.11-a. When an established registration is discovered, the bridge (not the talker)
processes the message. Thus, the registration is expanded to include a new-listener side path, as illustrated in
Figure 5.11-b.

Each talker and listener agent maintains separate registration state, so that only active paths are registered.
Maintaining distinct registrations also allows the bridge to detect when the last listener disconnects, so that
its previously shared upstream span can be deregistered appropriately.

Each path is uniquely identified by its associated streamID. The streamID consists of a {talkerId, plugID}
information that uniquely identifies the associated talker resource), as illustrated by the rectangle inserts
within Figure 5.11-a. The talkerID represents the MAC address of the talker and the plugID distinguishes
between possible streaming sources within the talker.

The multicast address used to route the classA multicast frames, as well as the allocated classA bandwidth,
are returned to the listeners within ResponseForm messages.

Figure 5.11—Secondary registrations

a) Phase 1: RequestJoin messages

c0 c1 c2 c3

d1 d2

e0

a2

a3

a0

(1a)

Legend:
talker station listener station
talker agent listener agent
internal coupling registered path
RequestJoin flow

e1

e2

e3

b0

b1

b2

b3

f0

(2)
f2

f3
talkerID
plugID

streamID

b) Phase 2: Extended registered paths

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

Legend:
talker station listener station
talker agent listener agent
internal coupling registered paths
Contribution from: dvj@alum.mit.edu.
44 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.4.8 Secondary listener deregistration

A retiring secondary listener normally leaves an established registration by sending a RequestLeave
message towards the talker. That RequestLeave message (1a) propagates to the nearest merging bridge con-
nection, as illustrated in Figure 5.12-a. When an established/merged registration is discovered, the bridge
(not the talker) deregisters the listener, as illustrated by the disappearance of external path e0-to-f0 and
internal path e1-to-e0 within Figure 5.12-b.

5.4.9 Final deregistration

The final retiring listener also sends a RequestLeave message (1a) towards the talker. In this case, variants of
that message {2a,3a,4a} eventually propagate to the talker, as illustrated in Figure 5.13-a. No listeners
remain registered after this cascaded propagation of RequestLeave messages, as illustrated in Figure 5.13-b.

Figure 5.12—Side-path deregistration

Figure 5.13—Final-path deregistration

a) Phase 1: RequestLeave messages

c0 c1 c2 c3

d1 d2

e0

a2

a3

a0
(1a)

Legend:
talker station listener station
talker agent listener agent
internal coupling registered path
RequestLeave flow

e1

e2

b0

b1

b2

b3

f0
(2)

f2

f3
e3

b) Phase 2: Contracted registered paths

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

Legend:
talker station listener station
talker agent listener agent
internal coupling registered paths

a) Phase 1: RequestLeave messages

c0 c1 c2 c3

d1 d2

e0

e1

e2

e3

a2

a3

b0

b1

b2

b3

f0

f3

f2

(1a)

(3a) (2a)

(4a)

Legend:
talker station listener station
talker agent listener agent
internal coupling registered path
RequestLeave flow

a0

c0 c1 c2 c3

d1 d2

e0

e1

e2

e3

a2

a3

a0
b0

b1

b2

b3

f0

f3

f2

(1a)(4a)

Legend:
talker station listener station
talker agent listener agent

b) Phase2: Released registration
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 45

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.4.10 Stream transmissions

Once listeners are registered (see Figure 5.14-a), a talker communicates critical parameters within the
ConfirmPath message (instead of the initial ConfirmJoin messages) and starts its stream transmissions over
the registered paths, as illustrated by the arrows in Figure 5.14-b.

The ConfirmPath message could be a variant of the ConfirmJoin message with a distinct command-code
value. Like the baseline ConfirmJoin message, the ConfirmPath message is also sufficient to sustain the
talker’s registration. This simplifies the talkers (and talker agents) by eliminating the need to concurrently
transmit two distinct periodic registration-sustaining messages.

5.4.11 Insufficient bandwidth conditions

The available link bandwidths can sometimes be insufficient when the talker starts its stream transmissions.
For example, bandwidths may be sufficient to sustain listener f 0 but not listener f 3, as illustrated by the
e0-to-f 0 and e3-to-f 3 paths in Figure 5.15-a, respectively.

Figure 5.14—Streaming data over registered paths

Figure 5.15—Insufficient bandwidth conditions

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

Legend:
talker station listener station
talker agent listener agent
internal coupling registered paths

a) Established registrations

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

Legend:
talker station listener station
talker agent listener agent
internal coupling ConfirmPath flows

b) Streaming classA traffic

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

a) Established registrations

Legend:
talker station listener station
talker agent listener agent
internal coupling sufficient bandwidth
insufficient bandwidth

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

b) ConfirmPath messaging

Legend:
talker station listener station
talker agent listener agent
internal coupling ConfirmPath good
ConfirmPath bad
Contribution from: dvj@alum.mit.edu.
46 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
In this case, listener f 3 does not receive the talker’s streaming classA traffic. However, listener f 3 continues
to receive its ConfirmJoin messages, each of which contains an error indication code. Listener f 3 is thus
informed of the insufficient-bandwidth error condition, allowing corrective/reporting actions to be initiated
by higher level protocols.

5.4.12 Errors conditions

Errors may be associated with a variety of failure conditions, including (but not limited to) those listed
below.

a) Resources. Insufficient resources are available within the bridge.
(These insufficient-resource errors are handled by GARP specified mechanisms, see TBD.)

1) Insufficient registration-table storage is available in the bridge’s downstream talker agent.
2) Insufficient registration-table storage is available in the bridge’s upstream listener agent.

b) Bandwidth. Insufficient bandwidths are available within the bridge.
(These insufficient-bandwidth errors are handled by ConfirmJoin error codes, see 5.4.11.)

1) Insufficient bandwidth is available on the link from the talker agent to its adjacent listener.
2) Insufficient link or memory bandwidth is available with the bridge.

5.4.13 Heartbeat timeouts

Talker agents/stations are responsible for periodically polling locally registered listener agents/stations, to
demonstrate their continued presence. In the absence of these polling updates, the listeners assume the talker
is absent and deregister the inactive path (or inactive branch from the path). These talker-absent timeouts are
performed independently on each span.

Listener agents/stations are responsible for periodically reregistering with locally registered talker
agents/stations, to confirm their continued presence. In the absence of these reregistration updates, the
talkers assume the listener is absent and deregister the inactive path (or inactive branch from the path).
These listener-absent timeouts are performed independently on each span.

These periodic heartbeat-based timeouts handle a variety of error conditions, including the following:

a) A RequestJoin, RequestLeave, ConfirmJoin, or ConfirmPath is (corrupted and) not delivered.

b) The physical topology is changed, causing changes in the paths of streaming classA traffic.

c) A talker or listener is decommissioned and thus is no longer functionally present.

d) A flooded RequestJoin message reaches a non-talker end station or subnet.

e) After the talker’s port is learned, a bridge discontinues flooding extraneous RequestJoin messages.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 47

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.4.14 Untended flooding

Registering a new listener normally involves cascaded RequestJoin message sent from the listener f 0
towards the talker a0, as illustrated in Figure 5.10-a. In some cases, the talker’s address may be unlearned
and flooding may be necessary. Thus, BridgeB could sometimes be forced to flood the RequestJoin to
stations {a0,a2,a3}, when an unlearned address can’t be directed to station a0, as illustrated in
Figure 5.10-b.

In this example, talker a0 is present and its ConfirmJoin messages will soon propagate back to bridgeB,
where the address of talker station a0 is learned. When this occurs, the flooding to stations {a2,a3} stops.

As noted previously (see 5.4.13), the talker agent is responsible for providing confirming ResponseJoin
messages, so that the absence of a talker station can be readily detected. Allocated registration-table entries
within bridges can be released after the talker-station absence is detected. Thus, flooding causes no harm.

5.4.15 GARP primitives

This subclause was intended to clarify the higher level SRP functionality. Thus, names of primitives were
chosen form clarity, rather than consistency with the expected GARP messages. For the benefit of experi-
enced GARP users, a sketch of the intended mappings of primitives is provided within this subclause.

The RequestJoin and RequestLeave messages correspond to like-names primitives within GARP. The
ConfirmJoin and ConfirmPath messages correspond to variants of the leave-all messages within GARP.

Figure 5.16—Periodic registration messages

Editors’ Notes: To be removed prior to final publication.
Additional discussions may be appropriate to discuss what happened when the talker address is absent,
as simply summarized below.

a) Directed RequestJoin messages

c0 c1 c2 c3

d1 d2

e0

e1

e2

e3

a2

a3

a0
b0

b1

b2

b3

f0

f3

f2

(1a)

(3a) (2a)

(4a)

Legend:
talker station listener station
talker agent listener agent
internal coupling RequestJoin flow

a) Flooded RequestJoin messages

c0 c1 c2 c3

d1 d2

e0

e1

e2

e3

a2

a3

a0
b0

b1

f0

f3

f2

(1a)

(3a) (2a)

(4a)

Legend:
talker station listener station
talker agent listener agent
internal coupling RequestJoin flow

b2

b3

(4c)

(4d)
Contribution from: dvj@alum.mit.edu.
48 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.5 Synchronized time-of-day clocks

5.5.1 Limitations of current approaches

5.5.1.1 Statistical averaging

Wide-area network based protocols distribute time by enclosing time-stamp values in specialized calibration
frames. Higher level frame-processing protocols are responsible for determining the average transmission
delays through the interconnect, so that calibration-frames can be used for accurate time-synchronization
purposes.

The frame transmission latency is highly variable, based on delays incurred when waiting behind other
previously-queue frames. Long-term averaging is typically used to cope with nonrandom delays, whether
they be periodic, biased, or time-of-day dependent.

The use of long-time averages has limited applicability within the home, where small numbers of streams
can exhibit very non-random statistical behaviors. Furthermore, long-term averaging intervals restricts
transient-event response times, such as the insertion or removal of associated clock-synchronized devices.

5.5.1.2 Phase-locked synchronization

Local-area network based protocols, such as IEEE Std 1588, specify communication protocols for commu-
nicating timer-difference errors from a local clock-master station to its neighboring clock-slave station.
However, this standard does not define how the clock-slave station compensates its values to track the time
reference of the neighboring clock-master station.

The most common method of synchronizing clock-master and clock-slave devices involves phase-lock-loop
(PLL) circuits. Such circuits integrate sensed differences between the clock-master and clock-slave devices,
using these integrated values to adjust the clock-slave operating frequency.

The clock-slave resident PLLs are useful for reducing the transmission-induced timing-error jitters.
However, the response time of a cascaded set of PLLs degrades as the number of cascaded devices increases.
Also, the dynamics of more-responsive (gain peaking) cascaded PLL can be undesirable, causing the devia-
tions of later stages to exponentially increase with their distance from the source, a characteristic commonly
called the whip-lash effect.

5.5.1.3 Offset-locked synchronization

Another possible IEEE 1588 synchronization technique involves adding an offset value to the clock-slave
device, where the value of that offset is based on the time differences sensed between the clock-master and
clock-slave stations.

Constantly updated offsets ensures tracking of the clock-slave to the clock-master, without the response-time
and whiplash effects normally associated with PLLs. However, since the clock rates remain unchanged,
clock drifts can cause significant forward or backward jumps of the synchronized clock-slave timer. These
discontinuities and transmit-time uncertainties can limit the accuracies of the slave-resident timer values.

5.5.2 Assumptions

This working paper specifies a protocol to synchronize independent timers running on separate stations of a
distributed networked system, based on concepts specified within IEEE Std 1588-2002. Although a high
degree of accuracy and precision is specified, the technology is applicable to low-cost consumer devices.
The protocols are based on the following design assumptions:
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 49

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
a) Each end station and intermediate bridges provide independent clocks.

b) All clocks are accurate, typically to within ±100PPM.

c) Point-to-point transmit/receive duplex connections are provided.

d) Transmit/receive propagation delays within duplex cables are well matched.

5.5.3 Objectives

With these assumptions in mind, the time synchronization objectives include the following:

a) Precise. Multiple timers can be synchronized to within 10’s of nanoseconds.

b) Inexpensive. For consumer A/V devices, the costs of synchronized timers are minimal.
(GPS, atomic clocks, or 1PPM clock accuracies would be inconsistent with this criteria.)

c) Scalable. The protocol is independent of the networking technology. In particular:

1) Cyclical physical topologies are supported.
2) Long distance links (up to 2 kM) are allowed.

d) Plug-and-play. The system topology is self-configuring; no system administrator is required.

5.5.4 Strategies

Strategies used to meet these objectives include the following:

a) Precision is achieved by calibrating and adjusting timeOfDay clocks.

1) Offsets. Offset value adjustments eliminate immediate clock-value errors.
2) Rates. Rate value adjustments reduce long-term clock-drift errors.

b) Simplicity is achieved by the following:

1) Concurrence. Most configuration and adjustment operations are performed concurrently.
2) Feed-forward. PLLs are unnecessary within bridges, but possible within applications.
3) Symmetric. Clock-master/clock-slave computations are similar (only slave results are saved).
4) Periodic. Messages are sent periodically, rather than in timely response to other requests.
5) Frequent. Frequent (typically 1 kHz) interchanges reduces needs for precise clocks.

c) Balanced functionality.

1) Low-rate. Complex computations are infrequent and can be readily implemented in firmware.
2) High-rate. Frequent computations are simple and can be readily implemented in hardware.
Contribution from: dvj@alum.mit.edu.
50 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.5.5 Synchronization principles

Timer synchronization is based on the concept of free-running local times (localD, localE, and localF) with
compensating offset values (offsetD, offsetE, and offsetF), as illustrated in Figure 5.17. Updates involve
changes to the offset values, not the free-running local timer values. In this example, we assume that:
StationE is synchronized to its adjacent StationD; StationF is synchronized to its adjacent StationE. As a
result, StationF is indirectly synchronized to StationD (through StationE).

The formulation of the offsetE value begins the assumption that the globalE and globalD times are identical.
Addition of (localE– localE) and regrouping of terms leads to the formulation of the desired offsetE value,
based on offsetD and (localE– localD) time difference values, as illustrated in Figure 5.17-a. Synchroniza-
tion is thus possible using periodic transfers of offsetD values and computations of (localE– localD) timer

The formulation of the offsetF value begins the assumption that the globalF and globalE times are the
identical. Addition of (localF– localF) and regrouping of terms leads to the formulation of the desired
offsetF value, based on offsetE and (localF– localE) time difference values, as illustrated in Figure 5.17-b.
Synchronization is thus possible using periodic transfers of offsetE values and computations of (localF–
 localE) timer differences.

In concept, the offsetE value is adjusted first; its adjusted value is then used to compute the desired offsetF
value. In actuality, the periodic computations of offsetE and offsetF values are performed concurrently.

Figure 5.17—Time synchronization principles

StationE

localE offsetE

add
globalE

StationF

localF offsetF

add
globalF

a) StationE synchronizes to StationD

StationD

localD offsetD

add
globalD

globalE = globalD
 = localD + offsetD
 = localD − (localE − localE) + offsetD
 = (localD − localE) + localE + offsetD
 = localE + offsetE
Where:
 offsetE = offsetD − (localE − localD)

StationE

localE offsetE

add
globalE

StationF

localF offsetF

add
globalF

b) StationF synchronizes to StationE

StationD

localD offsetD

add
globalD

globalF = globalE
 = localE + offsetE
 = localE − (localF − localF) + offsetE
 = (localE − localF) + localF + offsetE
 = localF + offsetF
Where:
 offsetF = offsetE – (localF – localE)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 51

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.5.6 Timer snapshot locations

Mandatory jitter-error accuracies are sufficiently loose to allow transmit/receive snapshot circuits to be
located with the MAC, as illustrated in Figure 5.18a. Vendors may elect to further reduce timing jitter by
latching the receive/transmit times within the PHY, where the uncertain FIFO latencies can be best avoided.

5.5.7 Bridge PLL possibilities

In addition to other valuable properties, the precise low-latency time-of-day synchronization protocols
reduce jitter sufficiently to eliminate the needs for PLLs within bridges, as illustrated in Figure 5.19a.
Elimination of such PLLs (illustrated in Figure 5.19b) simplifies the bridge design, while allowing each
end-point application to independently optimize the effective capture-time and jitter-magnitude
requirements of its PLL.

Figure 5.18—Timer snapshot locations

Figure 5.19—Bridge PLL possibilities

a) Simple clockSync snapshots

FIFO

transmitter

FIFO

receiver

txStrobe

PHY

rxStrobe

MAC

convert

globalTime
client

global local
offset

b) Precise clockSync snapshots

FIFO

transmitter

FIFO

receiver

txStrobe

PHY

rxStrobe

MAC

convert

globalTime
client

global local
offset

a) Simple bridge (without PLL)

master
gate

(…)

slave
gate

slave
gate

b) Sophisticated bridge (with PLL)

master
gate

PLL

(…)

slave
gate

slave
gate
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 52

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.6 Formats

5.6.1 Content framing

ClassA content is the client supplied per-cycle classA information, transferred from a talker to one or more
listeners. The content within each cycle can be small or large; stereo audio stream transfers involve only
approximately 20 bytes per cycle. Uncompressed 32-bits/pixel frame buffers (2 megapixels, 30Hz) would
transmit 30 kilobytes per cycle. Framing of this content must be efficient for small sizes and sufficient for
large sizes, as illustrated in Figure 5.20.

For low bandwidth transmissions, each frame transports distinct classA content, as illustrated in
Figure 5.20-a. For high bandwidth transmissions, the content can span multiple frames, as illustrated in
Figure 5.20-b (see also C.3.2).

As an alternative improved-efficiency alternative, low bandwidth content could be encapsulated into blocks,
where multiple blocks are included within each frame transmission, as illustrated in Figure 5.20-c. This
allows the per-frame overhead (the inter-packet gap, header, and trailer fields) to be amortized over multiple
blocks. For example, the eight inputs from a guitar may be packed together into the same frame. However,
the packing of multichannel content is beyond the scope of this working paper.

Another approach would be to reduce the need for concatenated frames by using the (defacto standard)
jumbo-frame sizes, which are approximately 9,000 bytes in size. However, support of the jumbo frame size
is not ensured, and (when supported) is considerably less than 216-byte maximum size of an IEEE 1394
isochronous frame, or the 118 kilobyte size implied by 75% utilization of a 10Gb/s link.

Figure 5.20—Content framing methods

a) Isolated frame

co
nt

en
t

frame

b) Concatenated frames

fr
am

e[
0]

fr
am

e[
1]

fr
am

e[
2]

fr
am

e[
3]

block

c) Groups of blocks

bl
oc

k[
0]

bl
oc

k[
1]

bl
oc

k[
2]

bl
oc

k[
3]

frame
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 53

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.6.2 Station plug addressing

Stream addressing is based on the concept of plugs, as illustrated in Figure 5.21. Streams are identified by
their 48-bit talker-station identifier concatenated with that talker’s 16-bit plugId. Each talker station may
have up to 216 streams, via logical plugs, in addition to the station’s hardwired connections Stations are
expected to provide higher level commands for connecting/mixing/amplifying/converting/etc. data between
combinations of hardwired and logical plugs. However, the details of such commands are beyond the scope
of this working paper.

5.6.3 Stream frame formats

Streaming classA frames are no different than other multicast Ethernet frames. The distinction is that each of
these multicast addresses is assumed to have associated streamID and bandwidth information saved within
each forwarding bridges, as illustrated in Figure 5.22.

The streamID consists of two components: sourceID and plugID. The 48-bit sourceID identifies the source
and usually equals the sa value; the plugID identifies the resource within that source. A distinct maxBw
(maximum bandwidth) field identifies the negotiated maximum for classA bandwidth.

Figure 5.21—Plug addressing

Figure 5.22—ClassA frame format and associated data

EUI-48
…

pl
ug

[0
]

pl
ug

[1
]

pl
ug

[2
]

pl
ug

[3
]

pl
ug

[4
]

pl
ug

[5
]

pl
ug

[6
]

pl
ug

[7
]

pl
ug

[8
]

pl
ug

[9
]

pl
ug

[1
0]

pl
ug

[1
1]

pl
ug

[1
2]

pl
ug

[6
55

28
]

pl
ug

[6
55

29
]

pl
ug

[6
55

30
]

pl
ug

[6
55

31
]

pl
ug

[6
55

32
]

pl
ug

[6
55

33
]

pl
ug

[6
55

34
]

pl
ug

[6
55

35
]

(…)

pl
ug

[1
3]

g
6 da

6 sa

2 protocolType

m data[n]

4 fcs

multicastStream

maxBw

sourceID plugID

streamID

(this bit is 1)
Contribution from: dvj@alum.mit.edu.
54 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
This design approach (which relies on the multicast nature of classA streams) has desirable properties:

a) Uniform. Using a multicast da is consistent with forwarding database use on existing bridges.

b) Efficient. The inclusion of a protocolType field to identify a frame’s classA nature is unnecessary.
Efficiency reduces the need for bridge-aware multi-block frame formats (see 5.3.3).

c) Structured. The stacking order of protocolType values is unaffected by its classA nature.

5.7 Pacing

5.7.1 Pacing

Pacing involves the throttling of classA streams so that their average bandwidth can be guaranteed over
small averaging intervals. Such fine-grained pacing has the following advantages:

a) Latency. Talker-to-listener delays are small, deterministic, and link-utilization independent.

b) Jitter. Delay variations between a talker and listeners are bounded and topology independent.

c) Intervals. Short bandwidth averaging intervals have several benefits:

1) Short intervals simplify the detection/enforcement of maximum classA bandwidths.
(A goal is to limit classA bandwidths to no more than 75% of the link capacity, see 1.2.3.)

2) Subscription protocols (see 5.4) can base timeouts on detected talker absent/present conditions.

5.7.2 Talker and bridge pacing

An end station and bridge have similar transmit logic for classA and non-classA frames, as illustrated in
Figure 5.23. Functionally distinct transmit queues are provided for classA and non-classA traffic, allowing
each to be managed separately.

Although classA frames have the highest priority, the classA frames are gated to prevent their early
departure. Gating involves blocking classA frames that arrived with sourceCycle=n, until the start of cycle
n+p. After the start of cycle n+p, the transmitter waits for the completion of preceding non-classA frames (or
residual cycle n+p-1 classA frames), then transmits these arrived-in-cycle-n frames with sourceCycle=n+p.
As noted previously, p is a design-dependent integer constant, preferably no more than 4 cycles (see 5.1.2
and 5.1.3).

A bridge has to cope with frame-reception uncertainties (due to preceding frame-transmission uncertainties),
in addition to its own frame-transmission uncertainties. As such, the values of p are expected to be slightly
larger in bridges than in end-station designs.

Figure 5.23—ClassA traffic pacing

a) Source station pacing

high low
gate

no
n-

cl
as

sA

cl
as

sA

b) Intermediate bridge pacing

high low
gate no

n-
cl

as
sA

cl
as

sA
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 55

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.7.3 Quasi-synchronous classA flows

The group of classA frames sent once every cycle is called a group. Each group transports a clockSync
frame (that provides cycle-count and clock-synchronization information) and one or more classA data
frames. That classA data frame (illustrated in black) incurs fixed nominal delays when passing through
bridges, as illustrated in Figure 5.24.

Depending on the timing of unrelated events, the location of the classA-data frame within the group can
migrate over time, as other conversations are started and/or ended, as illustrated by the black rectangle of the
link1 timing sequence.

Similarly, the group transmission time within the nominal synchronous cycle may be delayed due to con-
flicts with other frame transmissions, as illustrated by the shaded rectangles of the link2 timing sequence. On
occasion, conflicts with other frame transmissions can delay the classA block transmission into the next
cycle, as illustrated near the end of the link3 timing sequence.

5.7.4 Traffic congestion points

Existing networks have multiple potential congestion points with respect to real-time data transmissions, as
illustrated in Figure 5.25. ClassA traffic from the a0 source must share link2 bandwidth with classA sources
a2 and a3. Similarly, classA link2 traffic must share link3 bandwidth with non-classA sources b1 and b2.
And, although more subtle, classA link3 traffic must share the bridgeC bridge-internal bandwidth from
sources c2 and c3.

Figure 5.24—Quasi-synchronous classA deliveries: delay and jitter

Figure 5.25—ClassA bandwidth considerations

a) Talker-to-listener(s) data flow

Legend:
talker other listener

existing conversation

link1
link2 link3

link4
LT

LT

b) Data transfer timing

link1

link2

link3

Legend:
talker’s synchronous other synchronous
unrelated asynchronous

link4

a) Talker-to-listener flow conflicts

link1
link2 link3

link4

a2

a3

b1 b2

bridgeCbridgeA

bridgeB
c2

c3

a0

b) Bursting and bunching

(time)

x x y

bursting bunching

6 7 8 6 7 6

delay
Contribution from: dvj@alum.mit.edu.
56 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The a0 classA traffic is guaranteed by limiting the cumulative classA link bandwidths to no more than 75%
of the shared link/bridge capacity, and forwarding classA traffic in a preferential manner. Cumulative limits
imply bandwidth reservations; bandwidth reservations are expressed in terms of bytes-per-second, but are
enforced in terms of bytes-per-cycle, where all stations agree on a common cycle duration.

Bandwidth reservations are sometimes insufficient to ensure expected classA behaviors; bursting and
bunching are also potential problems. Bursting involves large packet transmissions, which interfere with the
fixed-rate transmission of smaller frames, as illustrated by the y frame in Figure 5.25-b. Bunching involves
the near simultaneous arrival of slow and fast arrivals, with the effective behavior of a burst, as illustrated by
the cycle[6],cycle[7],cycle[8] arrivals in Figure 5.25-b. See Annex F for worst-case bursting and bunching
scenario details.

Dealing with bursting and bunching is similar to designing clocked synchronous systems: data is updated
based on a common clock, causing fast and slow computations to flow through pipeline stages with the same
fixed delays.

5.8 Formats

5.8.1 Content framing

ClassA content is the client supplied per-cycle classA information, transferred from a talker to one or more
listeners. The content within each cycle can be small or large; stereo audio stream transfers involve only
approximately 20 bytes per cycle. Uncompressed 32-bits/pixel frame buffers (2 megapixels, 30Hz) would
transmit 30 kilobytes per cycle. Framing of this content must be efficient for small sizes and sufficient for
large sizes, as illustrated in Figure 5.20.

For low bandwidth transmissions, each frame transports distinct classA content, as illustrated in
Figure 5.20-a. For high bandwidth transmissions, the content can span multiple frames, as illustrated in
Figure 5.20-b (see also C.3.2).

As an alternative improved-efficiency alternative, low bandwidth content could be encapsulated into blocks,
where multiple blocks are included within each frame transmission, as illustrated in Figure 5.20-c. This
allows the per-frame overhead (the inter-packet gap, header, and trailer fields) to be amortized over multiple
blocks. For example, the eight inputs from a guitar may be packed together into the same frame. However,
the packing of multichannel content is beyond the scope of this working paper.

Another approach would be to reduce the need for concatenated frames by using the (defacto standard)
jumbo-frame sizes, which are approximately 9,000 bytes in size. However, support of the jumbo frame size

Figure 5.26—Content framing methods

a) Isolated frame

co
nt

en
t

frame

b) Concatenated frames

fr
am

e[
0]

fr
am

e[
1]

fr
am

e[
2]

fr
am

e[
3]

block

c) Groups of blocks

bl
oc

k[
0]

bl
oc

k[
1]

bl
oc

k[
2]

bl
oc

k[
3]

frame
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 57

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
is not ensured, and (when supported) is considerably less than 216-byte maximum size of an IEEE 1394
isochronous frame, or the 118 kilobyte size implied by 75% utilization of a 10Gb/s link.

5.8.2 Station plug addressing

Stream addressing is based on the concept of plugs, as illustrated in Figure 5.21. Streams are identified by
their 48-bit talker-station identifier concatenated with that talker’s 16-bit plugId. Each talker station may
have up to 216 streams, via logical plugs, in addition to the station’s hardwired connections Stations are
expected to provide higher level commands for connecting/mixing/amplifying/converting/etc. data between
combinations of hardwired and logical plugs. However, the details of such commands are beyond the scope
of this working paper.

5.8.3 Stream frame formats

Streaming classA frames are no different than other multicast Ethernet frames. The distinction is that each of
these multicast addresses is assumed to have associated streamID and bandwidth information saved within
each forwarding bridges, as illustrated in Figure 5.22.

The streamID consists of two components: sourceID and plugID. The 48-bit sourceID identifies the source
and usually equals the sa value; the plugID identifies the resource within that source. A distinct maxBw
(maximum bandwidth) field identifies the negotiated maximum for classA bandwidth.

Figure 5.27—Plug addressing

Figure 5.28—ClassA frame format and associated data

EUI-48
…

pl
ug

[0
]

pl
ug

[1
]

pl
ug

[2
]

pl
ug

[3
]

pl
ug

[4
]

pl
ug

[5
]

pl
ug

[6
]

pl
ug

[7
]

pl
ug

[8
]

pl
ug

[9
]

pl
ug

[1
0]

pl
ug

[1
1]

pl
ug

[1
2]

pl
ug

[6
55

28
]

pl
ug

[6
55

29
]

pl
ug

[6
55

30
]

pl
ug

[6
55

31
]

pl
ug

[6
55

32
]

pl
ug

[6
55

33
]

pl
ug

[6
55

34
]

pl
ug

[6
55

35
]

(…)

pl
ug

[1
3]

g
6 da

6 sa

2 protocolType

m data[n]

4 fcs

multicastStream

maxBw

sourceID plugID

streamID

(this bit is 1)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 58

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
This design approach (which relies on the multicast nature of classA streams) has desirable properties:

a) Uniform. Using a multicast da is consistent with forwarding database use on existing bridges.

b) Efficient. The inclusion of a protocolType field to identify a frame’s classA nature is unnecessary.
Efficiency reduces the need for bridge-aware multi-block frame formats (see 5.3.3).

c) Structured. The stacking order of protocolType values is unaffected by its classA nature.

5.9 Synchronized time-of-day clocks

5.9.1 Timer synchronization principles

Timer synchronization is based on the concept of free-running local times (localA, localB, and localC) with
compensating offset values (offsetA, offsetB, and offsetC), as illustrated in Figure 5.23. Updates involve
changes to the offset values, not the free-running local timer values. In this example, we assume that:
StationB is synchronized to its adjacent StationA; StationC is synchronized to its adjacent StationB. As a
result, StationC is indirectly synchronized to StationA (through StationB).

The formulation of the offsetB value begins the assumption that the globalB and globalA times are the
identical. Addition of (localB-localB) and regrouping of terms leads to the formulation of the desired offsetB
value, based on offsetA and (localB–localA) time difference values, as illustrated in Figure 5.23-a. Synchro-
nization is thus possible using periodic transfers of offsetA values and computations of (localB-localA) timer
differences. Frequently 8kHz transfers/computations and accurate 100PPM clocks reduces requirements for
precisely coordinated transfer/computation timings.

The formulation of the offsetC value begins the assumption that the globalC and globalB times are the
identical. Addition of (localC-localC and regrouping of terms leads to the formulation of the desired offsetC
value, based on offsetB and (localC–localB) time difference values, as illustrated in Figure 5.23-b. Synchro-
nization is thus possible using periodic transfers of offsetB values and computations of (localC-localB) timer
differences.

In concept, the offsetB value is adjusted first and its adjusted value is used to compute the desired offsetC
value. In reality, the periodic computations of offsetB and offsetC values is performed concurrently.

Figure 5.29—Time synchronization principles

StationB

localB offsetB

add
globalB

StationC

localC offsetC

add
globalC

a) StationB synchronizes to StationA

StationA

localA offsetA

add
globalA

globalB = globalA = localA + offsetA =
 localB – (localB – localA) + offsetA =
 localB + offsetB
Where:
 offsetB = offsetA – (localB – localA)

StationB

localB offsetB

add
globalB

StationC

localC offsetC

add
globalC

b) StationC synchronizes to StationB

StationA

localA offsetA

add
globalA

globalC = globalB = localB + offsetB =
 localC – (localC– localB) + offsetB =
 localC + offsetC
Where:
 offsetC = offsetB – (localC – localB)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 59

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.9.2 Time-of-day synchronization

Each clock slave derives its synchronized global clock by adding an offset value to its free-running local
time values. Clocks are never reset; synchronization of stationB to stationA is accomplished by adjustments
to the offset value within stationB.

Time synchronization information is passed between neighbors during each 8 kHz cycle, in a duplex
fashion. Near the start of cycle[n], the transmit and receive times for the clockSync frame is recorded, as
illustrated in Figure 5.24-a. Near the start of cycle[n+1], these previously-recorded times are communicated
to the neighbor station, as illustrated in Figure 5.24-b.

These previously recorded values are sufficient for both stations to determine the clock differences and cable
propagation delays near the end of cycle[n]. The clock master/slave relationship determines whether clockA
or clockB is compensated to track the other. In this example, the offset is adjusted in clock-slave stationB, as
specified by Equation 5.8.

rxDelta = bRx[n-1] - aTx[n]; (5.8)
txDelta = aRx[p-1] - bTx[p];
clockDelta = (rxDelta - txDelta)/2;
cableDelay = (rxDelta + txDelta)/2;
offsetB = offsetA - clockDelta;

When making these adjustments, the snapshot times {aTx, bRx, aRx, bTx} represent captured values of the
station’s local clock and are not affected by the deferred offsetB adjustments. Cycle transmission times and
data-frame time-stamp values, however, are based on the station’s global timer value.

To reduce unavoidable clock jitter, due to noise or depth-dependent buffer delays, clock-slave stations are
expected to place phase locked loops (PLLs) between their MAC and the application (not illustrated).

Figure 5.30—Time synchronization

local offset

add

global

a) cycle[n] observations

(bTx)(aRx)

(bRx)(aTx)

stationA

local offset

add

global

stationB

local offset

b) cycle[n+p] transmissions

(bTx)(aRx)

(bRx)(aTx)

stationA

local offset

stationB

add

global

add

global

aTx,
(aRx–bTx)

bTx,
(bRx–aTx)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 60

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.9.3 Timer snapshot locations

Mandatory jitter-error accuracies are sufficiently loose to allow transmit/receive snapshot circuits to be
located with the MAC, as illustrated in Figure 5.25a. Vendors may elect to further reduce timing jitter by
latching the receive/transmit times within the PHY, where the uncertain FIFO latencies can be best avoided.

5.9.4 Bridge PLL possibilities

In addition to other valuable properties, the precise low-latency time-of-day synchronization protocols
reduce jitter sufficiently to eliminate the needs for PLLs within bridges, as illustrated in Figure 5.26a.
Elimination of such PLLs (illustrated in Figure 5.26b) simplifies the bridge design, while allowing each
end-point application to independently optimize the effective capture-time and jitter-magnitude
requirements of its PLL.

Figure 5.31—Timer snapshot locations

Figure 5.32—Bridge PLL possibilities

a) Simple clockSync snapshots

FIFO

transmitter

FIFO

receiver

txStrobe

PHY

rxStrobe

MAC

convert

globalTime
client

global local
offset

b) Precise clockSync snapshots

FIFO

transmitter

FIFO

receiver

txStrobe

PHY

rxStrobe

MAC

convert

globalTime
client

global local
offset

a) Simple bridge (without PLL)

master
gate

(…)

slave
gate

slave
gate

b) Sophisticated bridge (with PLL)

master
gate

PLL

(…)

slave
gate

slave
gate
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 61

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.9.5 Example timer implementation

The selection of the best time-of-day format is oftentimes complicated by the desire to equate the clock for-
mat granularity with the granularity of the implementation’s ‘natural’ clock frequency. Unfortunately, the
‘natural’ frequency within a multimodal {1394, 802-100Mb/s, 802.3 1Gb/s} implementation is uncertain,
and may vary based between vendors and/or implementation technologies.

The difficulties of selecting a ‘natural’ clock-frequency can be avoided by realizing that any clock with suf-
ficiently fine resolution is acceptable. Flexibility involves using the most-convenient clock-tick value, but
adjusting the timer advance rate associated with each clock-tick occurrence, as illustrated in Figure 5.27.

This illustration is not intended to constrain implementations, but to illustrate how the system’s clock and
timer formats can be optimized independently. This allows the time-of-day timer format to be based on arith-
metic convenience, timing precision, and years-before-overflow characteristics (see Annex E).

Figure 5.33—Example timer implementation

delayed carry

carry56 add8 add24

rate

seconds fraction

time-of-day
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 62

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6. Frame formats

6.1 vClassA ClassA frames

6.1.1 ClassA frame fields

A classA frame differs from other frames in the format of its multicast da (destination address), as illustrated
in Figure 6.1.

6.1.1.1 da: A 6-byte (destination address) field that specifies a multicast address associated with the stream.

6.1.1.2 sa: A 48-bit (source address) field that specifies the local station sending the frame. The sa field
contains an individual 48-bit MAC address (see 3.11) as specified in 9.2 of IEEE Std 802-2001.

6.1.1.3 protocolType: A 16-bit field contained within the payload. When the value of protocolType is greater
than or equal to 1536 (60016) the protocolType field indicates the nature of the MAC client protocol (type
interpretation), selecting from values designated by the IEEE Type Field Register. When less than 1536 (016
– 5FF16), the protocolType is interpreted as the length of the frame (length interpretation). The length and
type interpretations of this field are mutually exclusive.

6.1.1.4 serviceDataUnit: An m-byte field the contains the service data unit provided by the client.

6.1.1.5 pad: If the sum of the other field lengths is less than 64 bytes, then the number of zero-valued pad
bytes are sufficient to make a 64-byte frame. Otherwise, the pad field is not present.

6.1.1.6 fcs: A 4-byte (frame check sequence) field whose 32-bit CRC covers the frame’s content.

NOTE—This clause should be skipped on the first reading (continue with Annex B).
Frame types and formats are expected to be added, revised, and/or deleted as this working paper evolves.

Figure 6.1—ClassA frame formats

6 da

6 sa

2 protocolType

m serviceDataUnit

4 fcs

— Identifies data[n] format and function

— Transmitted information

— Frame check sequence

— Destination MAC address

— Source MAC address

n pad — Pad to the avoid overly small frames
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 57

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6.2 clockSync frame format

6.2.1 clockSync fields

Clock synchronization (clockSync) frames facilitate the synchronization of neighboring clock span-master
and clock span-slave stations. The frame, which is normally sent once each isochronous cycle, includes
time-snapshot information and the identity of the network’s clock master, as illustrated in 6.2. The gray
boxes represent physical layer encapsulation fields that are common across all Ethernet frames.

Figure 6.2—clockSync frame format

6 da

6 sa

2 protocolType

4 fcs

8 precedence — Precedence for grand master selection

8 offsetTime — Offset time within the neighbor

8 transmitTime — Incoming link’s frame transmssion time (1 cycle delayed)

8 deltaTime — Outgoing link’s frame propagation time

2 cycleCounts — Isochronous-cycle sequence-number counter

— Frame check sequence

— Reserved for revisions&enhancements

— Destination MAC address

— Source MAC address

10 reserved

1 subType

1 hopCount — Hop count from the grand master

— Distinguishes RE frames from others (see 6.7.1)

— Distinguishes clockSync from other RE frames (see 6.7.2)

6 da

6 sa

2 protocolType

4 fcs

8 precedence — Precedence for grand master election

8 offsetTime — Offset time within the neighbor

8 lastFlexTime — Incoming link’s frame transmssion time (1 cycle delayed)

8 deltaTime — Outgoing link’s frame propagation time

— Frame check sequence

— Reserved for revisions&enhancements

— Destination MAC address

— Source MAC address

1 subType

1 hopCount — Hop count from the grand master

— Distinguishes RE frames from others (see 6.7.1)

— Distinguishes clockSync from other RE frames (see 6.7.2)

— Incoming link’s frame transmssion time (1 cycle delayed)4 lastBaseTime

— Cumulative rates from the grand-master4 diffRate

4 reserved
Contribution from: dvj@alum.mit.edu.
58 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6.2.1.1 da: A 48-bit (destination address) field that specifies the station(s) for which the frame is intended.
The da field contains either an individual or a group 48-bit MAC address (see 3.11), as specified in 9.2 of
IEEE Std 802-2001.

6.2.1.2 sa: A 48-bit (source address) field that specifies the local station sending the frame. The sa field
contains an individual 48-bit MAC address (see 3.11), as specified in 9.2 of IEEE Std 802-2001.

6.2.1.3 protocolType: A 16-bit field contained within the payload that identifies the format and function of
the following fields (see 6.7.1).

6.2.1.4 subType: A 16-bit field that identifies the format and function of the following fields (see 6.7.2).

6.2.1.5 hopCount: An 8-bit field that identifies the maximum number of hops between the talker and
associated listeners.

6.2.1.6 cycleCounts: A 16-bit field that identifies the cycle in which the frame was intended to be sent,
based on fields defined in 6.2.2.

6.2.1.7 precedence: A 64-bit field that specifies the precedence of the grand clock master, specified in 6.2.2.

6.2.1.8 offsetTimelastFlexTime: A 64-bit field that specifies the offset time within the source stationstation
when the previous clockSync frame was transmitted. The format of this field is specified in 6.2.3.

6.2.1.9 transmitTimedeltaTime: A 64-bit field that specifies the time within differences between clockSync
receive and transmit times, as measured on the source station when the previous clockSync frame was trans-
mittedopposing link. The format of this field is specified in 6.2.3.

6.2.1.10 deltaTimeoffsetTime: A 64-bit field that specifies the differences between clockSync receive and
transmit times, as measured on offset time within the opposing linksource station. The format of this field is
specified in 6.2.3.

6.2.1.11 fcsdiffRate: A 32-bit (frame check sequence) field that is a cyclic redundancy check (CRC) of
specifies the diffRate value within the framesource station.

6.2.2 cycleCounts field

The 16-bit cycleCounts field has fields that distinguish the frame type and indicate the isochronous cycle
when the frame was prepared for transmission, as illustrated in Figure 6.3.

6.2.2.1 reserved: A 3-bit reservedfield.

6.2.2.2 cycleCountlastBaseTime: A 1332-bit field that identifies specifies the isochronous cycle timer1
value within which this the source station when the previous clockSync frame was prepared for
transmissiontransmitted.

6.2.2.3 fcs: A 32-bit (frame check sequence) field that is a cyclic redundancy check (CRC) of the frame.

Figure 6.3—cycleCounts format

MSB LSB

reserved cycleCount
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 59

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6.2.3 precedence fields

The format of the 8064-bit precedence field is based on the format of the spanning tree protocol precedence
value, as illustrated in Figure 6.3.

6.2.3.1 bridgePriority: A 4-bit field that comprise a settable priority component that permits the relative
priority of bridges to be managed.

6.2.3.2 systemID: A 12-bit field that comprise a locally assigned system identifier extension.
(The term systemID is equivalent to ‘system ID’, as specified within IEEE Std 802.1D-2004.)

6.2.3.3 macAddress: A 48-bit field that corresponds to the grand clock master station.

The concatenated bridgePriority, systemId, and macAddress fields forms a 64-bit bridgeIdentifier
clockIdentifier field.
(The term bridgeIdentifier clockIdentifier is equivalent to ‘Bridge Identifier’, as specified within IEEE Std
802.1D-2004.)

Editors’ Notes: To be removed prior to final publication.
Perhaps the macAddress should be changed to an EUI-64, to simplify interactions with IEEE Std 1394 and
new network standards (which are encouraged by the IEEE/RAC to use such 64-bit values).

Figure 6.4—precedence format

macAddressbp
MSB LSB

systemID

bridgeIdentifier

Legend: bp : bridgePriority

macAddressbp
MSB LSB

systemID

clockIdentifier

Legend: bp : bridgePriority
Contribution from: dvj@alum.mit.edu.
60 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6.2.4 Time field formats

Time-of-day values within a frame are specified by 64-bit values, consistent with IETF specified NTP[B7]
and SNTP[B8] protocols. These 64-bit values consist of two components: a 32-bit seconds and 32-bit
fraction fields, as illustrated in Figure 6.4.

6.2.4.1 seconds: A 32-bit field that specifies time in seconds.

6.2.4.2 fraction: A 32-bit field that specified time offset within the second, in units of 2-32 second.

The concatenation of 32-bit seconds and 32-bit fraction field specifies a 64-bit time value, as specified by
Equation 6.1.

time = seconds + (fraction / 232) (6.1)
Where:

seconds is the most significant component of the time value (see Figure 6.4).
fraction is the less significant component of the time value (see Figure 6.4).

6.3 RequestRefresh subscription frame

6.3.1 RequestRefresh fields

RequestRefresh subscription frames contain channel-acquisition information, as illustrated in Figure 6.5.

6.3.1.1 da: A 6-byte (destination address) field that normally specifies the destination address for the frame
transmission, with unicast and multicast forms. For the RequestRefresh frame, the da represents the ultimate
destination of the talker.

Figure 6.5—Complete seconds timer format

Figure 6.6—RequestRefresh frame format

seconds fraction

32 bits32 bits

MSB LSB

6

6

da

sa

— The station(s) receiving the frame (48-bit destination address)

— The station sending the frame (48-bit source station address)

protocolType2

fcs4

subType1

— The 32-bit CRC for preceding fields

n pad — Pad to the avoid overly small frames

24 info[0]

24 info[1]

24 info[count–1]

24 (…)

count1

– Stream information blocks (see 6.6)

— Distinguishes RE frames from others (see 6.7.1)

— Distinguishes RequestRefresh from other RE frames (see 6.7.2)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 61

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6.3.1.2 sa: A 6-byte (source address) field that normally specifies the source address for the frame
transmission. If a bridge is present between the frame and its associated listener, the sa value identifies the
bridge.

6.3.1.3 protocolType: A 2-byte field that normally specifies the frame length, or the format and function of
the following fields (excluding the 4-byte fcs field). This RE assigned value distinguishes its frame formats
from others (see 6.7.1).

6.3.1.4 subType: A 1-byte field that distinguishes the ResponseError frame from other frames defined
within this working paper.

6.3.1.5 count: A 1-byte field that specifies the number of elements within the following info-block array.

6.3.1.6 info: A 24-byte array element that provides listener subscription information (see 6.6).

6.3.1.7 pad: If the sum of the other field lengths is less than 64 bytes, then the number of zero-valued pad
bytes are sufficient to make a 64-byte frame. Otherwise, the pad field is not present.

6.3.1.8 fcs: The 4-byte (frame check sequence) field whose 32-bit CRC covers the frame’s content. For RE
content frames, the standard definition applies.

6.4 RequestLeave subscription frame

The RequestLeave subscription frames contain channel-release information, as illustrated in Figure 6.6.

6.4.1 da: A 6-byte (destination address) field that specifies the span-local destination address for the frame
transmission. For the RequestRefresh frame, the da represents the ultimate destination of the talker.

NOTE—ResponseError frames are only returned to their transmitting source, which could be a bridge’s listener agent or
the listener station. In the case of a listener agent, the bridge is responsible for forwarding similar messages downstream,
based on the databases information contained within each of this stream’s associated talker agents.

6.4.2 sa: A 6-byte (source address) field that specifies the span-local source address for the frame trans-
mission. If a bridge is present between the frame and its associated listener, the sa value identifies the bridge.

6.4.3 protocolType: A 2-byte field that normally specifies the frame length, or the format and function of the
following fields (excluding the 4-byte fcs field). This RE assigned value distinguishes these frame formats
from those defined by other standards (see 6.7.1).

Figure 6.7—RequestLeave subscription frame format

6

6

da

sa

— The station(s) receiving the frame (48-bit destination address)

— The station sending the frame (48-bit source station address)

protocolType2

fcs4

subType1

— The 32-bit CRC for preceding fields

20 reservedB — Pad to the avoid overly small frames

1 — ReservedreservedA

24 info — Stream information block (see 6.3.2)

— Distinguishes RE frames from others (see 6.7.1)

— Distinguishes RequestLeave from other RE frames (see 6.7.2)
Contribution from: dvj@alum.mit.edu.
62 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6.4.4 subType: A 1-byte field that distinguishes the ResponseError frame from other frames defined within
this working paper (see 6.7.2).

6.4.5 reservedA: A 1-byte zero-valued field that is ignored when the frame is processed.

6.4.5.9 info: A 24-byte array element that provides listener subscription information (see 6.6).

6.4.6 reservedB: A 2-byte field reserved for future extensions of this working paper.

6.4.7 fcs: The 4-byte (frame check sequence) field whose 32-bit CRC covers the frame’s content. For RE
content frames, the standard definition applies.

6.5 ResponseError subscription frame

The ResponseError subscription frames contain channel-release information, as illustrated in Figure 6.7.

6.5.1 da: A 6-byte (destination address) field that specifies the span-local destination address for the frame
transmission. If a bridge is present between the frame and its associated listener, this value identifies the
bridge.

NOTE—ResponseError frames are only returned to their transmitting source, which could be a bridge’s listener agent or
the listener station. In the case of a listener agent, the bridge is responsible for forwarding equivalent messages
downstream, based on the databases information contained within each of this stream’s associated talker agents.

6.5.2 sa: A 6-byte (source address) field that specifies the span-local source address for the frame trans-
mission. If a bridge is present between the frame and its associated talker, the sa value identifies the bridge.

6.5.3 protocolType: A 2-byte field that normally specifies the frame length, or the format and function of the
following fields (excluding the 4-byte fcs field). This RE assigned value distinguishes these frame formats
from those defined by other standards (see 6.7.1).

6.5.4 subType: A 1-byte field that distinguishes the ResponseError frame from other frames defined within
this working paper (see 6.7.2).

6.5.5 errorCode: A 1-byte field that distinguishes between error types.

6.5.5.10 info: A 24-byte array element that provides listener subscription information (see 6.6).

6.5.6 reservedB: A 24-byte field reserved for future extensions of this working paper.

Figure 6.8—ResponseError subscription frame format

6

6

da

sa

— The station(s) receiving the frame (48-bit destination address)

— The station sending the frame (48-bit source station address)

protocolType2

subType1

1 — ReservederrorCode

fcs4 — The 32-bit CRC for preceding fields

20 reservedB — Pad to the avoid overly small frames

24 info — Stream information block (see 6.3.2)

— Distinguishes RE frames from others (see 6.7.1)

— Distinguishes ResponseError from other RE frames (see 6.7.2)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 63

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6.5.7 fcs: The 4-byte (frame check sequence) field whose 32-bit CRC covers the frame’s content. For RE
content frames, the standard definition applies.

6.6 Common info field format

Many frame transports an array of one or more info[] fields, whose content is illustrated in Figure 6.8.

6.6.1 mcastID: A 6-byte (multicast identifier) field that routes frames betwee the talker and audience.

6.6.2 talkerID: A 6-byte field that identifies the stream’s talker.

6.6.3 plugID: A 16-bit field that specifies the plug identifier within the talker.

The concatenation of the 48-bit talkerID and 16-bit plugID fields forms a 64-bit streamID that uniquely
identifies the classA multicast stream.

6.6.4 maxCycles: A 2-byte field that is updated by bridges, as the RequestRefresh flows from the talker to
the listener, allowing the maximum number of delay cycles between the talker and listener stations to be
known to the talker.

6.6.5 maxBw: A 4-byte field that specifies the level of negotiated classA bandwidth, measured in bytes of
per-cycle content.

6.6.6 reserved: A 4-byte zero-valued field that is ignored.

Figure 6.9—Common info field format

maxCycles2 — Delay from the talker

maxBw4 — Maximum required bandwidth

reserved4 — Reserved

6 mcastID — Multicast destination label

6 talkerID — Multicast talker identifier

plugID2 — Resource within the talker
Contribution from: dvj@alum.mit.edu.
64 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6.7 Unique identifier values

6.7.1 protocolType identifier

The clockSync (see 6.2) and subscription (see 6.3) frames are distinguished from other frames by their
16-bit distinct protocolType value, as illustrated in Figure 6.9. The following 1-byte subType field further
distinguishes between these uses (see 6.7.2).

6.7.2 subType identifier

Distinct subType identifiers distinguish between RE frame types, as specified by Table 6.1.

NOTE—The following protocolType-assignment text will ultimately be updated with assigned values.

Figure 6.10—protocolType field value

Table 6.1 — Assigned subType identifiers

Value Name

R
ow See Description

TBD CLOCK_SYNC 1 6.2 Demarcates boundaries between isochronous cycles.

TBD REQ_REFRESH 2 6.3 Subscription resource request.

TBD REQ_LEAVE 3 6.4 Subscription resource release.

TBD RES_ERROR 4 6.5 Subscription error response.

192-255 E1394 5 C.2.2 Encapsulated IEEE 1394 packet (or portion of 1394 packet)

6 da

6 sa

2 protocolType

4 fcs

— Identifies content format

n serviceDataUnit — protocolType dependent

— Frame check sequence

— Destination MAC address

— Source MAC address

Assigned protocolType value:
QR-ST

subType
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 65

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7. Clock synchronization

7.1 Clock-synchronization overview

7.1.1 Clock synchronization informationservices

Clock synchronization involves the transmission and reception of clockSync frames interchanged between
adjacent-span stations, using the state machines defined within this clause. When considered as a whole,
these provide the following services:

a) SelectionElection. The grand clock master is selected elected from among the grand-clock-master
capable stations.

b) Isolation. Timeouts identify the boundaries, beyond which RE services are not supported.

c) Clock-sync. Clock-slave stations are synchronized to the grand master station’s time reference.

d) Framing. A cycleCount identification field identifies the cycle associated with classA frames.

NOTE—This remainder of this clause should be skipped on the first reading (continue with goto
Annex B).
The following state machines are highly preliminary and subject to change.
Although not finalized, the state tables provide for understanding of proposed frame-field uses.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 66

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.1.2 Clock-synchronization agents

Clock-synchronization information conceptually flows from a grand-master station to clock-slave stations,
as illustrated in Figure 7.1a. A more detailed illustration shows pairs of synchronized clock-master and
clock-slave components, as illustrated in Figure 7.1b.

7.1.3 Clock-synchronized pairs

Each bridge port provides clock-master and clock-slave agents, although both are never simultaneously
active. External communications (see 7.1b) synchronize clock-slaves to clock-masters, as listed in Table 7.1.

Figure 7.1—Hierarchical flows

Table 7.1—External clock-synchronization pairs

Grand master Clock master
agent

Clock slave
agent Clock slave Type of

synchronization

d1 – c1 – Station-to-bridge

– c0 b1 – Bridge-to-bridge

– c3 e1 –

– b0 – a0 Bridge-to-station

– b2 – a2

– b3 – a3

– c2 – d2

– e0 – f0

– e2 – f2

– e3 – f3

b0

b1

c0 c1 c2 c3

e0

e1

e2

S

S
e3

S

a) Clock synchronization flow

Legend:
grand-master clock slave
streaming data

G

G S

b2

b3

SS

S

S

b) Agents along the synchronization path

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b3 e3

e0

e1

e2

Legend:
grand master slave station
master agent slave agent
internal coupling clock-synch flow

b2
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 67

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Internal communications distribute synchronized time from clock-slave agents b1, c1, and e1 to the other
clock-master agents on bridgeB, bridgeC, and bridgeE respectively. However, bridge-internal port-to-port
synchronization protocols are implementation-dependent and beyond the scope of this working paper.

Within a clock-slave, precise time synchronization involves adjustments of timer offset and rate values. The
adjustments of the timer’s offset is called offset synchronization (see 7.1.5); the adjustments of the timer’s
rate is called rate synchronization (see 7.1.7). Both involve calibration of local clock-master/clock-slave dif-
ferences and the propagation of cumulative differences in the clock-slave direction, as described by the C
code of Annex J.

Time synchronization yields distributed but closely-matched timeOfDay values within stations and bridges.
No attempt is made to eliminate intermediate jitter with bridge-resident jitter-reducing phase-lock loops
(PLLs,) but application-level phase locked loops (not illustrated) are expected to filter high-frequency jitter
from the supplied timeOfDay values

7.1.4 Clock-synchronization intervals

Clock synchronization involves the processing of periodic events. Three distinct time periods are involved,
as listed in Table 7.2. The clock-period events trigger the update of free-running timer values; the period
affects the timer-synchronization accuracy and is therefore constrained to be small.

The send-period events trigger the interchange of clockSync frames between adjacent stations. While a
smaller period (1 ms or 100 µs) could improve accuracies, the larger value is intended to reduce costs by
allowing computations to be executed by inexpensive (but possibly slow) bridge-resident firmware.

The slow-period events trigger the computation of timer-rate differences. The timer-rate differences are
computed over two slow-period intervals, but recomputed every slow-period interval. The larger 100 ms (as
opposed to 10 ms) computation interval is intended to reduce errors associated with sampling of
clock-period-quantized slow-period-sized time intervals.

Table 7.2—Clock-synchronization intervals

Name Time Description

clock-period < 20 ns Time between timer-register value updates

send-period 10 ms Time between sending of periodic clockSync frames between adjacent stations

slow-period 100 ms Time between computation of clock-master/clock-slave rate differences
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 68

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.1.5 Offset synchronization

Offset synchronization involves a subset of the time-synchronization components, as illustrated by
white-colored boxes in Figure 7.4. Each clock consists of a progressing timeOfDay value, whose offset and
rate are periodically adjusted. The free-running flexTimer timer is never reset; synchronization of stationE
(with respect to stationD) is accomplished by adjustments to the flexOffset and flexRate values within
stationE.

The offset-synchronization protocols interchange parameters periodically, possibly every 10 ms. The
lastFlexTime, deltaTime, and offsetTime values are sent periodically from the clock-master to the
clock-slave. The lastFlexTime is sent periodically from the clock-slave to the clock-master, providing
information necessary for the clock-master to produce a deltaTime value for the clock-slave.

The offset-compensation protocols for stationE adjust its myOffset value so that the instantaneous values of
stationE.timeOfDay and stationD.timerOfDay are the same. Computations are performed on clockStrobe
reception and clockStrobe transmission.

As an option, an additional linkOffset value is available to manually compensate for mismatched
transmit-link/receive-link duplex-cable delays on the clock-master side. The linkOffset value is expected be
manually set when the cable mismatch is known through other mechanisms, such as specialized cable-char-
acterization equipment.

The station’s offsetTime value is constructed by adding the received clockStrobe.offsetTime, local myOffset,
and local linkOffset values. This revised clockStrobe.offsetTime value is used within each station and is
passed to the downstream neighbor (when such a neighbor is present).

Figure 7.2—Offset synchronization

flexTimer

flexAdd

offsetAdd

timeOfDay

stationD

lastFlexTime
deltaTime
offsetTime

lastFlexTime

flexRate

myOffset

addition2coffsetTime

rateAdd

diffAdd
baseRate

Legend:
clock-period offset-synchronization entity send-period active-synchronization entity
clock-period rate-synchronization entity send-period passive-synchronization entity
clock-period communication path send-period communication path

myDiffRate

diffRate

multiply

clock-master clock-slave stationE

flexTimer

flexAdd

offsetAdd

timeOfDay

flexRate

addition2coffsetTime

rateAdd

diffAdd
baseRate

myDiffRate

diffRate

linkOffset myOffset linkOffset

flexOffsetflexOffset

multiply

baseTimer

baseAdd

baseTimer

baseAdd
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 69

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.1.6 Cascaded offsets

The concept of cascaded offset values can be better understood by considering a simple 3-bridge example, as
illustrated in Figure 7.3. The slave-agent in bridgeB is synchronized to its neighbor grand-master via
clockSync frames sent on the connecting bidirectional span. Within bridgeB, the clock-slave agent passes
the time directly to the clock-master agent. The slave-agent in bridgeC is synchronized to its neighbor
clock-master via clockSync frames sent on the connecting bidirectional span. Other ports are similarly syn-
chronized, thus synchronizing the rightmost clock-slave station to the leftmost grand-master station.

To simplify this illustration, consider only the seconds portion of the flexTimer value within each station or
bridge. These values may differ dramatically, based (perhaps) on the power-cycling or topology formation
sequence. Thus, the grand-master could have a flexTimer value of 100 while its bridgeB neighbor has a
flexTimer value of 500.

The myOffset value within bridgeB will converges to the value of −400, representing the differences
between grand-master and bridgeB flexTimer values. The flexOffset value received from the grand-master is
added to this myOffset value, so that bridgeB’s flexOffset becomes −390. The flexTimer and flexOffset values
are added, to yield a resultant bridgeB timeOfDay value of 110, properly synchronized to the identical
grand-master’s value.

Similarly, bridgeC is synchronized to bridgeB, bridgeD to bridgeC, and the clock-slave to bridgeD.

Parameter

name grand-master bridgeB bridgeC bridgeD clock-slave

number 1 2 3 4 5

flexTimer 100 500 -300 200 400

myOffset 10 -400 800 -500 -200

flexOffset 10 -390 410 -90 -290

timeOfDay 110

Representing:
 myOffset[k+1] = flexTimer[k]−flexTimer[k+1];
 flexOffset[k+1] = flexOffset[k]+myOffset[k+1];
 timeOfDay[k] = flexTimer[k] + flexOffset[k];

Figure 7.3—Cascaded offsets (a possible scenario)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 70

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.1.7 Rate synchronization

Rate synchronization involves a subset of the time-synchronization components, as illustrated by
white-colored boxes in Figure 7.4. The free-running baseTimer timer facilitate the determination of rate
differences between the clock-master and clock-slave stations.

The rate-synchronization protocols interchange parameters periodically, but less frequently than the
offset-synchronization protocols, possibly every 100 ms. The lastBaseTime value is sent periodically from
the clock-master to the clock-slave. Nothing is returned from the clock-slave station.

The rate-compensation protocols for stationE adjust its myDiffRate value to accommodate for differences
between the stationD.baseTimer and stationE.baseTimer rates. Computations are performed on clockStrobe
reception and clockStrobe transmission.

The station’s diffRate value is constructed by adding the received clockStrobe.diffRate and local myDiffRate
values. This revised clockStrobe.diffRate value is used within each station and is passed to the clock-slave
side neighboring station (if present).

Figure 7.4—Rate synchronization

Legend:
clock-period offset-synchronization entity send-period active-synchronization entity
clock-period rate-synchronization entity send-period passive-synchronization entity
clock-period communication path send-period communication path

flexTimer

flexAdd

offsetAdd

timeOfDay

flexOffset

baseTimer

baseAdd

stationD

lastBaseTime

flexRate

addition2coffsetTime

rateAdd

diffAdd
baseRate

myDiffRate

diffRate

clock-master clock-slave stationE

flexTimer

flexAdd

offsetAdd

timeOfDay

flexRate

addition2coffsetTime

rateAdd

addition2c

myDiffRate

diffRate

myOffset linkOffset myOffset linkOffset

baseRate

flexOffset

multiplymultiply

baseTimer

baseAdd
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 71

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.1.8 Cascaded rate differences

The concept of cascaded rate values can be better understood by considering a simple 3-bridge example, as
illustrated in Figure 7.5. Within this figure, the myDiffRateN and diffRateN represent parts-per-million
(PPM) normalized values of myDiffRate and diffRate respectively.

The slave-agent in bridgeB is synchronized to its neighbor grand-master via clockSync frames sent on the
connecting bidirectional span. Within bridgeB, the clock-slave agent passes the time directly to the
clock-master agent. The slave-agent in bridgeC is synchronized to its neighbor clock-master via clockSync
frames sent on the connecting bidirectional span. Other ports are similarly synchronized, thus synchronizing
the rightmost clock-slave station to the leftmost grand-master station.

To simplify this illustration, consider only the parts-per-million (PPM) normalized rate values within each
station or bridge. These values may differ significant, based (perhaps) on the nominal value or ambiant tem-
perature. Thus, the grand-master could have a crystal deviation of +10 while its bridgeB neighbor has a
crystal deviation of +100.

The myDiffRate value within bridgeB will converges to the value of −90 PPM, representing the differences
between grand-master and bridgeB crystal accuracies. The diffRate value received from the grand-master is
added to the myDiffRate value, so that bridgeB’s diffRate becomes −90 PPM. The diffRate and crystal devia-
tion values are additive, yielding a resultant bridgeB flexTimer deviation of 10 PPM, properly synchronized
to the identical grand-master’s value.

Similarly, the rate of bridgeC is synchronized to bridgeB, bridgeD to bridgeC, and the clock-slave to
bridgeD.

Parameter

name grand-master bridgeB bridgeC bridgeD clock-slave

number 1 2 3 4 5

crystal deviation +10 PPM +100 PPM −100 PPM −75 PPM +75 PPM

myDiffRateN 0 PPM −90 PPM 200 PPM −25 PPM −150 PPM

diffRateN 0 PPM −90 PPM 110 PPM +85 PPM −65 PPM

flexTimer
deviation

10 PPM

Representing:
 myDiffRateN[k+1] = flexRate[k]−flexRate[k+1];
 flexRate[k+1] = flexRate[k]+myDiffRateN[k+1];
 flexRateDeviation[k] = flexRate[k] + myDiffRateN[k];

Figure 7.5—Cascaded rate differences (a possible scenario)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 72

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.1.9 Rate-difference effects

If the absence of rate adjustments, signifiicant timeOfDay errors can accumulate between send-period
updates, as illustrated on the leftside of Figure 7.6. The 2 ms deviation is due to the cumulative effect of
clock drift, over the 10 ms send-period interval, assuming clock-master and clock-slave crystal deviations of
−100 PPM and +100 PPM respectively.

While this regular sawtooth is illustrated as a highly regular (and thus perhaps easily filtered) function,
irregularities could be introduced by small drifts in the relative ordering of clock-master and clock-slave
transmissions, or transmission delays invoked by asynchronous frame transmissions.

The differences in rates could easily be reduced to less than 1 PPM, assuming a 200 ms measurement inter-
val (based on a 100 ms slow-period interval) and a 100 ns arrival/departure samping error. A clock-rate
adjustment at time 100 ms could thus reduce the clock-drift related errors to less than 5 ns. At this point, the
timer-offset measurement errors (not clock-drift induced errors) dominate the clock-synchronization error
contributions.

Figure 7.6—Rate-adjustment effects

timeOfDay
deviation

time

2 µs

5 ns

70 ms 80 ms 90 ms 100 ms 110 ms 120 ms 130 ms60 ms
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 73

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.1.10 flexTimer implementation example

The selection of the best time-of-day format is oftentimes complicated by the desire to equate the clock for-
mat granularity with the granularity of the implementation’s ‘natural’ clock frequency. Unfortunately, the
‘natural’ frequency within a multimodal {1394, 802-100Mb/s, 802.3 1Gb/s} implementation is uncertain,
and may vary based between vendors and/or implementation technologies.

The difficulties of selecting a ‘natural’ clock-frequency can be avoided by realizing that any clock with suf-
ficiently fine resolution is acceptable. Flexibility involves using the most-convenient clock-tick value, but
adjusting the timer advance rate associated with each clock-tick occurrence.

The same mechanism easily supports both near-arbitrary clocking rates and fine-grained rate-adjustments,
needed to support timer-synchronization protocols, as illustrated in Figure 7.7.

This illustration is not intended to constrain implementations, but to illustrate how the system’s clock and
timer formats can be optimized independently. This allows the timeOfDay timer format to be based on
arithmetic convenience, timing precision, and years-before-overflow characteristics (see Annex E).

7.1.11 An alternative baseTimer implementation

An alternative implementation could implement the baseTimer-related circuitry in hardware. For such
implementations, the associated firmware can be simplified, since the multiplies are eliminated from the
most frequently executed loop (see Annex J).

A possible baseTimer hardware implementation is much simpler than the fully adjustable timer implementa-
tion, due to the absence of offset-compensation, rate-compensation, and seconds-accumulation hardware, as
illustrated in Figure 7.8.

Figure 7.7—flexTimer implementation example

Figure 7.8—baseTimer implementation example

delayed carry
56-bit carry add8 32-bit addition

flexRate

seconds fraction residue

64-bit addition seconds fraction

flexAdd

flexTimer

offsetAdd myOffset

seconds fraction timeOfDay

delayed carry
24-bit carry add8 24-bit add

fraction

baseRate

residue

baseAdd

baseTimer
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 74

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.2 Terminology and variables

7.2.1 Common state machine definitions

The following state machine inputs are used multiple times within this clause.

CYCLES
The number of isochronous cycles within each second; defined to be 8,000.

NULL
Indicates the absence of a value and (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared queue structures.

Q_CRX_SYNC—The identifier associated with the received clockSync frames.
Q_CTX_SYNC—The identifier associated with the transmitted clockSync frames.
Q_ARX_REQ*—The identifier associated with the received subscription request frames.
Q_ATX_REQ*—The identifier associated with the transmitted subscription request frames.
Q_ATX_RES*—The identifier associated with the transmitted ResponseError frames.
Q_ARX_STR*—The identifier associated with the talker agent’s streaming input.
Q_ATX_STR*—The identifier associated with the talker agent’s streaming output.

NOTE—Those queue identifiers with an ‘*’ are used in other clauses, but are described above. This allows all queue
identification values in one location, rather than interleaving their definitions throughout this working paper.

7.2.2 Common state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.

localTimer
A 64-bit timer representing the current 64-bit internal free-running time-of-day value.

globalTimer
A 64-bit timer representing the current 64-bit network-synchronized time-of-day value.

rxDelta
A variable representing the receive link’s computed clockSync frame transmission delay.

timerOffset
A variable that is added to localTimer to yield the globalTimer value.

NOTE—This remainder of this clause has been obsoleted by recent timer-related changes.
Thus, the state tables only provide an indication of possible documentation styles and formats.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 75

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.2.3 Common state machine routines

Dequeue(queue)
Returns the next available frame from the specified queue.

frame—The next available frame.
NULL—No frame available.

Enqueue(queue, frame)
Places the frame at the tail of the specified queue.

QueueEmpty(queue)
Indicates when the queue has emptied.

TRUE—The queue has emptied.
FALSE—(Otherwise.)

7.2.4 Variables and literals defined in other clauses

This clause references the following parameters, literals, and variables defined in Clause TBD:

TBDs

7.3 Clock synchronization state machines

7.3.1 ClockAction state machine

7.3.1.1 ClockAction state machine routines

ClockSyncReceive()
ClockSyncTransmit()

See 7.2.3.

7.3.1.2 ClockAction state table

The AgentAction state machine calls the ClockSyncReceive and ClockSyncTransmit state machines, as
specified in Table 7.3. The purpose of the ClockAction state machine is to ensure correctness of the
ClockSyncReceive and ClockSyncTransmit state machines, when updating the shared rxDelta data value. In
the case of any ambiguity between the text and the state machine, the state machine shall take precedence.
The notation used in the state table is described in 3.4.

Row 7.3-1: Execute the ClockSyncTransmit state machine (see 7.3.3).
Row 7.3-2: Execute the ClockSyncReceive state machine (see 7.3.2).

Table 7.3 — ClockAgent state table

Current state

R
ow

Next state

state condition action state

START — 1 ClockSyncTransmit(); FINAL

FINAL — 2 ClockSyncReceive(); START
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 76

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.3.2 ClockSyncReceive state machine

The ClockSyncReceive state machine monitors received clockSync frames.

The following subclauses describe parameters used within the context of this state machine.

7.3.2.1 ClockSyncReceive state machine definitions

CYCLES
Q_CRX_SYNC
Q_CTX_SYNC

See 7.2.1.

7.3.2.2 ClockSyncReceive state machine variables

alive
Indicates the presence of recently received clockSync frames.

clockSlaveID
A per-station variable indicating which port has provided the preferred clockSync indication.
A negative value indicates the lack of a preferred clockSync indication (this is the grand master).

clockTime
A variable representing the most-recent clockSync frame-arrival time; used for timeout purposes.

frame
The clockSync data frame (see 6.2) of the received frame.

globalTimer
See 7.2.2.

hopCount
Indicating the number of hops between this station and the grand clock master.

lastCycle
A variable representing the cycleCount value within the preceding clockSync frame.

lastTime
A variable representing the arrival time of the preceding clockSync frame.

localTimer
See 7.2.2.

portPrecedence
A variable representing the precedence of clockSync frames, as received by this port.

rxDelta
See 7.2.2.

rxPrecedence
A variable representing the best of the portPrecedence values, or a negative value if the station has
a better grand-master preference value.

thisCycle
A variable representing the cycleCount value within the current clockSync frame.

thisPortID
A variable that distinguishes the port from other ports on the same station.

thisTime
A variable representing the most-recent clockSync frame-arrival time.

timerOffset
See 7.2.2.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 77

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.3.2.3 ClockSyncReceive state machine routines

Dequeue(queue)
See 7.2.3.

PortPrecedence(queue)
Select the slave port (if any) with the smallest value of the following concatenated fields.

precedence—The MAC address tie-breaker.
hopCount—The nonzero distance from the grand clock master.
thisPortID—A port identifier that is unique within the bridge.

An exception the hopCount value of zero, for which the worst precedence is assumed.
If the per-port precedence values are numerically less than the values associated with this station,
then the returned value is negative (indicating the absence of a clock-slave port). Otherwise, an
unsigned value representing the concatencated field values is returned.

7.3.2.4 ClockSyncReceive state table

The ClockSyncReceive state machine, as specified in Table 7.4. In the case of any ambiguity between the
text and the state machine, the state machine shall take precedence. The notation used in the state table is
described in 3.4.

Table 7.4 — ClockSyncReceive state table

Current state

R
ow

Next state

state condition action state

START — 1 globalTimer = localTimer + timerOffset; FIRST

FIRST (frame =
Dequeue(Q_CRX_SYNC))
!= NULL

2 thisTime = localTimer;
thisCycle = frame.cycleCounts.cycleCount;
portPrecedence = Merge(frame.precedence,
 frame.hopCount, thisPortID);
alive = 1;

CHECK

(localTimer – clockTime)
 > clockTimeout

3 clockTime = localTimer;
alive = 0;

RETURN

— 4 rxPrecedence = RxPrecedence(); FINAL

CHECK thisCycle ==
 (lastCycle + 1) % CYCLES

5 rxDelta = lastTime –
frame.transmitTimelastFlexTime;

MORE

— 6 —

MORE bestPrecedence == rxPrecedence 7 timerOffset = frame.offsetTime +
 (rxDelta – frame.deltaTime) / 2;
hopCount = frame.hopCount;

BUMP

— 8 —

BUMP — 9 lastCycle = thisCycle;
lastTime = thisTime;

RETURN

FINAL bestPrecedence < 0 10 hopCount = 0;

— 11 —
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 78

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Row 7.4-1: The global timer is computed from the local timer and offset values.

Row 7.4-2: The received frame is dequeued.
The station-local time is saved, so that timeouts and clock differences can be readily computed.
The frame cycle number is saved, so that losses of clockSync frames can be detected.
The port’s clock-slave precedence is saved, so that the preferred clock-slave port can be readily selected.
The alive indication is set, to indicate validity of the saved clockSync information.
Row 7.4-3: If no clock frames are received.
Restart the timeout, so the next timeouts can be reliably detected.
Mark the port as inactive, so that its stale clockSync information will be ignored.
Row 7.4-4: Select the clock-slave port (if any) while waiting for the next received clockSync frame.

Row 7.4-5: Frames with successive cycle numbers are used to measure the receive-link delays.
Row 7.4-6: Otherwise, the receive-link information is incomplete and must be discarded.

Row 7.4-7: The clock slave is responsible for updating its timer-offset value.
Row 7.4-8: The clock master never changes it timer-offset value.

Row 7.4-9: The necessary information is saved for next-cycle processing.

Row 7.4-10: If there is no clock slave port, this port is assumed to be the clock master.
Row 7.4-11: Otherwise, no action is taken.

7.3.3 ClockSyncTransmit state machine

The ClockSyncTransmit state machine transmits clockSync frames.

The following subclauses describe parameters used within the context of this state machine.

7.3.3.1 ClockSyncTransmit state machine definitions

CYCLES
Q_CTX_SYNC

See 7.2.1.

7.3.3.2 ClockSyncTransmit state machine variables

frame
The clockSync data frame (see 6.2) of the transmitted frame.

cycle
A variable representing the isochronous cycle associated with the preceding clockSync frame.

count
A variable representing the isochronous cycle associated with the current globalTimer value.

globalTimer
localTimer
rxDelta

See 7.2.2.
thisTime

A variable representing the most-recent clockSync frame-transmission time.
timerOffset

See 7.2.2.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 79

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.3.3.3 ClockSyncTransmit state machine routines

Enqueue(queue)
QueueEmpty(queue)

See 7.2.3.

7.3.3.4 ClockSyncTransmit state table

The ClockSyncTransmit state machine is specified in Table 7.5.

Row 7.5-1: Derive the isochronous cycle count from the global timer value.
Row 7.5-2: If excessive isochronous transmissions are pending, most should be cancelled.
(This is preliminary error recovery code; a more robust solution is TBD.)
Row 7.5-3: Wait for the next isochronous cycle to begin.
Row 7.5-4: Wait for the transmission queue to be emptied.
(This is preliminary; a shared-variable interlock should be set to prevent other transmissions).
Row 7.5-5: The next isochronous cycle begins with an update of the isochronous cycle counter.

Row 7.5-6: If this station has the highest precedence, these its the grand master and acts accordingly.
Row 7.5-7: On the clock-slave port, nullified clock-master indications are returned.
Row 7.5-8: On clock-master ports, information from the highest precedence port represents the grand

Table 7.5 — ClockSyncTransmit state table

Current state

R
ow

Next state

state condition action state

START — 1 count =
 (globalTime.fractions * CYCLES) >>32;

FIRST

FIRST (unsigned)(count – cycle) > LIMIT; 2 cycle = count; RETURN

(count – cycle) == 0 3 —

!QueueEmpty(Q_CTX_SYNC) 4 —

— 5 cycle += 1; NEAR

NEAR rxPrecedence < 0 6 frame.precedence = myPrecedence;
frame.hopCount = 1;

SEND

rxPrecedence == portPrecedence 7 frame.precedence =
 rxPrecedence.precedence;
frame.hopCount = 0;

— 8 frame.precedence =
 rxPrecedence.precedence;
frame.hopCount =
 rxPrecedence.hopCount + 1;

SEND — 9 frame.cycleCounts.cycleCount = cycle;
frame.offsetTime = timerOffset;
frame.transmitTime lastFlexTime =
thisTime;
frame.deltaTime = rxDelta;
Enqueue(Q_CTX_SYNC, frame);
thisTime = localTimer;

RETURN
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 80

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
master.
Row 7.5-9: The next cycleStart frame is transmitted; the transmission time is saved.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 81

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8. Subscription state machines

Subscription state machines are responsible for performing talker-agent and listener-agent duties.

8.1 Terminology and variables

8.1.1 Common state machine definitions

The following state machine definitions are used multiple times within this clause.

NULL
Indicates the absence of a value and (by design) cannot be confused with a valid value.

subtype specifiers
ST_ERROR—A control response that provides an SRP refresh-operation error indication.
ST_FRESH—A control request that provides blocks of SRP refresh parameters.
ST_LEAVE—A control request that provides a block of SRP leave parameters.

8.1.2 Common state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.

localTimer
A 64-bit timer representing the current 64-bit internal free-running time-of-day value.

myMacAddress
MAC address of the bridge.

refreshFlag
A variable that is toggled periodically; each change activates refresh interval activities.

srpState
The information associated with an element of talker-agent state. This includes:

maxBw—The maximum bandwidth of the associated stream.
maxCycles—The maximum cycles to the attached listener.
refreshTime—The time of the last observed RequestRefresh frame.
srcPortID—The port identifier of the assumed source.
srcMac—The address of the downstream bridge.
state—The connectivity state, one of the following:

IS_JOINING—Stream communications are now using this path.
IS_LEAVING—Stream communication are no longer using this path.
IS_FAILED—Stream communications have failed; message must be sent.
IS_ACTIVE—Stream communications remain active.
IS_PASSIVE—The SRP state is queued for deletion, behaving as though nonexistent.

streamTime—The time of the last observed stream flow.
streamID—The streamID of the associated stream.
subCode—The error subcode associated with the IS_FAILED state.

NOTE—This clause should be skipped on the first reading (continue with Annex B).
The following state machines were previously highly preliminary and subject to change.
They have not yet been updated to track on recent changes to the SRP, so they are also obsolete.
Thus, the structure and formatting is useful but the details should be ignored.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 82

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8.1.3 Common state machine routines

StateSearch(streamID)
Returns the talker-state information associated with the specified stream value.

srpState—matching talker-agent state
NULL—no matching state found

8.1.4 Variables and literals defined in other clauses

This clause references the following parameters, literals, and variables defined in Clause 7

Dequeue(queue)
Enqueue(queue, frame)
localTimer
Q_ARX_REQ
Q_ATX_REQ
Q_ARX_STR
Q_ATX_STR
Q_ATX_RES

8.2 Subscription state machines

8.2.1 AgentAction state machine

The AgentAction state machine controls the sequencing of AgentTalker, AgentTimer, and AgentListener
state machines. There are multiple instances of these state machine, one per bridge port, each of which is
invoked. A refresh flag is also complemented at a regular interval.

The following subclauses describe parameters used within the context of this state machine.

8.2.1.1 AgentAction state machine definitions

–none–

8.2.1.2 AgentAction state machine variables

localTimer
refreshFlag

See 8.1.2.
refreshTime

The time when the last refresh was performed.
refreshTimeout

The time interval between successive refresh operations.

8.2.1.3 AgentAction state machine routines

AgentListeners()
A routine that calls all of the AgentListener state machines (one for each bridge port).

AgentTalkers()
A routine that calls all of the AgentTalker state machines (one for each bridge port).

AgentTimers()
A routine that calls all of the AgentTimer state machines (one for each bridge port).
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 83

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8.2.1.4 AgentAction state table

The AgentAction state machine is specified in Table 8.1.

Row 8.1-1: Execute each of the AgentTalker, AgentTimer, and AgentListener state machines.

Row 8.1-2: Complement the refresh flag at the end of each refresh interval.
Row 8.1-3: Otherwise, wait until the arrival of the next refresh interval.

8.2.2 AgentTalker state machine

The AgentTalker state machine monitors received RequestRefresh and RequestLeave frames. There are
multiple AgentTalker state machines per bridge, one for each of the bridge ports.

The following subclauses describe parameters used within the context of this state machine.

8.2.2.1 AgentTalker state machine definitions

IS_FAILED
IS_JOINING
IS_LEAVING

See 8.1.2.
NULL

Indicates the absence of a value and (by design) cannot be confused with a valid value.
Q_ARX_REQ
Q_ARX_STR
Q_ATX_STR

See 8.1.4.
ST_REFRESH
ST_LEAVE

See 8.1.1.
subCode field values

SC_DA_LOST—No route to the specified destination is present.
SC_DA_MINE—The route to the specified destination loops back.
SC_BAD_HERE—This port’s SRP state has different parameters than the refresh request.
SC_BW_LIMIT—The requested stream bandwidth would exceed 75% of the link capacity.
SC_BAD_THERE—Another port’s SRP state has different parameters than the refresh request.
SC_UP_FULL—The associated listener port has insufficient space to support the refresh request.

Table 8.1 — AgentAction state table

Current state

R
ow

Next state

state condition action state

START — 1 AgentTalkers();
AgentTimers();
AgentListeners();

LOOP

TIMER (localTimer – refreshTime)
 >= refreshTimeout

2 refreshTime = localTimer;
refreshFlag ^= 1;

FINAL

— 3 —
Contribution from: dvj@alum.mit.edu.
84 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8.2.2.2 AgentTalker state machine variables

block
A data structure representing the contents of a RequestRefresh info block.

frame
The received RequestRefresh or RequestLeave control frame (see 6.3 and 6.4).

linkCapacity
A variable representing the operational bandwidth of the link.
(This can be affected by autonegotiation protocols and capabilities of the span partners.)

localTimer
See 8.1.4.

matching
A variable representing the presence of matching SRP state within another talker-agent port.

myMacAddress
See 8.1.2.

oldState
The information associated with a closely matching element of another talker-agent state.

refreshTime
A variable representing the arrival time of the preceding RequestRefresh message.

srpState
See 8.1.2.

tstState
The information associated with a closely matching element of this talker-agent state.

stream
A variable representing a stream identifier.

8.2.2.3 AgentTalker state machine routines

Dequeue(queue)
See 8.1.4.

FullSearch(srpState, info)
Searches through other talker agents searching for an entry with matching info parameters.
The search starts at the srpState-specified entry and returns each matching entry at most once.
The search ignores the srpState entries with a phase of IS_FAILED or IS_PASSIVE.

tstState—Another talker agent has the same streamID and matching state.
NONE—Another talker agent has the same streamID, but different state.
NULL—No more other-talker agents have the same streamID.

InfoSelect(frame, i)
Returns the streamID-specified information block within the RequestRefresh frame.

info—selected frame parameters
NULL—no matching parameters found

LinkBandwidth()
Returns the cumulative link bandwidth associated with the talker agent.
(This excludes bandwidths associated with entries in the IS_FAILED phase.)

ListenerListing(srpState)
Publishes the srpState information in the associated listener agent registry.

srpState—Completes sucessfully.
NULL—(Otherwise).

SrcRoute(da)
Returns the port identifier passed through when routed to the da-specified MAC.

positive—matching portID value
negative—no matching port found

StateSearch(streamID)
See 8.1.3.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 85

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
StateForm(streamID, bandwidth)
Allocates and initializes the talker-state information associated with the argument values.

srpState—matching talker-agent state
NULL—no state-space available

8.2.2.4 AgentTalker state table

The AgentTalker state machine is responsible for establishing and demolishing paths, as specified in
Table 8.2. In the case of any ambiguity between the text and the state machine, the state machine shall take
precedence. The notation used in the state table is described in 3.4.

Table 8.2 — AgentTalker state table

Current state

R
ow

Next state

state condition action state

START (frame = Dequeue(Q_ARX_REQ))
 != NULL

1 — PARSE

— 2 — RETURN

PARSE frame.subtype = = ST_FRESH 3 info = NULL; LOOP

frame.subtype = = ST_LEAVE 4 tstState = StateSearch(
 (info.talkerID<<16) | info.portID);

LEAVE

— 5 — RETURN

LOOP (info = InfoSelect(frame, info))
 != NULL

6 tstState = StateSearch(
 (info.talkerID<<16) | info.portID);

TEST

— 7 — RETURN

TEST tstState = = NULL 8 — FORM

tstState.phase = = IS_FAILED 9 — LOOP

tstState.mcastID ! = block.mcastID 10 — FORM

tstState.maxCycles ! = block.maxCycles 11

tstState.maxBw ! = block.maxBw 12

tstState.phase = = IS_LEAVING 13 tstState.phase = IS_ACTIVE POKE

— 14 —

POKE — 15 tstState.refreshTime = localTimer; LOOP

FORM (srpState = StateForm()) != NULL 16 srpState.mcastID = info. mcastID;
srpState.talkerID = info.talkerID;
srpState.plugID = info.plugID;
srpState.maxCycle = info.maxCycles;
srpState.maxBw = info.maxBw;
oldState = FullSearch(NULL, info);

CHECK

— 17 — LOOP
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 86

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Row 8.2-1: Dequeue a received subscription-request message, if available.
Row 8.2-2: Otherwise, wait for the next subscription-request message.

Row 8.2-3: Process received RequestRefresh messages.
Row 8.2-4: Process received RequestLeave messages.
Row 8.2-5: Discard unrecognized refresh messages.

Row 8.2-6: Find state associated with the selected blocks within the RequestRefresh messages.
Row 8.2-7: Stop processing after the last RequestRefresh block has been processed.

Row 8.2-8: If a matching entry cannot be found, a new one must be formed.
Row 8.2-9: The refresh is ignored while the matching entry is dedicated to error reporting.
Row 8.2-10: If the matching entry has a distinct multicast identifier, the refresh is erroneous.
Row 8.2-11: If the matching entry has a distinct maxCycles count, the refresh is erroneous.
Row 8.2-12: If the matching entry has a distinct maximum bandwidth, the refresh is erroneous
Row 8.2-13: If the state was leaving, it changes to active.
Row 8.2-14: Otherwise, the state (joining or active) remains unchanged.

CHECK tstState != NULL 18 srpState.subCode = SC_BAD_HERE; NACK

port < 0 19 srpState.subCode = SC_DA_NONE;

port = = myPortID 20 srpState.subCode = SC_DA_MINE;

LinkBandwidth() > 0.75 * linkCapacity 21 srpState.subCode = SC_BW_LIMIT;

oldState = = DIFF 22 srpState.subCode = SC_BAD_THERE

— 23 srpState.refreshTime = localTimer;
srpState.streamTime = localTimer;

PEEK

NACK — 24 srpState.phase = IS_FAILED LOOP

PEEK oldState ! = NULL 25 srpState.phase = IS_ACTIVE; TOSS

ListenerListing(srpState) == NULL 26 srpState.subCode = SC_UP_FULL; NACK

— 27 srpState.phase = IS_JOINING; LOOP

TOSS oldState.phase = = IS_LEAVING 28 oldState.phase = = IS_PASSIVE; LAST

— 29 —

LAST (oldState = FullSearch(oldState, info))
 != NULL

30 — TOSS

— 31 — LOOP

LEAVE tstState = = NULL 32 — RETURN

tstState.phase = = IS_FAILED 33

FullSearch(NULL, info) = = NULL 34 tstState.phase = IS_LEAVING;

— 35 Release(tstState);

Table 8.2 — AgentTalker state table

Current state

R
ow

Next state

state condition action state
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 87

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Row 8.2-15: Update the refresh timeout when a matching entry is observed.

Row 8.2-16: If storage is available, update the new state based on the supplied info field parameters.
Row 8.2-17: If no storage is available, nothing can be done and the info state is discarded.
(A timeout is necessary to detect this discard, since no storage state is available for error reporting purposes.)

Row 8.2-18: With a matching/inconsistent same-port state, the appropriate error-status code is returned.
Row 8.2-19: If no upstream port can be found, the appropriate error-status code is returned.
Row 8.2-20: If the upstream port is one’s self, the appropriate error-status code is returned.
Row 8.2-21: If the cumulative bandwidth limit is exceeded, the appropriate error-status code is returned.
Row 8.2-22: With a matching/inconsistent other-port state, the appropriate error-status code is returned.
Row 8.2-23: Otherwise, the timeouts are reset before the refresh is accepted.

Row 8.2-24: The SRP state is marked to communicate the failure condition.

Row 8.2-25: If matching state is found on another talker agent, this port’s state is set to active.
Row 8.2-26: Otherwise, this port’s state is set to joining.
(This triggers the near-immediate transmission of a limited refresh message, to first establish the stream.)

Row 8.2-28: If an existing entry is marked as leaving, its state is changed to passive to ensure removal.
(This talker agent is joining, so the connection remains and there is no need to announce another’s leaving.)
Row 8.2-29: Otherwise, the existing entry is ignored.

Row 8.2-30: Check to confirm the presence an another existing entry.
Row 8.2-31: Or, terminate the search in the absence of another existing entry.

Row 8.2-32: If no matching to the leaving request is found, the leave request is ignored.
Row 8.2-33: If a matching error response is found, the leave request is ignored.
Row 8.2-34: If no other port has an active request, the leave request is accepted.
Row 8.2-35: If another port has an active request, this leave request can be safely ignored.

8.2.3 AgentTimer state machine

The AgentTimer state machine monitors received RequestRefresh and RequestLeave frames. There are
multiple AgentTimer state machines per bridge, one for each of the bridge ports.

The following subclauses describe parameters used within the context of this state machine.

8.2.3.1 AgentTimer state machine definitions

IS_ACTIVE
IS_FAILED

See 8.1.2.
NULL

Indicates the absence of a value and (by design) cannot be confused with a valid value.
Q_ATX_RES
Q_ARX_STR
Q_ATX_STR

See 8.1.4.
ST_ERROR

See 8.1.1.
A subtype specifier that distinguishes the ResponseError frame from other RE frames.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 88

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8.2.3.2 AgentTimer state machine variables

frame
The received streaming classA frame or generated SRP ResponseError frame (see 6.1 and 6.5).

info
A data structure representing the contents of a RequestRefresh/RequestLeave info block.

localTimer
See 8.1.4.

myMacAddress
See 8.1.2.

refreshTime
A variable representing the arrival time of the preceding RequestRefresh message.

refreshTimeout
A variable representing a timeout interval for RequestRefresh messages.

srpState
See 8.1.2.

stream
A variable representing a stream identifier.

8.2.3.3 AgentTimer state machine routines

CastSearch(mcastID)
Returns the talker-state information associated with the specified multicast identifier.

srpState—matching talker-agent state
NULL—no matching state found

Dequeue(queue)
Enqueue(queue, frame)

See 8.1.4.
QueueHasSpace(index)

Indicates whether space is available for frame transmissions.
TRUE—Space is available.
FALSE—(Otherwise.)

StateSearch(streamID)
See 8.1.3.

StateSelect(index)
Returns the talker-agent state associated with the specified index.

info—matching talker-agent state
NULL—no state-space available

StateToss(index)
Discards talker-state information associated with the argument value.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 89

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8.2.3.4 AgentTimer state table

The AgentTimer state machine is responsible for reporting timeout and upstream-communicated errors, as
specified in Table 8.3. In the case of any ambiguity between the text and the state machine, the state machine
shall take precedence. The notation used in the state table is described in 3.4.

Table 8.3 — AgentTimer state table

Current state

R
ow

Next state

state condition action state

START (frame = Dequeue(Q_ARX_STR))
 != NULL

1 srpState = CastSearch(frame.da); FLOW

(frame = Dequeue(Q_ARX_RES))
 != NULL

2 info = frame.info;
tstState = StateSearch(
 (info.talkerID<<16) | info.portID);

SERVE

— 3 srpState = NULL LOOP

FLOW srpState == NULL 4 — START

— 5 Enqueue(Q_ATX_STR, frame);
srpState.streamTime = localTimer;

SERVE tstState ! = NULL 6 tstState.phase = IS_FAILED;
tstState.subCode = frame.subCode;

START

— 7 —

LOOP (srpState = StateSelect(srpState))
 != NULL

8 — TIMES

— 9 — RETURN

TIMES srpState.phase = = IS_FAILED 10 — NEAR

srpState.phase = = IS_JOINING 11 — LOOP

srpState.phase = = IS_LEAVING 12

srpState.phase = = IS_PASSIVE 13 StateToss(srpState);

(localTimer – srpState.refreshTime) >=
 refreshTimeout

14

(localTimer – srpState.streamTime) >=
 dataTimeout

15

— 16 —

NEAR QueueHasSpace(Q_ATX_RES) 17 frame.da = srpState.srcMac;
frame.sa = myMacAddress;
frame.subType = ST_ERROR;
frame.subCode = srpState.subCode;
frame.streamId = srpState.streamID;
frame.maxBw = srpState.maxBw;
frame.cycles = srpState.maxCycles;
Enqueue(Q_ATX_RES, frame);
StateToss(srpState);

LOOP

— 18 —
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 90

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Row 8.3-1: Monitor the received stream flow, as frames pass through.
Row 8.3-2: Process received error messages, when they become available.
Row 8.3-3: Otherwise, aging timeouts are invoked.

Row 8.3-4: Stream flows are not forwarded in the absence of matching state.
Row 8.3-5: Otherwise, stream flows are monitored and flow downstream.

Row 8.3-6: In the presence of matching talker-agent state, the stream passes through.
Row 8.3-7: In the absence of matching talker-agent state, the stream passes through.

Row 8.3-8: Select each talker-state element associated with the port.
Row 8.3-9: Stop when all talker-state elements have been processed.

Row 8.3-10: A failed entry is processed distinctively.
Row 8.3-11: The joining phase indications has no timeout.
Row 8.3-12: The leaving phase indications has no timeout.
Row 8.3-13: The passive phase indication has been effectively discarded, so discard it immediately.
Row 8.3-14: In the absence of sustained refresh messages, the active SRP state is discarded.
Row 8.3-15: In the absence of sustained stream flows, the active SRP state is discarded.
Row 8.3-16: Otherwise, no timeout actions are required.

Row 8.3-17: In the presence of a failed phase indication, a ResponseError is sent downstream.
Row 8.3-18: Otherwise, no action is taken.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 91

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8.2.4 AgentListener state machine

The AgentListener state machine generates RequestRefresh and RequestLeave control frames. There are
multiple AgentListener state machines on each bridge, one is associated with each of the bridge ports.

The following subclauses describe parameters used within the context of this state machine.

8.2.4.1 AgentListener state machine definitions

Q_ATX_REQ
See 8.1.4.

IS_PASSIVE
See 8.1.2.

NULL
Indicates the absence of a value and (by design) cannot be confused with a valid value.

8.2.4.2 AgentListener state machine variables

frame
An SRP control frame.

localTimer
See 8.1.4.

myMacAddress
See 8.1.2.

refreshTime
A variable representing the transmission time of the preceding RequestRefresh message.

refreshTimeout
A variable representing a timeout interval for RequestRefresh messages.

refreshList
A list of srpState entries prepared for upstream transmission.

srpState
See 8.1.2.

8.2.4.3 AgentListener state machine routines

Enqueue(queue, frame)
See 8.1.4.

EnqueueList(queue, list)
Transfers content from the rpState lists into one or more frames.
Each of these frames is then placed into the specified queue.

JoiningList()
Forms a list of the joining-phase entries from the listener agent’s state array.

JoiningToActive(list)
Within all listed entries, each phase value of IS_JOINING is changed to IS_ACTIVE.

QueueHasSpace(index)
Indicates whether space is available for frame transmissions.

TRUE—Space is available.
FALSE—(Otherwise.)

RefreshList()
Forms a list of the joining-phase and active-phase entries from the listener agent’s state array.

ReviseListenerList()
Revises the listener list entries to ensure consistency with distributed AgentTalker state content.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 92

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8.2.4.4 AgentListener state table

The AgentListener state machine is responsible for generating upstream RequestRefresh and RequestLeave
frames, as specified in Table 8.4. In the case of any ambiguity between the text and the state machine, the
state machine shall take precedence. The notation used in the state table is described in 3.4.

Row 8.4-1: Refresh the listener list, ensuring consistency with distributed AgentTalker state content.
Row 8.4-2: In the presence of transmission-queue storage, transmissions are enabled.
Row 8.4-3: Otherwise, transmissions are inhibited.

Row 8.4-4: When periodically enabled, the list of joining and active states is sent.
Row 8.4-5: Leave requests are checked; distinct ones cause a RequestListen frame to be sent.
Row 8.4-6: When entries are found, the list of joining states is sent.
Row 8.4-7: Otherwise, no talker-agent refresh/leave messages are transmitted.

Row 8.4-8: Enqueue the refresh-list entries for eventual transmission.
Afterwards, change the phase from joining to active, to inhibit unnecessary future transmissions.

Table 8.4 — AgentListener state table

Current state

R
ow

Next state

state condition action state

START — 1 ReviseListenerList(); FIRST

FIRST QueueHasSpace(Q_ARX_REQ) 2 — TIMER

— 3 — RETURN

CHECK localTimer >=
 (refreshTime + refreshTimeout) &&
((refreshList= RefreshList()) != NULL)

4 refreshTime = localTimer; FRESH

srpState = QueueHasLeave() 5 frame.da = upstreamAddress;
frame.sa = myMacAddress;
frame.info = srpState.info;
EnqueueFrame(Q_ATX_REQ, frame);
srpState.phase = IS_PASSIVE;

START

(refreshList = JoiningList()) != NULL 6 — FRESH

— 7 — RETURN

FRESH — 8 EnqueueList(Q_ATX_REQ, refreshList);
JoinToActive(refreshList);

START
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 93

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 94

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annexes

Annex A

(informative)

Bibliography

[B1] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.1

[B2] IEEE Std 801-2001, IEEE Standard for Local and Metropolitan Area Networks: Overview and
Architecture.

[B3] IEEE Std 802.1D-2004, IEEE Standard for Local and Metropolitan Area Networks: Media Access
Control (MAC) Bridges.

[B4] IEEE Std 802-2002, IEEE Standards for Local and Metropolitan Area Networks: Overview and
Architecture.

[B5] IEEE Std 1394-1995, High performance serial bus.

[B6] IEEE Std 1588-2002, IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems.

[B7] IETF RFC 1305: Network Time Protocol (Version 3) Specification, Implementation and Analysis,
David L. Mills, March 19922

[B8] IETF RFC 2030: Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI, D. Mills,
October 1996.

[B9] IETF RFC 2205: Resource Reservation Protocol (RSVP), R. Braden, L. Zhang, S. Berson, and
S. Herzog, S. Jamin, October 1996.

NOTE—This clause should be skipped on the first reading (continue with Annex B).
Although not finalized, this bibliography provides useful material for understanding this working paper.

1IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,,
NJ 08855-1331, USA (http://standards.ieee.org/).

2IETF publications are available via the World Wide Web at http://www.ietf.org.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 93

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex B

(informative)

Background material

B.1 Related standards

B.1.1 IEEE 1394 Serial Bus

As background, real-time features of an existing (and widely adopted on PCs) serial interface standard are
summarized in this subclause: IEEE 1394-1995 High Performance Serial Bus. To avoid confusion with other
serial buses (serial ATA, etc.), the term “SerialBus” is used within this annex to refer to this specific IEEE
standard.

B.1.1.1 SerialBus topologies

Since its conception, SerialBus evolved from being a shared bus (like Ethernet) to a collection of
point-to-point duplex links, as illustrated in Figure B.1. Arbitrary hierarchical topologies can be supported,
but dotted-line redundant looping connections are only allowed in recent upgrades of the standard.

This physical duplex-link topology could, in concept, support concurrent non-overlapping data transfers.
SerialBus only partially utilizes these capabilities (arbitration and data transfers can be overlapped), because
its arbitration protocols were inherited from its initial conception as an arbitrated shared broadcast bus.

Figure B.1—SerialBus topologies

root

leaf branch branch

leaf leaf leaf branch

leaf leaf
Contribution from: dvj@alum.mit.edu.
94 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
B.1.1.2 Isochronous data transfers

SerialBus isochronous traffic is transmitted at a 8 kHz rate, as illustrated by the 125 µs cycles within
Figure B.2.

In the absence of conflicting traffic, an 8kHz cycle starts with the transmission of a cycleStart frame, as
illustrated in cycle[n+0]. The cycleStart frame triggers the sending of the isochronous frames that have been
queued for cycle[n+0] transmission; these continue until all isochronous traffic has been sent.

After a cycle’s isochronous traffic has been sent, one or more asynchronous transmissions are allowed, as
illustrated in cycle[n+1].

Devices can be paused, compression rates can be variable, and connections can fail. For such reasons, the
amounts of isochronous traffic within each cycle can vary below its scheduled limits, as illustrated in
cycle[n+2].

The asynchronous traffic is not constrained to start at the end of a cycle, but can start at anytime that the
frame is available and isochronous transfers are idle, as illustrated near the end of cycle[n+3]. If started near
the end of a cycle, the isochronous transfer can be forced to start within the following cycle[n+4].

A large late-starting asynchronous frame can extend the start of isochronous transfers, so that spill-over into
the next cycle is possible, as illustrated in cycle[n+5]. Since isochronous transfers have priority, the delay in
the next isochronous cycle is reduced, and the isochronous traffic completes within the boundaries of
cycle[n+6].

B.1.1.3 Isochronous reservations

Even the best of isochronous transfers fails when the offered load exceeds the link capacity. To eliminate this
possibility, isochronous bandwidth is reserved before being consumed. On a single bus (of up to 64 stations),
reservations are controlled through access to compare&swap register, which all isochronous stations pro-
vide, although only one is selected to be used (based on the largest populated device address).

On a multiple bus topology (buses interconnected through bridges), reservations management is more com-
plex. In this case, frames are passed from the source to its desired-to-be-connected destination(s), reserving
reservations along the data-transmission path. As is true on a single bus, reservation requests are rejected
when insufficient bandwidth capacity remains. This is not described in the baseline 1394 specification, but is
described in a follow-on P1394.1 draft (currently progressing through Sponsor ballot).

Figure B.2—Isochronous data transfer timing

cycle[n+0] cycle[n+1] cycle[n+2] cycle[n+3] cycle[n+4] cycle[n+5] cycle[n+6]

Legend: cycleStart isochronous frame asynchronous frame
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 95

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
B.1.1.4 SerialBus experiences

Experiences, as follows:

a) Cycle slip. Cycle-slip reduces design complexity, permits transmissions of large asynchronous
frames, and improves asynchronous traffic throughput. Transmission precision is unnecessary:
error in the cycleStart transmission time is encoded within that frame, allowing clock-slave devices
to accurately adjust their phase-lock-loops, regardless of observed cycleStart transmission times.

b) Cycle time. An 8 kHz cycle rate represents a good trade-off between efficiency (the overhead is
less, when cycle times are longer) and latency (the latency is less, when cycle times are longer).

c) Pseudo frames. The SerialBus isochronous frames have a distinct (6-bit channel number)
addressing scheme. In hindsight, using a standard frame header (destination address and source
address) would have many benefits, including the simplification of bridges between segments.

d) Service classes. SerialBus has evolved to support three classes of traffic: isochronous, prioritized
asynchronous, and baseline asynchronous. These are roughly equivalent to the classA, classB, and
classC service classes defined for RPR (see B.1.2).

B.1.2 Resilient packet ring (RPR)

As background, the time-sensitive capabilities associated with IEEE P802.17 Resilient packet ring (RPR)
are summarized in this subannex. RPR is a metropolitan area network (MAN) that can be transparently
bridged to Ethernet.

B.1.2.1 RPR rings

RPR employs a ring structure using unidirectional, counter-rotating ringlets. Each ringlet is made up of links
with data flow in the same direction. The ringlets are identified as ringlet0 and ringlet1, as shown in
Figure B.3.

Stations on the ring are identified by an IEEE 802 48-bit MAC address. All links on the ring operate at the
same data rate, but may exhibit different delay properties. Ring circumference of less than 2,000 kilometers.
are assumed.

The portion of a ring bounded by adjacent stations is called a span. A span is composed of unidirectional
links transmitting in opposite directions.

Figure B.3—RPR rings

S0 S1 S2 S3 S4 S5 … S253 S254

ringlet1
ringlet0

span links

< 2,000 km
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 96

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
B.1.2.2 RPR resilience

RPR stations are resilient, in that communications can continue in that operations continue in the presence of
single-point failures, as illustrated in Figure B.4. Resilient features can recover from failed links by
bypassing the frame-manipulation portions of a partially failed station (see Figure B.4-b), thus avoiding a
failed station (see Figure B.4-c and Figure B.4-d) or a failed span (see Figure B.4-e and Figure B.4-f).

B.1.2.3 RPR spatial reuse

RPR efficiently strips local unicast frames at their destination, so that bandwidth on unaffected links is
available for other frame transfers, as illustrated in Figure B.5-a. A unicast frame is added by the source
station, and is stripped at the destination station. The frame is normally copied at the destination station for
delivery to the local MAC client or MAC control entity. If ringlet selection is based on shortest hop-count, a
response frame is likely to take an opposing ringlet path, as illustrated in Figure B.5-b.

Figure B.4—RPR resilience

Figure B.5—RPR destination stripping

a) Failure point

S1 S2 S3 S4 S5 S6 S7

b) Passthrough failure

S1 S2 S3 S4 S5 S6 S7

c) Steered station failure

S1 S2 S3 S4 S5 S6 S7

d) Wrapped station failure

S1 S2 S3 S4 S5 S6 S7

e) Steered span failure

S1 S2 S3 S4 S5 S6 S7

f) Wrapped span failure

S1 S2 S3 S4 S5 S6 S7

S1 S2 S3 S4 S5 S6 S7

a) Unicast on ringlet0

add copy
strip

b) Unicast on ringlet1

S1 S2 S3 S4 S5 S6 S7

copy addstrip
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 97

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The RPR frame transmissions on one link are largely independent of frame transmissions on other link. This
allows per-link bandwidths to be utilized beyond that possible with IEEE Std 802.5-1998 Token Ring or
ANSI FDDI ring based LAN technologies. Spatial reuse is illustrated in Figure B.6.

Concurrent per-ringlet transmissions (see Figure B.6-a) allow stations bandwidths to exceed individual link
capacities. The effective bandwidths of non-overlapping transfers (see Figure B.6-b) are similarly improved.

B.1.2.4 RPR service classes

RPR provides transit queues, which allow received traffic to be queued during a station’s frame
transmission, as illustrated in Figure B.7. The highest priority frames are classA and have their own bypass
buffer; the lower priority frames are classB and classC, and share the use of a distinct bypass buffer. To
minimize the classA latencies, servicing of the classA buffer has precedence over servicing of the
classB/classC buffer.

During the initial phases of investigation, techniques for allowing newly-arrived classA traffic to preempt an
active classB/classC frame transmission were considered. While such techniques are practical, the metro-
politan area networks (MANs) environments limits the effectiveness of such techniques; at these longer
distances, the link delays can often exceed the retransmission-blocked delays within individual stations.

Figure B.6—RPR spatial reuse

Figure B.7—RPR service classes

S1 S2 S3 S4 S5 S6 S7

a) Concurrent ringlet transfers b) Reused allocated bandwidth

S1 S2

S1 S2 S3 S4 S5 S6 S7
datapath0

datapath1
classB/C
classA

receive
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 98

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex C

(informative)

Encapsulated IEEE 1394 frames

To illustrate the sufficiency and viability of the RE isochronous services, the transformation of IEEE 1394
packets is illustrated. A connection between an IEEE 1394 talker, IEEE 1394 adapter, intermediate Ethernet
links, IEEE 1394 adapter, and an IEEE 1394 listener is assumed.

C.1 Hybrid network topologies

C.1.1 Supported IEEE 1394 network topologies

This annex focuses on the use of RE to bridge between IEEE 1394 domains, as illustrated in Figure C.1. The
boundary between domains is illustrated by a dotted line, which passes through a SerialBus adapter station.

C.1.2 Unsupported IEEE 1394 network topologies

Another approach would be to use IEEE 1394 to bridge between IEEE 802.3 domains, as illustrated in
Figure C.2. While not explicitly prohibited, architectural features of the topology-supportive adapters and
encapsulated-frame formats are beyond the scope of this working paper.

Figure C.1—IEEE 1394 leaf domains

Figure C.2—IEEE 802.3 leaf domains

IEEE 1394IEEE 1394 IEEE 802.3

IEEE 1394IEEE 802.3 IEEE 802.3
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 99

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
C.2 1394 isochronous frame formats

C.2.1 1394 isochronous frame formats

An IEEE 1394 isochronous frame contains header and payload components, as illustrated by Figure C.3.
While all components could be encapsulated into an Ethernet frame, some of these fields would be redun-
dant (with fields in the encapsulating frame) or unnecessary.

C.2.2 Encapsulated IEEE 1394 frame payload

For uniframe groups, the IEEE 1394 isochronous frames are modified slightly and placed within an Ethernet
serivceDataUnit. The format of this serviceDataUnit is illustrated by Figure C.4.

C.2.2.1 subType: A 3-bit field that distinguishes encapsulated 1394 frames from other formats with the
same protocolType specifier.

C.2.2.2 cycleCount: A 13-bit field that identifies the isochronous cycle during which this frame was trans-
mitted. For the first frame within any group, this information is needed to perform CIP header updates
(see C.4). These fields also provide error-detecting consistency checks.

Figure C.3—IEEE 1394 isochronous packet format

Figure C.4—Encapsulated IEEE 1394 frame payload

data_length tag tcodechannel sy

zero pad (if necessary)

data_CRC

header_CRC

MSB LSB

dataField

cycleCount tcode sy

zero pad (if necessary)

subType

MSB LSB

flag counts

dataField
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 100

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
C.2.2.3 flag: A 2-bit field that distinctively identifies the frame type, as specified in Table C.1.

C.2.2.4 counts: A 6-bit field that identifies additional frame-group parameters, as specified in Table C.2.
When interpreted as a partCount value, this effectively identifies the number of zero-pad bytes. When
interpreted as a frameCount value, the values of {n-1,n-2,…,1} label the first through next-to-last frames of
an n-frame multiframe group.

C.2.2.5 dataField: For a uniframe group, the contents of the SerialBus ‘data field’ bytes.

Table C.1—flag field values

Value Name Description

0 ONLY Only frame within a uniframe group

1 LAST Final frame within a multiframe group

2 CORE Intermediate frame within an multiframe group

3 LEAD First frame within a multiframe group

Table C.2—counts field values

flag Name Description

ONLY partCount The LSBs of the residual data_length field.

LAST

CORE frameCount A sequence identifier for frames within the group

LEAD
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 101

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
C.3 Frame mappings

C.3.1 Synchronous frame mappings

Adapters are required to manage differences between IEEE 1394 isochronous packets and RE frames, as
illustrated in Figure C.5.

The IEEE 1394 to Ethernet frame translation involves the following:

a) The IEEE 1394 data_length field is discarded
(The data_length information can be reconstructed from the length of the received frame.)

b) The IEEE 1394 tag field is ignored (this connection context is known to higher layer software).

c) The IEEE 1394 channel field becomes an index into an array of communication contexts.
The selected context provides the plugID value, the least-significant portion of the Ethernet da.

d) The IEEE 1394 isochronous transmission cycle number is copied to the Ethernet cycleCount field.
(The cycle number is the cycle_time_data.cycle_count field from the preceding cycle-start packet.)

e) The IEEE 1394 tcode and sy fields are copied to the corresponding Ethernet fields.

f) The data_length, header_CRC, and data_CRC fields are checked; if any are found to be incon-
sistent, no RE frame is created (the presumed to be corrupted frame is dropped).

NOTE — Unlike IEEE 1394, no synchronous frame transformations are required when passing through bridges. This is
consistent with 802.3 specifications, which leave frames unmodified when passing through bridges.

The Ethernet to IEEE 1394 frame translation involves the following:

a) Invalid Ethernet frames (multicast sa address, too-short or too-long, or bad fcs) are discarded.

b) The IEEE 1394 data_length field is derived from the Ethernet frame length.

c) The context with the matching streamId (sa concatenated with plug) values is selected.
This context provides the provides the channel field value.

d) The IEEE 1394 tag and tcode fields are set to identify isochronous IEEE 1394 packets.

e) The IEEE 1394 tcode and sy fields are copied from the Ethernet frame.

f) The IEEE 1394 data_field is directly mapped to the RE content field.
(IEC61883-type content may have its synchronization fields updated as needed, see C.4.)

g) The IEEE 1394 header_CRC and data_CRC fields are computed.

Figure C.5—Conversions between IEEE 1394 packets and RE frames

typeLength

synchronous block

sa

adapter

1394 isochronous cycle

Ethernet bridge
adapter

1394 isochronous cycle
data_CRC

data_length
tag channel

tcode sy
header_CRC

data field

data_CRC

data_length
tag channel

tcode sy
header_CRC

data_field

4

n

2
1

4
1

6

cycleCountst
2
2

fcs4

flag count
tcode sy

1
1

data_field

streamLabel4
plugID2map[n]

match

cycle_count

adjust
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 102

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
C.3.2 Multiframe groups

To avoid exceeding the maximum Ethernet frame size, large frames are decomposed into multiframe groups.
The initial frames within the multiframe group are distinctively identified by their counts values, as
illustrated in Figure C.6.

The final frame within the group is identified by its distinctive flag=LAST identifier. For this frame, the
counts field specifies the number of data bytes within the frame, modulo 64.

C.4 CIP payload modifications

Isochronous 1394 data packets may conform to a common isochronous packet (CIP) format, as defined by
IEC 61883/FIS. The presence of a CIP format is indicated by a tag=1 bit in the Serial Bus isochronous
packet header, as illustrated in Figure C.7. The white shading identifies those fields (when present and valid)
are modified when passing through a RE-to-1394 adapter.

Figure C.6—Multiframe groups

Figure C.7—Isochronous 1394 CIP packet format

typeLength
talkerSa6

cycleCountst
2
2

fcs4

LEAD counts=0
tcode sy

1
1

data_field

streamLabel4
plugID2

4*i

typeLength
talkerSa6

cycleCountst
2
2

fcs4

CORE counts=2
tcode sy

1
1

data_field

streamLabel4
plugID2

4*j

typeLength
talkerSa6

cycleCountst
2
2

fcs4

CORE counts=1
tcode sy

1
1

data_field

streamLabel4
plugID2

4*k

typeLength
talkerSa6

cycleCountst
2
2

fcs4

LAST counts
tcode sy

1
1

data_field

streamLabel4
plugID2

n

frame transmission order

cycle_count cycle_offsetreserved

data_CRC

resdbssid

fmt depends syt cycle_offset

fn qpc

sp
h dbc

eo
h

fo
rm

block[0]

eo
h

fo
rm

block[…]

block[2fn-1]

CIP
header

CIP
payload

data_length channel tCode sytag=1

header_CRC 13
94

he
ad

er

MSB LSB
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 103

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The sid field must be set to the physical ID of the talking portal. This allows the listener to identify the
bridge’s talker portal.

Two-quadlet CIP headers may also contain absolute time stamp information or indicate its presence else-
where in the packet’s data payload. Absolute time stamps may be found in one or more places in isochro-
nous:

— the syt field of the second quadlet of the CIP header if the fmt field in that quadlet has a value
between zero and 1F16, inclusive; and

— the cycle_count and cycle_offset fields of all of the source packet headers (SPH) within the
isochronous subaction.

Both of these time stamps are specified as absolute values that specify a future cycle time. Since isochronous
subactions experience delays when routed over RE, these time stamps must be adjusted by the difference in
cycle times between the talker and the RE-to-1394 bridge. The delay, in units of cycles, is the difference
between the talker and 1394 adapter’s transmission times, as specified in Equation 3.2.

latency= (adapter.sendCycle - syncBock.talkerCycle); (3.1)

When the syt or cycle_count fields are present, their adjustments are specified by Equation 3.2. Because
IEEE 1394 constrains cycle_count to the range zero to 7999, inclusive, the time stamp adjustments must be
performed modulus 8000

transmitted.syt = (received.syt + latency) % 8000; (3.2)
transmitted.cycle_count = (received.cycle_count + latency) % 8000; (3.3)

C.4.1 Time-of-day format conversions

The difference between RE and IEEE 1394 time-of-day formats is expected to require conversions within
the RE-to-1394 adapter. Although multiplies are involved in such conversions, multiplications by constants
are simpler than multiplications by variables. For example, a conversion between RE and IEEE 1394
involves no more than two 32-bit additions and one 16-bit addition, as illustrated in Figure C.8.

Figure C.8—Time-of-day format conversions

seconds cycleOffsetcycleCount

seconds fraction

a
b = (a*125)>>7;

cycles fraction

c
d = (c*3)>>6;

b

d

Notes:
 Two 32-bit additions for b:

b = ((a<<7) - (a<<2) + a) >> 7;
 One 16-bit additions for d:

d = ((c<<2) + c) >> 6;

MSB LSB
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 104

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
C.4.2 Grand-master precedence mappings

Compatible formats allow either an IEEE 1394 or IEEE 802.3 stations to become the network’s grand-mas-
ter station. While difference in format are present, each format can be readily mapped to the other, as illus-
trated in Figure C.9:

Figure C.9—Grand-master precedence mapping

macAddresssp
MSB LSB

systemID pp portNumb

eui64

macAddresssp systemID pp portNumb

0

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 105

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex D

(informative)

Review of possible alternatives

D.1 Higher level flow control

Higher layer protocols (such as the flow-control mechanisms of TCP) throttle the source to the bandwidth
capabilities of the destination or intermediate interconnect. With the appropriate excess-traffic discards and
rate-limiting recovery, such higher layer protocols can be effective in fairly distributing available bandwidth.

For real-time applications, however, the goal is to limit the number of talkers (so they can each have suffi-
cient bandwidth), not to distribute the insufficient bandwidth fairly.

D.2 Over-provisioning

Over-provisioning involves using only a small portion of the available bandwidth, so that the cumulative
bandwidth of multiple applications rarely exceeds that of the interconnect. This technique works well when
frame losses are expected (voice over IP delays and gaps are similar to satellite-connected long distance
phone calls) or when large levels of cumulative bandwidth ensure a tight statistical bound for maximum
bandwidth utilization.

For most streaming applications within the home, however, frame losses are viewed as equipment defects
(stutters in video or audio streams), which correspond to eventual loss of brand name values. Also, the exist-
ing kinds of transfers in a home (disk-to-disk, memory-to-display, tuner-to-display, multi-station games,
etc.) do not (nor should not) have bandwidth limits.

D.3 Strict priorities

Existing networks can assign priority levels to different classes of traffic, effectively ensuring delivery of
one before delivery of the other. One could provide the highest priority to the video traffic (with large band-
width requirements), a high priority to the audio traffic (lower bandwidth, but critical), and the lowest prior-
ity level to file transfers. A typical number of priorities is eight.

Strict priority protocols are deficient in that the priorities are statically assigned, and the assignments (based
on traffic class) often do not correspond to the desires of the consumer (my PBS show, rather than my
teenager’s games, perhaps). For example, priorities could result in transmission of two video streams, but
not the audio associated with either.

Strict priority protocols usually assign fixed application-dependent priorities, assigning one priority to video
and another to audio, for example. Mixed traffic (such as video streams with encapsulated audio) are not
easily classified in this manner.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 106

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.4 IEEE 1394 alternatives

Isochronous data transfers are well supported by the IEEE 1394 Serial Bus family of standards. This IEEE
standards family (also called FireWire and iLink) is herein referred to simply as IEEE 1394.

Existing consumer equipment (digital camcorders, current generation high-definition televisions (HDTVs),
digital video cassette recorders (DVCRs), digital video disk (DVD) recorders, set top boxes (STBs), and
computer equipment intended for media authoring) support the IEEE 1394 interconnect. While some ver-
sions limit cable lengths to 4.5 meters, other physical layers support considerably longer lengths. A hub-like
connection of IEEE 1394 devices supports seamless real-time services.

Although IEEE 1394 supports longer-reach physical layers, not all devices are compatible with these physi-
cal layers, or the distinct connectors associated with distinct physical layers. The RE protocols are based on
Ethernet connections, a vast majority of which are based on 100 meter cables and the RJ-45 connector.

The IEEE 1394 isochronous packet addressing was designed with single-bus topologies in mind, which
complicates the design of such bus bridges. The RE synchronous frames are designed with multiple stations
and bridges in mind.

IEEE 1394 packets are differentiated by bus-local channel identifier, which must be allocated from a central
per-bus resources and updated when isochronous packets pass through bridges. Mechanism must therefore
be defined to agree upon the central per-bus resource, from among multiple available resources, and to rene-
gotiate that agreement when any of the current central per-bus resources are removed.

Furthermore, absolute time stamps within some IEEE 1394 isochronous packets must be adjusted when
passing through bridges. Such data-format dependent adjustments complicate bridge designs; their data-for-
mat dependent nature would most likely inhibit their successful adoption within an Ethernet bridge standard.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 107

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex E

(informative)

Time-of-day format considerations

To better understand the rationale behind the ‘extended binary’ timer format, other formats are evaluated and
compared within this annex.

E.1 Possible time-of-day formats

E.1.1 Extended binary timer formats

The extended-binary timer format is used within this working paper and summarized herein. The 64-bit
timer value consist of two components: a 32-bit seconds and 32-bit fraction fields, as illustrated in
Figure 5.1.

The concatenation of 32-bit seconds and 32-bit fraction field specifies a 64-bit time value, as specified by
Equation E.1.

time = seconds + (fraction / 232) (E.1)
Where:

seconds is the most significant component of the time value (see Figure 5.1).
fraction is the less significant component of the time value (see Figure 5.1).

E.1.2 IEEE 1394 timer format

An alternate “1394 timer” format consists of secondCount, cycleCount, and cycleOffset fields, as illustrated
in Figure E.2. For such fields, the 12-bit cycleOffset field is updated at a 24.576MHz rate. The cycleOffset
field goes to zero after 3171 is reached, thus cycling at an 8kHz rate. The 13-bit cycleCount field is incre-
mented whenever cycleOffset goes to zero. The cycleCount field goes to zero after 7999 is reached, thus
restarting at a 1Hz rate. The remaining 7-bit secondCount field is incremented whenever cycleCount goes to
zero.

Figure 5.1—Complete seconds timer format

Figure E.2—IEEE 1394 timer format

seconds fraction

32 bits32 bits

MSB LSB

secondCount cycleOffsetcycleCount

13 bits 12 bits7 bits

MSB LSB
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 108

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
E.1.3 IEEE 1588 timer format

IEEE 1588 timer format consists of seconds and nanoseconds fields components, as illustrated in Figure E.3.
The nanoseconds field must be less than 109; a distinct sign bit indicates whether the time represents before
or after the epoch duration.

E.1.4 EPON timer format

The IEEE 802.3 EPON timer format consists of a 32-bit scaled nanosecond value, as illustrated in
Figure E.4. This clock is logically incremented once each 16 ns interval.

E.1.5 Compact seconds timer format

An alternate “compact seconds” format could consist of 8-bit seconds and 24-bit fraction fields, as
illustrated in Figure E.5. This would provided similar resolutions to the IEEE 1394 timer format, without the
complexities associated with its binary coded decimal (BCD) like encoding.

E.1.6 Nanosecond timer format

An alternate “nanosecond” format could consists of 2-bit seconds and 30-bit nanoSeconds fields, as
illustrated in Figure E.6.

Figure E.3—IEEE 1588 timer format

Figure E.4—EPON timer format

Figure E.5—Compact seconds timer format

Figure E.6—Nanosecond timer format

seconds
MSB LSB

nanoSecondss

Legend: s: sign

nanoTicks
MSB LSB

seconds = nanoTicks/62500000

seconds fraction

24 bits8 bits

MSB LSB

sec nanoSeconds

30 bits2 bits

MSB LSB

Legend: sec: seconds
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 109

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
E.2 Time format comparisons

To better understand the relative benefits of different time formats, the relevant properties are summarized in
Table E.1. Counter complexity is not included in the comparison, since the digital logic complexity (see
5.7.59.2.4) is comparable for all formats.

Column 1: A desirable property is the support of a wide range of second values, to eliminate the need for
defining/coordinating/implementing auxiliary seconds-synchronization protocols. The 136-year range of the
extended binary format is sufficient for this purpose.

Column 2: A desirable property is a fine-grained resolution, sufficient to measure each bit-transmission
times. The ‘extened binary’ provides the most precision; exceeds the resolution of expected cost-effective
time-capture circuits.

Column 3: Computation of time differences involves the subraction of two timer-snapshot values. Subtrac-
tion of ‘extended binary’ numbers involving standard 64-bit binary arithmetic; no special field-overlow
compensations are required. Only the less precise ‘compact seconds’ and nanoseconds formats are simpler,
due to the reduced 32-bit size of the timer values.

Column 4: Time values must oftentimes be compared to externally provided values (e.g., timers extracted
from GPS or stratum-clock sources). For these purposes, the availability of a seconds component is desired.
The ‘extended binary’ format provides a seconds component that can be easily extracted or such purposes.

Table E.1—Time format comparison

Name Subclause

R
an

ge

P
re

ci
si

on

A
ri

th
m

et
ic

Se
co

nd
s

D
ef

in
ed

st
an

da
rd

s

Column — 1 2 3 4 5

extended binary TBD 136 years 232 ps Good Good RFC 1305 NTP,
RFC 2030 SNTPv4

IEEE 1394 E.1.2 128 s 30 ns Poor Good IEEE 1394

IEEE 1588 E.1.3 272 years 1 ns Fair Good IEEE 1588

IEEE 802 (EPON) E.1.4 69 s 16 ns Good Poor IEEE 802.3

compact seconds E.1.5 256 s 60 ns Best Good —

nanoseconds E.1.6 4 s 1 ns Best Poor —
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 110

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex F

(informative)

Bursting and bunching considerations

F.1 Topology scenarios

F.1.1 Bridge design models

The sensitivity of bridges to bursting and bunching is highly dependent on the queue management protocols
within the bridge. To better understand these effects, a few bridge design models are evaluated, as illustrated
in Figure F.1.

The input-queue design (see Figure F.1-a) assumes that frames are queued in receive buffers. The transmitter
accepts frames are from the receivers, based on service-class precedence. In the case of a tie (two receivers
can provide same-class frames), the lowest numbered receive port has precedence. This model best illus-
trates nonlinear bunching problems.

The output-queue design (see Figure F.1-b) assumes that received frames are queued in transmit buffers.
Within each service class, frames are forwarded in FIFO order. This model best illustrates linear bunching
problems (for steady flows), but also exhibits nonlinear bunching (for nonsteady flows).

The throttled-output design (see Figure F.1-c) is an enhanced output-queue model, with an output shaper to
limit transmission rates. The purpose of the output shaper is to ensure sufficient nonreserved bandwidth for
less time-sensitive control and monitoring purposes. The model illustrates how shapers can worsen the out-
put-queue bridge’s bunching behaviors.

Figure F.1—Bridge design models

a) Input-queues

c3

c0

c1

c2

b) Output-queues

c0

c1

c2

c3

c) Throttled outputs

c3 sr

sr

sr

sr c0

c1

c2

d) Retimed inputs

c3 sr

sr

sr

sr c0

c1

c2

sync

sync

sync

sync

d) Retimed outputs

c3 sr

sr

sr

sr c0

c1

c2

sync

sync

sync

sync
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 111

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The retimed-inputs outputs design (see Figure F.1-d) reduces (and can eliminate) bunching problems with
elasticity buffers on by detecting late-arrival frames at the receivers. The purpose of Several synchro-
nous-cycle buffers are provided at the elasticity buffers is transmitters, to compensate for transmission
delays in the received data, by eliminating variable skews associated with asynchronous frame-transmission
delays.

TBD—
Should we assume that frames are forwarded using cut-through or store-and-forward? Store-and-forward
delays are variable and approximately equal to the frame length (about 120µs, on a 100 Mb/s link). Thus, the
difference would be 2-cycle vs vs. 3-cycle delays.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 112

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.1.2 Three-source hierarchical topology

A hierarchical topology best illustrate potential problems with bunching, as illustrated in Figure F.2. Traffic
from sources {a0,a1,a2} is transmitted by talker stations {b0,b1,b2}. Bridge C concentrates traffic received
from three talkers, with the cumulative c3 traffic sent to d3. Identical traffic flows are assumed at bridge
ports {d0,d1,d3}, although only one of these sources is illustrated. Bridges {C,D,E,F,G,H,I} behave
similarly.

F.1.3 Six-source hierarchical topology

Spreading the traffic over multiple sources, as illustrated in Figure F.3, exasperates bursting and bunching
problems. Traffic from sources {a0,a1,a2,a3,a4,a5} is transmitted by talker stations {b0,b1,b2,b3,b4,b5}.
Bridge C concentrates traffic received from three talkers, with the cumulative c6 traffic sent to d6. Identical
traffic flows are assumed at bridge ports {d0,d1,d3,d3,d4,d6}, although only one of these sources is illus-
trated. Bridges {C,D,E,F,G,H,I} behave similarly.

Figure F.2—Three-source topology

Figure F.3—Six-source topology

j3

i0

i1

i2

i3

h0

h1

h2

h3

g0

g1

g2

g3

f0

f1

f2

f3

e0

e1

e2

e3

d0

d1

d2

d3

c0

c1

c2

c3

b0

b2

b1

C D E F G H I

source

a0

a2

a1

c0

c1

c2

c3

d0

d1

d2

d3

d4

d5

d6

e0

e1

e2

e3

e4

e5

e6

f0

f1

f2

f3

f4

f5

f6

g0

g1

g2

g3

g4

g5

g6

h0

h1

h2

h3

h4

h5

h6

i0

i1

i2

i3

i4

i5

i6

b0

b1

b2

c4

b3

c5

b4

c6

b5

j3

C D E F G H I

source

a0

a2

a1

a3

a4

a5
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 113

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2 Bursting considerations

F.2.1 Three-source bursting scenario

A troublesome bursting scenario on a 100 Mb/s link can occur when small bandwidth streams coincidentally
provide their infrequent 1500 byte frames concurrently, as illustrated in Figure F.4. Even though the cumula-
tive bandwidths are considerably less than the capacity of the 100 Mb/s links, significant delays are incurred
when passing through multiple bridges.

Figure F.4—Three-source bunching timing; input-queue bridges

c0

c2

c1

c3

d0

d1

d2

d3

e0

e1

e2

e3

9.625

3.375

a0

a1

a2

26.25

Legend:

asynchronous frame

interfering flow0

interfering flow1

measured flow

0 5

10

10 15 20 255

125µs
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 114

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.1.1 Cumulative bunching latencies

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.1 and plotted in
Figure F.5.

The values within this table are computed based on Equation F.1.

delay[n] = mtu × (n + pn) (F.1)

Where:
mtu (maximum transfer unit) is the maximum frame size
n is the number of hops from the source
p is the number of receive ports in each bridge.

Conclusion: The classA traffic bandwidths should be enforced over a time interval that is on the order of an
MTU size (120 µs), so as to avoid excessive delays caused by coincidental back-to-back large-block
transmissions.

Table F.1—Cumulative bursting latencies

Topology Units
Measurement point

B C D E F G H I

3-source
(see F.2.2.1)

mtu 1 4 11 30 85 248 735 2194

ms .120 .480 1.32 3.6 10.2 29.6 88.2 263

6-source
(see F.2.2.2)

mtu 1 7 38 219 1300 7781 46662 229943

ms .120 .840 4.56 26.3 156 934 5600 27600

Figure F.5—Cumulative coincidental burst latencies

B C D E hopsF G H I

1000

10

100

1ms

a) 3-source coincidental burst latency

B C D E hops

b) 6-source coincidental burst latency

1000

10000

100000

1ms

10

100

F G H I
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 115

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.2 Bunching scenarios; input-queue bridges

F.2.2.1 Three-source bunching; input-queue bridges

To illustrate the effects of worst case bunching on input-queue bridges, specific flows are illustrated in
Figure F.6. Bridge ports {c0,c1,c2} concentrates traffic from three talkers; one third of the cumulative traffic
is forwarded through c3. Each stream consumes 25% of the link bandwidth; 25% is available for asynchro-
nous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2},…,{f0,f1,f3}, only illustrate the passing-through
listener traffic; the remainder of the traffic is assumed to be routed elsewhere.

Figure F.6—Three-source bunching; input-queue bridges

25.7

c0

c2

c1

c3

d0

d1

d2

d3

e0

e1

e2

e3

f0

f1

f2

f3

8.25

3.5

a0

a1

a2

17.50

34.25

Legend:

asynchronous frame

interfering flow0

interfering flow1

measured flow

16

0 5

5 10

20 25 30 35 40 45

15

10 15 20 25 30 357

f2

45 50 65 60 65

12.8

6.1

49.8

125µs
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 116

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.2.2 Six-source bunching; input-queue bridges

To better illustrate the effects of worst case bunching on input-queue bridges, specific flows are illustrated in
Figure F.7. Bridge ports {c0,c1,c2,c3,c4,c5} concentrates traffic from three talkers; one sixth of the cumula-
tive traffic is forwarded through c6. Each of six streams consumes 12.5% of the link bandwidth, so that 25%
is available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2,c3,c4,c6}, …, {d0,d1,d2,d3,d4,d6} only illustrate
passing-through traffic; the remainder of the traffic is routed elsewhere.

Figure F.7—Six source bunching timing; input-queue bridges

7.1

a0

a1

a2

Legend:
asynchronous frame
interfering flow0
interfering flow1
interfering flow2
interfering flow3
interfering flow4
measured flow5a3

a4

a5

4.25

c0

c1

c2

c3

c4

c5

c6

d0

d2

d3

d4

d5

d6

d1

13.875

0 5

10 15

d5
20

16.125

125µs
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 117

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.2.3 Cumulative bunching latencies, input-queue bridge

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.2 and plotted in
Figure F.8.

The first few numbers are generated using graphical techniques, as illustrated in Figure F.2.2.2. The follow-
ing numbers are estimated, based on Equation F.2.

delay[n+1] = (mtu + delay[n]) × (1 / (1−0.75 ×(p-1)/p)) (F.2)

Where:
mtu (maximum transfer unit) is the maximum frame size
rate is the fraction of the bandwidth reserved for class A traffic, assumed to be 0.75
n is the number of hops from the source
p is the number of receive ports in each bridge.

Conclusion: A FIFO based output-queue bridge should be used. Alternatively (if input queuing is used),
received frames should be time-stamped to ensure FIFO like forwarding.

Table F.2—Cumulative bunching latencies; input-queue bridge

Topology Units
Measurement point

B C D E F G H I

3-source
(see F.2.2.1)

cycles 0.125 3.5 8.25 17.5 34.25 (70.75) (143.2) (288.2)

ms 0.01 0.44 1.03 2.19 4.28 8.84 17.9 36.0

6-source
(see F.2.2.2)

cycles 0.125 4.25 13.87 (39.33) (107.2) (288.2) (771) 2058

ms 0.01 0.56 1.73 4.92 13.4 36.0 96.4 257

Figure F.8—Cumulative bunching latencies; input-queue bridge

B C D E hopsF G H I

1000

10

100

1ms

a) 3-source input-queue bunching latency

B C D E hopsF G H I

1000

10

100

1ms

b) 6-source input-queue bunching latency
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 118

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.3 Bunching topology scenarios; output-queue bridges

F.2.3.1 Three-source bunching timing; output-queue bridges

To illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.9. Bridge ports
{c0,c1,c2} concentrates traffic from three talkers; one third of the cumulative traffic is forwarded through
c3. Each stream consumes 25% of the link bandwidth; 25% of the link bandwidth is available for
asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2},…,{ f0 ,f1, f3} only illustrate the passing-through
listener traffic; the remainder of the traffic is assumed to be routed elsewhere.

Figure F.9—Three-source bunching; output-queue bridges

18.2

14.35

c0

c2

c1

c3

d0

d1

d2

d3

e0

e1

e3

f0

f1

f2

f3

3.75

a0

a1

a2

6.875

Legend:

asynchronous frame

interfering flow0

interfering flow1

measured flow

0 5

5 10

20

25

10 155

10.6

6.8

2.25

5.125

125µs
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 119

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.3.2 Six-source bunching; output-queue bridges

To better illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.10. Bridge
ports {c0,c1,c2,c3,c4,c5} concentrates traffic from six talkers; one sixth of the cumulative traffic is
forwarded through port c6. Each of six streams consumes 12.5% of the link bandwidth; 25% of the link
bandwidth is available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2,c3,c4,c6},…,{e0,e1,e2,e3,e4,e5} only illustrate
passing-through traffic; the remainder of the traffic is routed elsewhere.

Figure F.10—Six source bunching; output-queue bridges

15.9

a0

Legend:
asynchronous frame
interfering flow0
interfering flow1
interfering flow2
interfering flow3
interfering flow4
measured flow5

a4

a5

2.875

c0

c4

c5

c6

d0

d4

d5

d6

0 5

10

15

(…)

6.90

(…)

(…)

4.875

e0

e4

e6

e5

(…)

6.875

11.38

125µs
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 120

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.3.3 Cumulative bunching latencies; output-queue bridge

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.3 and plotted in
Figure F.11.

Conclusion: For steady-state classA traffic, acceptably small linear latencies are introduced by
output-queue bridges on 75% loaded links. Unfortunately, the nonsteady-state nature of variable-rate traffic
makes this conclusion suspect (see F.2.4).

Table F.3—Cumulative bunching latencies; output-queue bridge

Topology Units
Measurement point

B C D E F G H I

3-source
(see F.2.2.1)

cycles .875 2.25 3.75 5.125 6.875 – – –

ms 0.10 0.27 0.45 0.62 0.83 – – –

6-source
(see F.2.2.2)

cycles .875 2.875 4.875 6.875 – – – –

ms 0.10 0.35 0.59 0.83 – – – –

Figure F.11—Cumulative bunching latencies; output-queue bridge

B C D E hopsF G H I

1.5

1.0

0.5ms

a) 3-source output-queue latency

B C D E hopsF G H I

1.5

1.0

0.5ms

b) 6-source output-queue latency
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 121

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.4 Bunching topology scenarios; variable-rate output-queue bridges

F.2.4.1 Three-source bunching; variable-rate output-queue bridges

To illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.12. Bridge ports
{c0,c1,c2} concentrates traffic from three talkers; one third of the cumulative traffic is forwarded through
port c3. Each stream consumes 25% of the link bandwidth; 25% of the link bandwidth is available for
asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2},…,{ f0, f1, f3} only illustrate the passing-through
listener traffic; the remainder of the traffic is assumed to be routed elsewhere.

Figure F.12—Three-source bunching; variable-rate output-queue bridges

c0

c2

c1

c3

d0

d1

d2

d3

e0

e1

e3

f0

f1

f2

f3

3.25 cycles

2.25 cycles

a0

a1

a2

10.25

Legend:

asynchronous frame

interfering flow0

interfering flow1

measured flow

0 5

5 10

20 25

10 155

6.75

125µs
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 122

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.4.2 Six-source bunching; variable-rate output-queue bridges

To better illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.13. Bridge
ports {c0,c1,c2,c3,c4,c5} concentrates traffic from six talkers; one sixth of the cumulative traffic is
forwarded through port c6. Each of six streams consumes 12.5% of the link bandwidth; 25% of the link
bandwidth is available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2,c3,c4,c6} and {d0,d1,d2,d3,d4,d6} only illustrate
passing-through traffic; the remainder of the traffic is routed elsewhere.

Figure F.13—Six source bunching; variable-rate output-queue bridges

a0

Legend:
asynchronous frame
interfering flow0
interfering flow1
interfering flow2
interfering flow3
interfering flow4
measured flow5

a4

a5

2.375

c0

c4

c5

c6

d0

d4

d5

d6

0 5

10

15

(…)

(…)

(…)

5.375

e0

e4

e6

e5

(…)

10.0

f0

f4

f6

f5

(…)

17.5

(…)
15 20

5

125µs
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 123

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.4.3 Cumulative bunching latencies; variable-rate output-queue bridge

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.4 and plotted in
Figure F.14.

Conclusion: For nonsteady-state classA traffic, significant expediential latencies are introduced by
output-queue bridges on 75% loaded links. Unfortunately, throttled outputs further exasperates this latency
(see F.2.4).

Table F.4—Cumulative bunching latencies; variable-rate output-queue bridge

Topology Units
Measurement point

B C D E F G H I

3-source
(see F.2.2.1)

cycles 0.75 2.25 3.35 6.75 10.25 – – –

ms 0.10 0.27 0.40 0.81 1.23 – – –

6-source
(see F.2.2.2)

cycles 0.75 2.375 5.375 10.0 17.5 – – –

ms 0.10 0.28 0.65 1.20 2.1 – – –

Figure F.14—Cumulative bunching latencies; variable-rate output-queue bridge

B C D E hops

a) 3-source coincidental burst latency

1ms

10

100

F G H I B C D E hops

b) 6-source coincidental burst latency

1ms

10

100

F G H I
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 124

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.5 Bunching topology scenarios; throttled-rate output-queue bridges

F.2.5.1 Three-source bunching; throttled-rate output-queue bridges

To illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.15. Bridge ports
{c0,c1,c2} concentrates traffic from three talkers; one third of the cumulative traffic is forwarded through
port c3. Each stream consumes 25% of the link bandwidth; 25% of the link bandwidth is available for
asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c3}, {c0,d1,d2}, and {e0,e1,e3} only illustrate the
passing-through listener traffic; the remainder of the traffic is assumed to be routed elsewhere.

Figure F.15—Three-source bunching; throttled-rate output-queue bridges

c0

c2

c1

c3

d0

d1

d2

d3

e0

e1

e3

f0

f1

f2

f3

5.25 cycles

2.25

a0

a1

a2

14.5

Legend:

asynchronous frame

interfering flow0

interfering flow1

measured flow

0 5

5 10

2010 155

9.00

2010 155 25 30

125µs
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 125

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.5.2 Six-source bunching; throttled-rate output-queue bridges

To better illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.16. Bridge
ports {c0,c1,c2,c3,c4,c5} concentrates traffic from six talkers; one sixth of the cumulative traffic is for-
warded through port c6. Each of six streams consumes 12.5% of the link bandwidth; 25% of the link
bandwidth is available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2,c3,c4,c5},…,{f0, f1, f2, f3, f4, f6} only illustrate
passing-through traffic; the remainder of the traffic is routed elsewhere.

Figure F.16—Six source bunching; throttled-rate output-queue bridges

a0

Legend:
asynchronous frame
interfering flow0
interfering flow1
interfering flow2
interfering flow3
interfering flow4
measured flow5

a4

a5

c0

c4

c5

c6

d0

d4

d5

d6

0 5

10 15

(…)

(…)

(…)

7.50

e0

e4

e6

e5

(…)

15.0

(...) 9 10 15

3.25

3 20

f0

f4

f6

f5

(…)

28.0

(...)3 205 25

30

125µs
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 126

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.5.3 Cumulative bunching latencies; throttled-rate output-queue bridge

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.5 and plotted in
Figure F.17.

Conclusion: On large topologies, the classA traffic latencies can accumulate beyond acceptable limits.
Some form of receiver retiming may therefore be desired.

Table F.5—Cumulative bunching latencies; throttled-rate output-queue bridge

Topology Units
Measurement point

B C D E F G H I

3-source
(see F.2.2.1)

cycles 0.75 2.25 5.25 9.00 14.5 – – –

ms 0.09 0.28 0.66 1.13 1.8 – – –

6-source
(see F.2.2.2)

cycles 0.75 3.25 7.5 15.0 28 – – –

ms 0.09 0.30 0.94 1.88 3.5 – – –

Figure F.17—Cumulative bunching latencies; throttled-rate output-queue bridge

B C D E hops

a) 3-source throttled-rate output-queue latency

1ms

10

100

F G H I B C D E hops

b) 6-source throttled-rate output-queue latency

1ms

10

100

F G H I
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 127

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.6 Bunching topology scenarios; classA throttled-rate output-queue bridges

F.2.6.1 Three-source bunching; classA throttled-rate output-queue bridges

To illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.18 and F.19. Bridge
ports {c0,c1,c2} concentrates traffic from three talkers; one third of the cumulative traffic is forwarded
through port c3. Each stream consumes 25% of the link bandwidth; 25% of the link bandwidth is available
for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c3}, {c0,d1,d2}, and {e0,e1,e3} only illustrate the
passing-through listener traffic; the remainder of the traffic is assumed to be routed elsewhere.

Figure F.18—Three-source bunching; throttled-rate output-queue bridges

c0

c2

c1

c3

d0

d1

d2

d3
1.5 cycles

0.50

a0

a1

a2

Legend:

asynchronous frame

interfering flow0

interfering flow1

measured flow

0 5

5

125µs

e0

e1

e2

e3
2.75 cycles

5 10

f0

f1

f2

f3
4.75 cycles

5 10
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 128

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure F.19—Three-source bunching; throttled-rate output-queue bridges

g0

g1

g3

i0

i1

i2

i3

18.5

2010 155

7.75

2010 15 25 30

h0

h1

h3

12.0
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 129

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.6.2 Six-source bunching; classA throttled-rate output-queue bridges

To better illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.16. Bridge
ports {c0,c1,c2,c3,c4,c5} concentrates traffic from six talkers; one sixth of the cumulative traffic is for-
warded through port c6. Each of six streams consumes 12.5% of the link bandwidth; 25% of the link
bandwidth is available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2,c3,c4,c5},…,{f0, f1, f2, f3, f4, f6} only illustrate
passing-through traffic; the remainder of the traffic is routed elsewhere.

Figure F.20—Six source bunching; classA throttled-rate output-queue bridges

a0

Legend:
asynchronous frame
interfering flow0
interfering flow1
interfering flow2
interfering flow3
interfering flow4
measured flow5

a4

a5

c0

c4

c5

c6

d0

d4

d5

d6

0 5

(…)

(…)

(…)

3.125

e0

e4

e6

e5

(…)

10

0.75

f0

f4

f6

f5

(…)

1 5 15

125µs

5

6.375
10

11.25
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 130

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.6.3 Cumulative bunching latencies; classA throttled-rate output-queue bridge

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.6 and plotted in
Figure F.21.

Conclusion: TBD.

Table F.6—Cumulative bunching latencies; classA throttled-rate output-queue bridge

Topology Units
Measurement point

B C D E F G H I

3-source
(see F.2.2.1)

cycles – 0.50 1.5 2.75 4.75 7.75 12.0 18.5

ms – 0.06 0.19 0.34 0.59 0.97 1.5 2.31

6-source
(see F.2.2.2)

cycles – 0.75 3.125 6.375 11.5 – – –

ms – 0.09 0.39 0.80 1.44 – – –

Figure F.21—Cumulative bunching latencies; classA throttled-rate output-queue bridge

B C D E hops

a) 3-source throttled-rate output-queue latency

F G H I

1ms

10

B C D E hops

b) 6-source throttled-rate output-queue latency

1ms

10

F G H I
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 131

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.7 Bunching concerns

This subannex evaluates several bridge forwarding scenarios, with the intent of providing guidance for RE
capable bridge designs. Observations based on analysis of these scenarios leads to the following concerns
towards throttled-rate output-queue bridges:

a) Idling. Bunching allows active links to appear inactive for multiple cycles.
This could affect the stream-present timeout delays associated with subscription protocols.

b) Storage. Additional storage to ensure lossless classA transmissions.
(These properties has been deferred to future revisions of this working paper).
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 132

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex G

(informative)

Denigrated alternatives

G.1 Stream frame formats

G.1.1 Source-routed frame formats

Frames within a stream are no different than other Ethernet frames, with the exception of their distinct da
(destination address) field, as illustrated in Figure G.2. The most significant 32-bit portion of the da
classifies the frame as an classA frame. The less significant 16-bit portion specifies the plugID portion of the
streamID associated with the frame.

This advantages of this approach (which relies on the multicast nature of classA streams) include:

a) Localized. The administration of multicast addresses is managed independently by each talker,
eliminating the need to provide, configure, and manage multicast address servers.

b) Efficient. The inclusion of a protocolType field to identify a frame’s classA nature is unnecessary.
Efficiency reduces the need for bridge-aware multi-block frame formats (see 5.3.3).

c) Structured. The stacking order of protocolType values is unaffected by its classA nature.

The primary disadvantage of this approach relates to its forwarding through bridges:

a) Different. Within existing bridges, multicast routing decisions are nominally based on the multicast
da address; the sa address is normally ignored.

NOTE—The following streaming classA frame format options were considered but rejected.
These options are retained for historical purposes and (if opinions change) possible reconsideration.
For these reasons, the perceived advantages and disadvantages of each technique are listed.

Figure G.1—classA frame formats

6 da

6 sa

2 protocolType

m data[n]

4 fcs

STREAM_TYPE

—

sourceID

plug

plugID

streamID
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 133

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
G.1.2 VLAN routed frame formats

Frames within a stream are no different than other Ethernet frames, with the exception of their distinct da
(destination address) and control field values, as illustrated in Figure G.2.

A single multicast address (labeled as RE_GROUP_MAC_ADDRESS) identifies the multicast
time-sensitive nature of the frame. The following VLAN tag identifies the frame priority and provides a
distinct vlanID identifier. The vlanID identifier is also the streamID identifier, allowing each stream to be
independently selectively-switched through bridges.

This design approach (which relies on the multicast nature of classA streams) has desirable properties:

a) Similar. The vlanID is currently used to selectively route unicast as well as multicast frames.

The primary disadvantage of this design approach relates to its forwarding through bridges:

a) Overloaded. This novel vlanID usage could conflict with existing bridge implementations.

b) VLAN service. A method of generating distinct vlanID values would be required.
(Some for of central server or distributed assignment algorithm would be required).

Figure G.2—classA frame formats

6 da

6 sa

2 protocolType

m data[n]

4 fcs

vlanID

tag

2 protocolType1

2 control priority cfi

RE_GROUP_MAC_ADDRESSg

key
Contribution from: dvj@alum.mit.edu.
134 This is an unapproved working paper, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
G.2 Subscription

G.2.1 Simple Reservation Protocol (SRP) overview

Subscription involves explicit negotiation for bandwidth resources, performed in a distributed fashion,
flowing over the paths of intended communication. The RE subscription protocols are called Simple
Reservation Protocols (SRP), due to their simplicity as compared to the Resource Reservation Protocol
(RSVP). SRP shares many of the baseline RSVP features, including the following:

a) SRP is simplex, i.e. reservations apply to unidirectional data flows.

b) SRP is receiver-oriented, i.e., the receiver of a classA stream initiates and maintains the resource
reservation used for that stream.

c) SRP maintains “soft” state in bridges, providing graceful support for dynamic membership changes
and automatic adaptations to changes in network topology.

d) SRP is not a routing protocol, but depends on transparent bridging and STP routing protocols.

SRP simplicity is derived from its restricted layer-2 ambitions, as follows.

a) SRP is symmetric, i.e. the listener-to-talker path is the inverse of the talker-to-listener path.

b) SRP does no not provide for transcoding; any stream is fully characterized by its streamID and
bandwidth.

G.2.2 Soft reservation state

SRP takes a “soft state” approach to managing the reservation state in bridges. SRP soft state is created and
periodically refreshed by listener generated RequestRefresh messages; this state is deleted if no matching
RequestRefresh messages arrive before the expiration of a “cleanup timeout” interval. Listener’s may also
force state deletions by generating an explicit RequestLeave message.

RequestRefresh messages are idempotent. When a route changes, the next RequestRefresh message will ini-
tialize the path state to the new route, and future RequestRefresh messages will establish state there. The
state on the now-unused segment of the route will be deleted after a timeout interval. Thus, whether a
RequestRefresh message is “new” or a “refresh” is determined separately by each station, depending upon
the existence of state at that station.

SRP soft state is also deleted in the continued absence of associated classA traffic; this state is deleted if no
matching classA traffic arrives before the expiration of a “cleanup timeout” interval. Thus, talker stations or
agents may force reservation-state deletions by stopping their transmissions of classA traffic.

SRP sends it messages as layer-2 datagrams with no reliability enhancement. Periodic transmissions by lis-
tener stations and agents is expected to handle the occasional loss of an SRP message.

In the steady state, state is refreshed on a hop-by-hop basis to allow merging. Propagation of a change stops
when and if it reaches a point where merging causes no resulting state change. This minimizes the SRP con-
trol traffic and is essential for scaling to large audiences.

G.2.3 Subscription bandwidth constraints

The SRP subscription protocols limit cumulative bandwidth allocations to a fixed percentage less than the
capacity of the link, much like IEEE 1394 limits isochronous traffic to less than the capacity of its bus. This
guarantees that high priority management information can be transmitted across the link. For RE systems,
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 135

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
classA traffic is limited to 75% of the capacity of any RE link. Enforcement of such a limit is done in multi-
ple ways:

a) Admissions controls (described in previous subclauses) reject any RequestRefresh message that
(when combined with previously accepted request) would consume more than 75% of link
bandwidth.

b) Transmit queue hardware of RE stations (including bridges) discards classA content that (if trans-
mitted) would cause classA traffic to exceed 75% of the transmit link capacity.

Method (b) is desired to recovery from unexpected transient conditions (typically topology changes) that
result in admission control violations, and is also useful for managing misbehaving devices

G.2.4 Bridge-resident agents

Subscription facilities establish multicast paths from a talker to one or more listeners. Streams of
time-sensitive data can then flow over these established paths, as illustrated by the dark arrow paths in
Figure G.3-a. Maintaining these established paths involves active participation of agents within the
end-point talker, local listener, local talker, and end-point listener entities, as illustrated in Figure G.3-b.

The talker stations/agents are responsible for maintaining an account consisting of {streamID, bandwidth}
pairs, one for each of their distinct flows. Requests for additional link bandwidth are checked against these
accounts and rejected if the cumulative bandwidth would exceed 75% of the link capacity. The talker agents
are also responsible for sustaining streams of classA data; their absence can result in disconnections of the
attached listener agent.

The listener agents are responsible for periodically refreshing their adjacent talker agents, to confirm their
continued presence. A persistent absence of refreshes causes the adjacent talker agent to disconnect its
stream transmissions and (if appropriate) to inform other station-local agents.

For each established stream within a bridge, the listener agent remains active while all but the last down-
stream flows are disconnected. The upstream station receives its disconnect notice only after the last of the
downstream flows has disconnected.

The listener agent’s messages that establish and maintain the path are the same. This reduces design com-
plexity and (most importantly) automatically re-routes stream flows after topology changes.

Figure G.3—Agents on an established path

T

a) Established stream

Legend:
talker listener other

established conversation

L

L

T L

b) Agents on the established path

Legend:
talker station listener station
talker agent listener agent
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 136

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
G.2.5 Controller entities

Subscription when a relative-intelligent controller discovers the need to establish a classA path between
talker and listener entities. For example, user interactions with a television (called the controller) may cause
streams flowing between the content source (called the talker) and speakers (the listeners), as illustrated in
Figure G.4.

A controller can potentially simplify the listener by reducing the need to providing user interface and
device-discovery capabilities. However, a controller could also reside within talker and/or listener compo-
nents. However, actions between controllers and talker/listener stations are beyond the scope of this
working paper.

G.2.6 Pinging the talker

After being activated by a talker, listeners are expected to ping the talkers before initiating subscription oper-
ations, as illustrated in Figure G.5. The purpose of the ping is to ensure that bridges have learned listener and
talker addresses, allowing frames to be sequentially passed from the listener-to-talker.

Figure G.4—Controller activation

Figure G.5—Pinging the talker

Legend:
controller talker listener other communication flowL

T L

C

C T

a) Phase 1: RequestRefresh messages

(unintended flooding)

T L

Legend:
talker listener other
ping request

T L

b) Phase 2: Stream transmissions

LT

Legend:
talker listener other
ping response

T L
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 137

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
G.2.7 Path creation

Establishing a conversation between a listener and a talker involves sending a RequestRefresh message from
the listener towards the talker, illustrated by the dark arrow paths in Figure G.6-a. If available bandwidths are
sufficient, the talker starts its stream transmissions, as illustrated by the gray arrow paths in Figure G.6-b.

In rare circumstances, some talker addresses may not have been learned and the RequestRefresh message
will terminate with a returned ResponseError message. The listener has the option of repeating the
RequestRefresh after performing a ping (see G.2.6), which validates the talker presence and activates bridge
learning.

Another timeouts is associated with the absence of periodic RequestRefresh messages. In the continued
absence of these expected messages, the listener is assumed to be absent or deactivated. Based on this
assumption, the associated talker (station or agent) resources are released.

G.2.8 Side-path extensions

A second listener joins an established conversation by sending a RequestRefresh message towards the talker,
as illustrated by the dark-arrow path in Figure G.7-a. When an established connection is discovered, the
switch (not the talker) returns stream transmissions, as illustrated by the dark-gray path in Figure G.7-b.

Figure G.6—Path creation

Figure G.7—Side-path extensions

a) Phase 1: RequestRefresh messages

Legend:
talker new listener other
RequestRefresh flow

T L

T L

b) Phase 2: Stream transmissions

Legend:
talker new listener other
stream transmissions

LT

T L

a) Phase 1: RequestRefresh messages

Legend:
talker old listener new listener
other existing path

RequestRefresh path

L

N

T

T L N

b) Phase 2: Extended paths

LT

N

Legend:
talker old listener new listener
other revised paths

T L N
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 138

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Each talker agent maintains separate state, so that classA traffic can be multicast to the applicable stations,
rather than flooded downstream. The distinct markers also allow the switch to detect when the last listener
disconnects, so that its previously shared upstream span can be released appropriately.

G.2.9 Side-path release

A retiring listener normally leaves an established conversation, by sending a RequestLeave message towards
the talker. That message propagates to the nearest merging bridge connection, as illustrated by the
dark-arrow path in Figure G.8-a. When an established/merged connection is discovered, the switch (not the
talker) stops the stream transmissions, as illustrated by the disappearance of a side path in Figure G.8-b.

G.2.10 Released path

The final listener bandwidth release involves sending a RequestLeave message towards the talker. In this
case, that message propagates to the talker, as illustrated by the dark-arrow path in Figure G.9-a. The stream
transmissions then stop, as illustrated in Figure G.9-b.

Figure G.8—Side-path demolition

Figure G.9—Released path

T

a) Phase 1: RequestLeave messages

L

N

Legend:
talker leaving listener existing listener
other existing paths

RequestLeave path

T L N

b) Phase 2: Contracted path

T

N

Legend:
talker other new listener
revised paths

T L

a) Phase 1: LeaveResponse messages

Legend:
talker leaving listener other
active stream RequestLeave path

T

N

T N

b) Phase2: Released path

T

N

Legend:
talker previous listener otherT N
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 139

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
G.2.11 Errors and timeouts

G.2.11.1 Subscription failures

A RequestRefresh message can encounter an error while flowing from the listener towards the talker,
illustrated by the dark arrow paths in Figure G.10-a. When such errors occur, a ResponseError message is
normally returned to the listener, as illustrated by the gray arrow paths in Figure G.10-b.

Errors may be associated with a variety of errors including (but not limited to) the following:

a) Insufficient resources. Necessary resources are available within the bridge:

1) Insufficient bandwidth is available on the link from the talker agent to its adjacent listener.
2) Insufficient path-related resources are available in the bridge’s talker agent.
3) Insufficient path-related resources are available in the bridge’s upstream listener agent.
4) Insufficient link or memory bandwidth is available with the bridge.

b) Unlearned address. The route from the bridge to the talker is unknown.
(To avoid complexities and inefficiencies, RequestRefresh messages are never flooded.)

Figure G.10—Error responses

a) Phase 1: RequestRefresh messages

Legend:
talker new listener other
RequestRefresh flow

T L

T L

b) Phase 2: ResponseError messages

Legend:
talker new listener other
ResponseError transmissions

LT

T L
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 140

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
G.2.11.2 Listener-presence timeouts

Listener agents and stations are responsible for refreshing their local talkers, to demonstrate their continued
presence. In the absence of these refresh messages, the talkers assume the listener is absent and teardown the
inactive path (or inactive branch from the path).

Thus, sustaining the active paths of Figure G.11-a requires periodic refresh messages on each hop, as
illustrated in Figure G.11-b. The refresh messages and associated timeouts are performed independently on
each span. The messages that establish the path (see G.2.7 and G.2.8) are the same as these listener-initiated
messages that sustain the established path.

G.2.11.3 Talker-presence timeouts

Talker agents and stations are responsible for updating their local listeners, to demonstrate their continued
presence. In the absence of these updates, the listeners assume the talker is absent and teardown the inactive
path (or inactive branch from the path).

Thus, sustaining the active paths of Figure G.11-a requires periodic transmissions of classA traffic on each
hop (not illustrated). The associated timeouts are performed independently on each span. The frames that
transfer classA data are the same as these talker-initiated frames that sustain the established path.

Figure G.11—Side-path demolition

T

a) Established paths

L0

L1

Legend:
talker listeners other
existing paths

T L

T

b) Periodic link-local refresh

L0

L1

Legend:
talker listeners other
RequestRefresh messages

T L
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 141

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex H

(informative)

Frequently asked questions (FAQs)

H.1 Unfiltered email sequences

H.1.1 Bandwidth allocation

Question(AM): Is bandwidth allocation really necessary to meet RE requirements? Over-provisioning and
best-effort (with class of service) may be adequate. You can get a lot of data through a conventional gigabit
switch with very low latencies. The RE traffic can be given a higher priority and so not be held up by less
urgent traffic.

Answer(MJT): I think admission control is needed. In an unmanaged layer 2 environment there is no way
to guarantee that the streaming QoS parameters can be met … you can only say probably. With GigE and a
fully bridge-based environment with class of service you can get to a pretty good probably, but you can't get
to the it will always work QoS that the wonderful BER of Ethernet promises. On the other hand, a simple
admission control system and simple pacing mechanism can get you there, even with an FE-only network.

H.1.2 Best effort

Question(AM): With access control what happens if access is denied? My assumption is that a user
connecting to a RE network would prefer best-effort service to no service at all if there is no spare
bandwidth to be allocated. If you decide you need to support best-effort as a fallback then you need buffers
in your end stations and the reason for using time slots goes away.

Answer(MJT): Your assumption is only correct if the service the consumer is subscribing to is a best-effort
service. Right now, consumers expect that when they select a channel, or a CD, or a DVD they will get it
perfectly. Cable companies get lots of calls if a stream is substandard for any reason. The general procedure
to select a stream on a CE-oriented network would be something like:

a) Hit the directory or guide button on your remote control

b) Find the content you want (note that the content entries might be labeled with not currently
available or low quality only or not even present depending on the state of the path to the source).

c) Hit the play button.

Once the consumer hits that play button, the endpoints and network need to make a contract to deliver the
content with the QoS expected by the consumer. So, in the case you describe where there is no guaranteed
bandwidth available, you may present an alternative method (such as the low quality tag). This may be
perfectly OK. If, on the other hand, the consumer wants to see the HD movie with full quality, they can yell
at their kid to stop watching the movie that is causing the network link of interest to saturate.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 142

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
H.2 Formulated responses

TBD
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 143

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex I

(informative)

Comment responses

I.1 Recent review-comment resolutions

I.1.1 Kevin Gross comments

Alexi has suggested 15ms for instrument to ear latency (my experience says you're good all the way up to 50
ms). I have suggested <0.5 ms as a first choice for voice to ear when headphones are involved and 5 - 50 ms
as a second-best choice. I'm not sure where the 10ms figure you're using in equation 5.9 comes from. I've
revised some of the section 5.1.4 text to show you what I had in mind...

While the earphones eliminate the air-to-ear hop-count delays, the sensitivity to delays is increased for the
case of a vocal performer due to a comb filter formed by the interaction of headphone sound and sound
conducted through the head. Due to multiple hops and the latency contributions (see Equation 5.9), the
constraints on the value of T (see Equation 5.10 and Equation 5.11) yield a T value constraint that is physi-
cally impossible for today's digital audio technology to achieve.

t0 + t1 + t2 + t3 + t4 + t5 + t6 < 0.5 ms (5.9)
1ms+ T + T +5ms+ T + T +1ms+< 0.5 ms (5.10)
4ÞT + 7ms < 0.5 ms (5.11)
T < -1.6 ms (5.12)

Some professionals believe that increasing latency to 5 ms or more within such headphone-feedback
environments is preferred over operation in the 0.5 to 5 ms range where comb filtering is prevalent. The
system in figure 5.4, when 0.5 ms network delays are assumed, produces an overall latency that fits
comfortably within these relaxed constraints.

4*0.5ms + 7ms = 9 ms (5.13)

-----Original Message-----
From: Gross, Kevin
Sent: Thursday, April 28, 2005 9:16 AM
To: 'David V James'
Subject: RE: [RE] Latencies through RE cables (better URL)

Sure, I'd be happy to review it.

If you include this scenario and accept a <0.5ms delay requirement for it,
something's gonna have to give further down the line.

NOTE—This clause should be skipped on the first reading (reading starts at Clause 1).
This clause is provided for communicating detailed responses to reviewer comments.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 144

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
My suggestion: <0.5ms is not achievable with digital audio systems because you blow your latency budget
in A/D and D/A alone. 0-0.5ms is the conventionally desirable operating range for this scenario. 0.5-5ms is
nasty due to comb filtering. Although it defies the conventional latency wisdom that less is more, 5-50ms is
actually a comfortable place to operate in this scenario; we should shoot for that. Note that your existing
15ms requirement falls in the 5-50ms range.

I.1.2 Michael Johas Teener comments

From: Michael Johas Teener [mailto:Mikejt@broadcom.com]
Sent: Monday, June 06, 2005 3:19 PM
To: David James
Subject: Re: Short prereview scan

a) Your hypertext TOC entries are all wrong… I think your PDF options on Framemaker are wrong…
Response: Fixed.

b) No update to version history
Response: Huh? Version history was updated, but version number was in error.

c) F.1.2 and F.1.3 it isn't clear where the "b" stations are ... … I think they are the outputs of "a", but it
isn't obvious ...…
Response: A separate column now identifies the source and stations/ports are uniformly labeled.

d) Horiz scale of figures not obvious ... … are they 8kHz cycles?
Response: Yes, they are 8kHz cycles, now labeled as 125 µs cycles.

e) F.2.5 ... … it isn't certain what the throttle algorithm is being used (75% for "stream" traffic over a
measurement interval of 1 cycle?)
Response: Yes, that is the algorithm. Not yet sure how to clarify or if others should be documented.
Good topic for discussion.

I.1.3 Felix Feng comments

From: Feifei Feng [mailto:feng.fei@samsung.com]
Sent: Monday, June 06, 2005 4:55 PM
To: 'David V James'
Subject: RE: Short prereview scan

I’m comfortable with the basic message flows, namely, listener announcing + talker responding (with
resources locking and notifying). It reflects our consensus during the ad-hoc conference call.

Comments and questions include:

a) You may explicitly indicate that the listener announcement can reuse the GARP mechanism with
few changes. Therefore the simplicity and feasibility of SRP can be emphasized. RequestJoin and
RequestLeave will have corresponding primitives in GARP.

b) I’m not sure what the “resources” in page 43 line 5 are referring to? Do you mean the processing
power, registration table etc. for GARP?

c) Page39 line53 “Although speculative registration resources are allocated within bridges, these
resources are released after timeouts have verified the absence of the talker station”. I think there
are two scenarios to remove the speculative registration. The first one is to actively detect the
timeout from the talker side (no response from upstream in a specified period). The second one is to
detect the timeout from the listener side (once the talker’s address has been learnt by an interme-
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 145

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
diate bridge, this bridge will stop sending Join to other upstream bridges. Those bridges will
timeout since no Join from downstream). The final solution may choose either of them, or both. It
should be further studied. Your description falls into only the first case.

d) Page37 line32 “The state on the now-unused segment of the route will be deleted after a timeout
interval”. Similar to Comment 3, clarification might be needed for whether the timeout depends on
the upstream refresh or downstream refresh.

I understand that detail specification should be refined only in task force. So it’s ok to just leave Comment
c&d under discussion.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 146

JggDvj2005Apr16/D0.121
RESIDENTIAL SYNCHRONOUS ETHERNET (RE) June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Index

B
bridgePriority

See clockSync frame

C
classA frame

da ... 57
sa.. 57
protocolType .. 57
serviceDataUnit ... 57
fcs ... 57

clockSync frame
da ... 58
sa.. 58
protocolType .. 58
subType .. 58
hopCount ... 58
cycleCountsprecedence.................................. 58

reservedbridgePriority 59
cycleCountsystemID 59

precedence ... 58
systemIDmacAddress.............................. 59
macAddress... 59

offsetTimelastFlexTime.................................. 58
seconds ... 60
fraction ... 60

transmitTimedeltaTime 59
seconds ... 60
fraction ... 60

deltaTimeoffsetTime....................................... 59
seconds ... 60
fraction ... 60

diffRate... 59
lastBaseTime.. 59
fcs ... 59

cycleCount
See clockSync frame

cycleCounts
See clockSync frame

D
da

See classA frame
See clockSync frame
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

deltaTime
See clockSync frame

diffRate
See clockSync frame

E
errorCode

See ResponseError frame

F
fcs

See classA frame
See clockSync frame
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

fraction
See clockSync frame
See time field

H
hopCount

See clockSync frame

I
info

See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

info field
multicastID .. 63
talkerID ... 63
plugID.. 63
maxCycles.. 63
maxBw ... 63
reserved ... 63

ML
lastBaseTime

See clockSync frame
lastFlexTime

See clockSync frame

M
macAddress

See clockSync frame
maxBw

See info field
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

maxCycles
See info field
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

mcastID
See RequestLeave frame
See ResponseError frame
Copyright © 2002, 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change. 155

JggDvj2005Apr16/D0.121
June 24, 2005 WHITE PAPER CONTRIBUTION TO

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
mcastSrc
See RequestRefresh frame

multicastID
See info field

O
offsetTime

See clockSync frame

P
pad

See RequestRefresh frame
plugID

See info field
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

precedence
See clockSync frame

protocolType
See classA frame
See clockSync frame
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

R
RequestLeave frame

da ... 61
sa.. 61
protocolType .. 61
subType .. 62
reservedA ... 62
info ... 62

mcastID... 63
talkerID... 63
plugID... 63
maxCycles... 63
maxBw .. 63
reserved .. 63

reservedB ... 62
fcs ... 62

RequestRefresh frame
da ... 60
sa.. 61
protocolType .. 61
subType .. 61
count .. 61
info ... 61

mcastID... 63
talkerID... 63
plugID... 63
maxCycles... 63
maxBw .. 63

reserved .. 63
pad ... 61
fcs... 61

reserved
See clockSync frame
See info field
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

reservedA
See RequestLeave frame

reservedB
See RequestLeave frame
See ResponseError frame

ResponseError frame
da ... 62
sa ... 62
protocolType.. 62
subType.. 62
errorCode .. 62
info... 62

mcastID .. 63
talkerID .. 63
plugID .. 63
maxCycles .. 63
maxBw .. 63
reserved .. 63

reservedB ... 62
fcs... 63

S
sa

See classA frame
See clockSync frame
See RequestLeave
See RequestRefresh frame
See ResponseError frame

seconds
See clockSync frame
See time field

serviceDataUnit
See classA frame

subType
See clockSync frame
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

systemID
See clockSync frame
Copyright © 2002, 2003 IEEE. All rights reserved.
156 This is an unapproved IEEE Standards Draft, subject to change.

RESIDENTIAL SYNCHRONOUS ETHERNET (RE) JggDvj2005Apr16/D0.121
June 24, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
T
talkerID

See info field
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

time field
seconds... 60
fractionseconds .. 60

transmitTime
See clockSync framefraction 60
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 157

JggDvj2005Apr16/D0.121 WHITE PAPER CONTRIBUTION TO
June 24, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Contribution from: dvj@alum.mit.edu.
158 This is an unapproved working paper, subject to change.

	Contents
	List of figures
	List of tables
	5. Architecture overview
	5.1 Latency constraints
	5.2 Service classes
	5.3 Architecture overview
	5.4 Subscription
	5.5 Synchronized time-of-day clocks
	5.6 Formats
	5.7 Pacing
	5.8 Formats
	5.9 Synchronized time-of-day clocks

	6. Frame formats
	6.1 vClassA ClassA frames
	6.2 clockSync frame format
	6.3 RequestRefresh subscription frame
	6.4 RequestLeave subscription frame
	6.5 ResponseError subscription frame
	6.6 Common info field format
	6.7 Unique identifier values

	7. Clock synchronization
	7.1 Clock-synchronization overview
	7.2 Terminology and variables
	7.3 Clock synchronization state machines

	8. Subscription state machines
	8.1 Terminology and variables
	8.2 Subscription state machines

	Annex A
	Annex B
	Annex C
	C.1 Hybrid network topologies
	C.2 1394 isochronous frame formats
	C.3 Frame mappings
	C.4 CIP payload modifications

	Annex D
	D.1 Higher level flow control
	D.2 Over-provisioning
	D.3 Strict priorities
	D.4 IEEE 1394 alternatives

	Annex E
	E.1 Possible time-of-day formats
	E.2 Time format comparisons

	Annex F
	F.1 Topology scenarios
	F.2 Bursting considerations

	Annex G
	G.1 Stream frame formats
	G.2 Subscription

	Annex H
	H.1 Unfiltered email sequences
	H.2 Formulated responses

	Annex I
	I.1 Recent review-comment resolutions

	Index

