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Residential Ethernet (RE) 
(a working paper)

 
 
The following paper represents an initial attempt to codify the content of 
multiple IEEE 802.3 Residential Ethernet (RE) Study Group slide presenta-
tions. The author has also taken the liberty to expand on various slide-based 
proposals, with the goal of triggering/facilitating future discussions.

For the convenience of the author, this paper has been drafted using the style 
of IEEE standards. The quality of the figures and the consistency of the 
notation should not be confused with completeness of technical content.

Rather, the formality of this paper represents an attempt by the author to 
facilitate review by interested parties. Major changes and entire clause 
rewrites are expected before consensus-approved text becomes available.
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Abstract: This working paper provides background and introduces possible higher level concepts 
for the development of Residential Ethernet (RE). 
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This working paper is highly preliminary and subject to changed. Comments should be sent to its editor:
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3180 South Ct 
Palo Alto, CA 94306 
Home: +1-650-494-0926 
Cell: +1-650-954-6906 
Fax: +1-360-242-5508 
Email: dvj@alum.mit.edu

Formats

In many cases, readers may elect to provide contributions in the form of exact text replacements and/or 
additions. To simplify document maintenance, contributors are requested to use the standard formats and 
provide checklist reviews before submission. Relevant URLs are listed below: 

General: http://grouper.ieee.org/groups/msc/WordProcessors.html 
Templates: http://grouper.ieee.org/groups/msc/TemplateTools/FrameMaker/ 
Checklist: http://grouper.ieee.org/groups/msc/TemplateTools/Checks2004Oct18.pdf

Topics for discussion

Readers are encouraged to provide feedback in all areas, although only the following areas have been identi-
fied as specific areas of concern.

a) Terminology. Is classA an OK way to describe the traffic within an RE stream? 
Alternatives: 
synchronous traffic? isochronous traffic? RE traffic? quasi-synchronous traffic?

TBDs

Further definitions are needed in the following areas:

a) ClassA addressing models: review, select, and revise.

b) Pacing models: review, select, and revise.
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Residential Ethernet (RE) 
(a working paper)
This document and has no official status within IEEE or alternative SDOs. 
Feedback to: dvj@alum.mit.edu 
(See page 4 for the list of contributors.)

1. Overview

1.1 Scope and purpose

This working paper is intended to supplement Ethernet with real-time capabilities, with the scope and pur-
pose listed below:

Scope: Residential Ethernet provides time-sensitive delivery between plug-and-play stations over 
reliable point-to-point full-duplex cable media. Time-sensitive data transmissions use admission control 
negotiations to guarantee bandwidth allocations with predictable latency and low-jitter delivery. 
Device-clock synchronization is also supported. Ensuring real-time services through routers, data 
security, wireless media, and developing new PMDs are beyond the scope of this project.

Purpose: To enable a common network for existing home Ethernet equipment and locally networked 
consumer devices with time-sensitive audio, visual and interactive applications and musical equipment. 
This integration will enable new applications, reduce overall installation cost/complexity and leverage 
the installed base of Ethernet networking products, while preserving Ethernet networking services. An 
appropriately enhanced Ethernet is the best candidate for a universal home network platform.

1.2 Introduction

1.2.1 Documentation status

This working paper is intended to identify possible architectures for Residential Ethernet (RE), the title cur-
rently assigned to an IEEE Study Group. Although this Study Group intends to become a formal IEEE 802 
Working Group, the first step in this process (approval of a PAR) has not occurred.

This working paper attempts to represent opinions of its contributors (see page 4), although numerous others 
contributed to its content. The documented is formatted to minimize the difficulties associated with porting 
the text into a yet-to-be-defined standards document, although numerous changes and clause partitioning 
would be expected before that occurs.

1.2.2 Background

Ethernet has successfully propagated from the data center to the home, becoming the wired home computer 
interconnect of choice. However, insufficient support of real-time services has limited Ethernet’s success as 
a consumer audio-video interconnects, where IEEE Std 1394 Serial Bus and Universal Serial Bus (USB) 
have dominated the marketplace.

This working paper for Residential Ethernet (RE) supports time-sensitive network traffic (called classA traf-
fic), as well as legacy IEEE 1394 traffic, while associating the interconnect with Ethernet commodity pric-
ing and relatively seamless frame-transport bridging.
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1.2.3 Design objectives

Design objectives for Residential Ethernet (RE) protocols include the following:

a) Scalable. Time-sensitive classA transfers can be supported over multiple speed links:

1) 100 Mb/s. Normal (~1500 bytes, or 120µs) and classA frames coexist on 100 Mb/s links.
2) 1 Gb/s. Jumbo (~8,200 bytes, or 66µs) and classA frames can coexist on 1 Gb/s links.

b) Compatible. Existing devices and protocols are supported, as follows:

1) Interoperable. Communications of existing 802.3 stations are not degraded by classA traffic.
2) Heterogeneous. Existing 1394 A/V devices can be bridged over RE connections.

c) Efficient. Time-sensitive transmissions are efficient as well as robust:

1) Bandwidth is independently managed on non-overlapping paths.
2) ClassA transmissions are limited to the links between talker and listener stations.
3) Up to 75% of the link bandwidth can be allocated for classA transmissions.

d) Applicable. Time-sensitive transmission characteristics are applicable to the marketplace.

1) Precise. A common synchronous clock allows playback times to be precisely synchronized.
2) Low latency. Talker and listener delays are less than human perceptible delays, for interactive 

home (see 5.1.2 and 5.1.3) and between-home (telephone or internet based) applications. 

e) Predictable. Subject to the (c3) constraint, classA traffic is unaffected by the network topology or 
the traffic loads offered by other stations.

1.2.4 Strategies

Strategies for achieving the aforementioned objectives include the following:

a) Subscription. ClassA transmission bandwidths are limited to prenegotiated bandwidths.

b) Pacing. ClassA transmissions are limited to subscription-negotiated per-cycle bandwidths. 
(The 125µs cycle is consistent with existing IEEE 1394 A/V and telecommunication systems.)

1) Topology. Bandwidths can be guaranteed over arbitrary non-cyclical topologies.
2) Presence. Subscription protocols can readily detect the presence/absence of talker streams.

c) Simplicity. Simplicity is achieved by utilizing well behaved protocols:

1) Only duplex point-to-point Ethernet links are supported.
2) PLLs. Precise global clock synchronization eliminates the need for PLLs within bridges.
3) Plugs. Self-administered stream identifiers are based on talker-managed plug identifiers. 

(This eliminates the need to define/provide/configure stream identifier servers.)
4) RSVP. Subscription is based on a layer-2 simplification of the RSVP protocols, called SRP. 

(SRP allows listeners to autonomously/robustly adapt to spanning tree topology changes).
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1.2.5 Interoperability

RE interoperates with existing Ethernet, but the scope of RE services is limited to the RE cloud, as illus-
trated in Figure 1.1; normal best-effort services are available everywhere else. The scope of the RE cloud is 
limited by a non-RE capable bridge or a half-duplex link, neither of which can support RE services.

Separation of RE devices is driven by the requirements of RE bridges to support subscription (bandwidth 
allocation), time-of-day clock-synchronization, and (preferably) of pacing of time-sensitive transmissions.

1.2.6 Document structure

The clauses and annexes of this working paper are listed below. The recommended reading order for 
first-time readers is Clause 5 (an overview), Clause F (critical considerations), Clause 7/8 (details of design). 
Other clauses provide useful background and reference material. 

— Clause 1: Overview
— Clause 2: References
— Clause 3: Terms, definitions, and notation
— Clause 4: Abbreviations and acronyms
— Clause 5: Architecture overview
— Clause 6: Frame formats
— Clause 7: Clock synchronization
— Clause 8: Subscription state machines
— Annex A: Bibliography
— Annex B: Background material
— Annex C: Encapsulated IEEE 1394 frames
— Annex D: Review of possible alternatives
— Annex E: Time-of-day format considerations
— Annex G: Denigrated alternatives
— Annex F: Bursting and bunching considerations
— Annex H: Frequently asked questions (FAQs)
— Annex I: Comment responses
— Annex J: C-code illustrations

Figure 1.1—Topology and connectivity
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2. References

The following documents contain provisions that, through reference in this working paper, constitute provi-
sions of this working paper. All the standards listed are normative references. Informative references are 
given in Annex A. At the time of publication, the editions indicated were valid. All standards are subject to 
revision, and parties to agreements based on this working paper are encouraged to investigate the possibility 
of applying the most recent editions of the standards indicated below.

ANSI/ISO 9899-1990, Programming Language-C.1,2

IEEE Std 802.1D-2004, IEEE Standard for Local and Metropolitan Area Networks: Media Access Control 
(MAC) Bridges.

NOTE—This clause should be skipped on the first reading (continue with Clause 5). 
This references list is highly preliminary, references will be added as this working paper evolves.

1Replaces ANSI X3.159-1989
2ISO documents are available from ISO Central Secretariat, 1 Rue de Varembe, Case Postale 56, CH-1211, Geneve 20, Switzer-
land/Suisse; and from the Sales Department, American National Standards Institute, 11 West 42 Street, 13th Floor, New York, NY 
10036-8002, USA
Contribution from: dvj@alum.mit.edu. 
This is an unapproved working paper, subject to change. 19



JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54
3. Terms, definitions, and notation

3.1 Conformance levels

Several key words are used to differentiate between different levels of requirements and options, as 
described in this subclause.

3.1.1 may: Indicates a course of action permissible within the limits of the standard with no implied 
preference (“may” means “is permitted to”).

3.1.2 shall: Indicates mandatory requirements to be strictly followed in order to conform to the standard and 
from which no deviation is permitted (“shall” means “is required to”).

3.1.3 should: An indication that among several possibilities, one is recommended as particularly suitable, 
without mentioning or excluding others; or that a certain course of action is preferred but not necessarily 
required; or that (in the negative form) a certain course of action is deprecated but not prohibited (“should” 
means “is recommended to”).

3.2 Terms and definitions

For the purposes of this working paper, the following terms and definitions apply. The Authoritative 
Dictionary of IEEE Standards Terms [B2] should be referenced for terms not defined in the clause.

3.2.1 audience: The set of listeners associated with a common streamID.

3.2.2 best-effort: Not associated with an explicit service guarantee.

3.2.3 bridge: A functional unit interconnecting two or more networks at the data link layer of the OSI 
reference model.

3.2.4 clock master: A bridge or end station that provides the link clock reference.

3.2.5 clock slave: A bridge or end station that tracks the link clock reference provided by the clock master.

3.2.6 cyclic redundancy check (CRC): A specific type of frame check sequence computed using a 
generator polynomial.

3.2.7 destination station: A station to which a frame is addressed.

3.2.8 frame: The MAC sublayer protocol data unit (PDU).

3.2.9 grand clock master: The clock master selected to provide the network time reference.

3.2.10 jitter: The variation in delay associated with the transfer of frames between two points.

3.2.11 latency: The time required to transfer information from one point to another.3

NOTE—This clause should be skipped on the first reading (continue with Clause 5). 
This text has been lifted from the P802.17 draft standard, which has a relative comprehensive list. 
Terms and definitions are expected to be added, revised, and/or deleted as this working paper evolves.
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3.2.12 link: A unidirectional channel connecting adjacent stations (half of a span).

3.2.13 listener: A sink of a stream, such as a television or acoustic speaker.

3.2.14 local area network (LAN): A communications network designed for a small geographic area, 
typically not exceeding a few kilometers in extent, and characterized by moderate to high data transmission 
rates, low delay, and low bit error rates.

3.2.15 MAC client: The layer entity that invokes the MAC service interface.

3.2.16 management information base (MIB): A repository of information to describe the operation of a 
specific network device.

3.2.17 maximum transfer unit (MTU): The largest frame (comprising payload and all header and trailer 
information) that can be transferred across the network.

3.2.18 medium (plural: media): The material on which information signals are carried; e.g., optical fiber, 
coaxial cable, and twisted-wire pairs.

3.2.19 medium access control (MAC) sublayer: The portion of the data link layer that controls and 
mediates the access to the network medium. In this working paper, the MAC sublayer comprises the MAC 
datapath sublayer and the MAC control sublayer.

3.2.20 multicast: Transmission of a frame to stations specified by a group address.

3.2.21 multicast address: A group address that is not a broadcast address, i.e., is not all-ones, and identifies 
some subset of stations on the network.

3.2.22 network: A set of communicating stations and the media and equipment providing connectivity 
among the stations.

3.2.23 pacer: A credit-based entity that partions residual bandwidths between two classes of frames.

3.2.24 packet: A generic term for a PDU associated with a layer-entity above the MAC sublayer.

3.2.25 path: A logical concatenation of links and bridges over which streams flow from the talker to the 
listener.

3.2.26 plug-and-play: The requirement that a station perform classA transfers without operator intervention 
(except for any intervention needed for connection to the cable).

3.2.27 protocol implementation conformance statement (PICS): A statement of which capabilities and 
options have been implemented for a given Open Systems Interconnection (OSI) protocol.

3.2.28 service discovery: The process used by listeners or controlling stations to identify, control, and 
configure talkers.

3.2.29 shaper: A credit-based entity that limits short-term transmission bandwidths to a specified rate.

3.2.30 simple reservation protocol (SRP): The subscription protocol used to allocate and sustain paths for 
streaming classA traffic.

3Delay and latency are synonyms for the purpose of this working paper. Delay is the preferred term.
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3.2.31 span: A bidirectional channel connecting adjacent stations (two links).

3.2.32 source station: The station that originates a frame.

3.2.33 station: A device attached to a network for the purpose of transmitting and receiving information on 
that network.

3.2.34 stream: A sequence of frames passed from the talker to listener(s), which have the same streamID.

3.2.35 subscription: The process of establishing committed paths between the talker and one or more 
listeners.

3.2.36 talker: The source of a stream, such as a cable box or microphone.

3.2.37 topology: The arrangement of links and stations forming a network, together with information on 
station attributes.

3.2.38 transmit (transmission): The action of a station placing a frame on the medium.

3.2.39 transparent bridging: A bridging mechanism that is transparent to the end stations.

3.2.40 unicast: The act of sending a frame addressed to a single station.

3.3 Service definition method and notation

The service of a layer or sublayer is the set of capabilities that it offers to a user in the next higher (sub)layer. 
Abstract services are specified in this working paper by describing the service primitives and parameters 
that characterize each service. This definition of service is independent of any particular implementation 
(see Figure 3.1).

Specific implementations can also include provisions for interface interactions that have no direct 
end-to-end effects. Examples of such local interactions include interface flow control, status requests and 
indications, error notifications, and layer management. Specific implementation details are omitted from this 
service specification, because they differ from implementation to implementation and also because they do 
not impact the peer-to-peer protocols.

3.3.1 Classification of service primitives

Primitives are of two generic types.

Figure 3.1—Service definitions
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a) REQUEST. The request primitive is passed from layer N to layer N-1 to request that a service be 
initiated.

b) INDICATION. The indication primitive is passed from layer N-1 to layer N to indicate an internal 
layer N-1 event that is significant to layer N. This event can be logically related to a remote service 
request, or can be caused by an event internal to layer N-1.

The service primitives are an abstraction of the functional specification and the user-layer interaction. The 
abstract definition does not contain local detail of the user/provider interaction. For instance, it does not 
indicate the local mechanism that allows a user to indicate that it is awaiting an incoming call. Each 
primitive has a set of zero or more parameters, representing data elements that are passed to qualify the 
functions invoked by the primitive. Parameters indicate information available in a user/provider interaction. 
In any particular interface, some parameters can be explicitly stated (even though not explicitly defined in 
the primitive) or implicitly associated with the service access point. Similarly, in any particular protocol 
specification, functions corresponding to a service primitive can be explicitly defined or implicitly available.

3.4 State machines

3.4.1 State machine behavior

The operation of a protocol can be described by subdividing the protocol into a number of interrelated 
functions. The operation of the functions can be described by state machines. Each state machine represents 
the domain of a function and consists of a group of connected, mutually exclusive states. Only one state of a 
function is active at any given time. A transition from one state to another is assumed to take place in zero 
time (i.e., no time period is associated with the execution of a state), based on some condition of the inputs to 
the state machine.

The state machines contain the authoritative statement of the functions they depict. When apparent conflicts 
between descriptive text and state machines arise, the order of precedence shall be formal state tables first, 
followed by the descriptive text, over any explanatory figures. This does not override, however, any explicit 
description in the text that has no parallel in the state tables.

The models presented by state machines are intended as the primary specifications of the functions to be 
provided. It is important to distinguish, however, between a model and a real implementation. The models 
are optimized for simplicity and clarity of presentation, while any realistic implementation might place 
heavier emphasis on efficiency and suitability to a particular implementation technology. It is the functional 
behavior of any unit that has to match the standard, not its internal structure. The internal details of the 
model are useful only to the extent that they specify the external behavior clearly and precisely.

3.4.2 State table notation

Each row of the table is preferably provided with a brief description of the condition and/or action for that 
row. The descriptions are placed after the table itself, and linked back to the rows of the table using numeric 
tags.

NOTE—The following state machine notation was used within 802.17, due to the exactness of C-code 
conditions and the simplicity of updating table entries (as opposed to 2-dimensional graphics). 
Early state table descriptions can be converted (if necessary) into other formats before publication.
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3.4.2.1 Parallel-execution state tables

State machines may be represented in tabular form. The table is organized into two columns: a left hand side 
representing all of the possible states of the state machine and all of the possible conditions that cause transi-
tions out of each state, and the right hand side giving all of the permissible next states of the state machine as 
well as all of the actions to be performed in the various states, as illustrated in Table 3.1. The syntax of the 
expressions follows standard C notation (see 3.13). No time period is associated with the transition from one 
state to the next.

Row 3.1-1: Do nothing if the size of the queued MAC control frame is larger than the PTQ space. 
Row 3.1-2: Do nothing in the absence of MAC control transmission credits. 
Row 3.1-3: Otherwise, transmit a MAC control frame.

Row 3.1-4: When the transmission completes, start over from the initial state (i.e., START). 
Row 3.1-5: Until the transmission completes, remain in this state.

Each combination of current state, next state, and transition condition linking the two is assigned to a 
different row of the table. Each row of the table, read left to right, provides: the name of the current state; a 
condition causing a transition out of the current state; an action to perform (if the condition is satisfied); and, 
finally, the next state to which the state machine transitions, but only if the condition is satisfied. The symbol 
“—” signifies the default condition (i.e., operative when no other condition is active) when placed in the 
condition column, and signifies that no action is to be performed when placed in the action column. 
Conditions are evaluated in order, top to bottom, and the first condition that evaluates to a result of TRUE is 
used to determine the transition to the next state. If no condition evaluates to a result of TRUE, then the state 
machine remains in the current state. The starting or initialization state of a state machine is always labeled 
“START” in the table (though it need not be the first state in the table). Every state table has such a labeled 
state.

Each row of the table is preferably provided with a brief description of the condition and/or action for that 
row. The descriptions are placed after the table itself, and linked back to the rows of the table using numeric 
tags.

Table 3.1—State table notation example

Current

R
ow

Next

state condition action state

START sizeOfMacControl > spaceInQueue 1 — START

passM == 0 2

— 3 TransmitFromControlQueue(); FINAL

FINAL SelectedTransferCompletes() 4 — START

— 5 — FINAL
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3.4.2.2 Called state tables

A RETURN state is the terminal state of a state machine that is intended to be invoked by another state 
machine, as illustrated in Table 3.2. Once the RETURN state is reached, the state machine terminates 
execution, effectively ceasing to exist until the next invocation by the caller, at which point it begins 
execution again from the START state. State machines that contain a RETURN state are considered to be 
only instantiated when they are invoked. They do not have any persistent (static) variables.

Row 3.2-1: The size of the queued MAC control frame is less than the PTQ space. 
Row 3.2-2: In the absence of MAC control transmission credits, no action is taken. 
Row 3.2-3: MAC control transmissions have precedence over client transmissions.

Row 3.2-4: If the transmission completes with an error, set an error defect indication. 
Row 3.2-5: Otherwise, no error defect is indicated.

Table 3.2—Called state table notation example

Current

R
ow

Next

state condition action state

START sizeOfMacControl > spaceInQueue 1 — FINAL

passM == 0 2

— 3 TransmitFromControlQueue(); RETURN

FINAL MacTransmitError(); 4 errorDefect = TRUE RETURN

— 5 —
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3.5 Arithmetic and logical operators

In addition to commonly accepted notation for mathematical operators, Table 3.3 summarizes the symbols 
used to represent arithmetic and logical (boolean) operations. Note that the syntax of operators follows 
standard C notation (see 3.13).

3.6 Numerical representation

Decimal, hexadecimal, and binary numbers are used within this working paper. For clarity, decimal numbers 
are generally used to represent counts, hexadecimal numbers are used to represent addresses, and binary 
numbers are used to describe bit patterns within binary fields.

Decimal numbers are represented in their usual 0, 1, 2, … format. Hexadecimal numbers are represented by 
a string of one or more hexadecimal (0-9,A-F) digits followed by the subscript 16, except in C-code 
contexts, where they are written as 0x123EF2 etc. Binary numbers are represented by a string of one or 
more binary (0,1) digits, followed by the subscript 2. Thus the decimal number “26” may also be represented 
as “1A16” or “110102”.

MAC addresses and OUI/EUI values are represented as strings of 8-bit hexadecimal numbers separated by 
hyphens and without a subscript, as for example “01-80-C2-00-00-15” or “AA-55-11”.

Table 3.3—Special symbols and operators

Printed character Meaning

&& Boolean AND

|| Boolean OR

! Boolean NOT (negation)

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

 = Assignment operator

// Comment delimiter

NOTE—The following notation was taken from 802.17, where it was found to have benefits: 
– The subscript notation is consistent with common mathematical/logic equations. 
– The subscript notation can be used consistently for all possible radix values.
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3.7 Field notations

3.7.1 Use of italics

All field names or variable names (such as level or myMacAddress), and sub-fields within variables (such as 
thisState.level) are italicized within text, figures and tables, to avoid confusion between such names and 
similarly spelled words without special meanings. A variable or field name that is used in a subclause 
heading or a figure or table caption is also italicized. Variable or field names are not italicized within C code, 
however, since their special meaning is implied by their context. Names used as nouns (e.g., subclassA0) are 
also not italicized.

3.7.2 Field conventions

This working paper describes values that are packetized or MAC-resident, such as those illustrated in 
Table 3.2.

Run-together names (e.g., thisState) are used for fields because of their compactness when compared to 
equivalent underscore-separated names (e.g., this_state). The use of multiword names with spaces (e.g., 
“This State”) is avoided, to avoid confusion between commonly used capitalized key words and the 
capitalized word used at the start of each sentence.

A sub-field of a field is referenced by suffixing the field name with the sub-field name, separated by a 
period. For example, thisState.level refers to the sub-field level of the field thisState. This notation can be 
continued in order to represent sub-fields of sub-fields (e.g., thisState.level.next is interpreted to mean the 
sub-field next of the sub-field level of the field thisState).

Two special field names are defined for use throughout this working paper. The name frame is used to 
denote the data structure comprising the complete MAC sublayer PDU. Any valid element of the MAC 
sublayer PDU, can be referenced using the notation frame.xx (where xx denotes the specific element); thus, 
for instance, frame.serviceDataUnit is used to indicate the serviceDataUnit element of a frame.

Unless specifically specified otherwise, reserved fields are reserved for the purpose of allowing extended 
features to be defined in future revisions of this working paper. For devices conforming to this version of 
this working paper, nonzero reserved fields are not generated; values within reserved fields (whether zero or 
nonzero) are to be ignored.

Table 3.4—Names of fields and sub-fields

Name Description

newCRC Field within a register or frame

thisState.level Sub-field within field thisState

thatState.rateC[n].c Sub-field within array element rateC[n]
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3.7.3 Field value conventions

This working paper describes values of fields. For clarity, names can be associated with each of these 
defined values, as illustrated in Table 3.5. A symbolic name, consisting of upper case letters with underscore 
separators, allows other portions of this working paper to reference the value by its symbolic name, rather 
than a numerical value.

Unless otherwise specified, reserved values allow extended features to be defined in future revisions of this 
working paper. Devices conforming to this version of this working paper do not generate nonzero reserved 
values, and process reserved fields as though their values were zero.

A field value of TRUE shall always be interpreted as being equivalent to a numeric value of 1 (one), unless 
otherwise indicated. A field value of FALSE shall always be interpreted as being equivalent to a numeric 
value of 0 (zero), unless otherwise indicated.

3.8 Bit numbering and ordering

Data transfer sequences normally involve one or more cycles, where the number of bytes transmitted in each 
cycle depends on the number of byte lanes within the interconnecting link. Data byte sequences are shown in 
figures using the conventions illustrated by Figure 3.2, which represents a link with four byte lanes. For 
multi-byte objects, the first (left-most) data byte is the most significant, and the last (right-most) data byte is 
the least significant.

Figures are drawn such that the counting order of data bytes is from left to right within each cycle, and from 
top to bottom between cycles. For consistency, bits and bytes are numbered in the same fashion.

NOTE—The transmission ordering of data bits and data bytes is not necessarily the same as their counting order; the 
translation between the counting order and the transmission order is specified by the appropriate reconciliation sublayer.

Table 3.5—wrap field values

Value Name Description

0 STANDARD Standard processing selected

1 SPECIAL Special processing selected

2,3 — Reserved

Figure 3.2—Bit numbering and ordering

data[n+0] data[n+1] data[n+2] data[n+3]

data[n+4] data[n+5] data[n+6] data[n+7]

bit 
0

bit 
31
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3.9 Byte sequential formats

Figure 3.3 provides an illustrative example of the conventions to be used for drawing frame formats and 
other byte sequential representations. These representations are drawn as fields (of arbitrary size) ordered 
along a vertical axis, with numbers along the left sides of the fields indicating the field sizes in bytes. Fields 
are drawn contiguously such that the transmission order across fields is from top to bottom. The example 
shows that field1, field2, and field3 are 1-, 1- and 6-byte fields, respectively, transmitted in order starting 
with the field1 field first. As illustrated on the right hand side of Figure 3.3, a multi-byte field represents a 
sequence of ordered bytes, where the first through last bytes correspond to the most significant through least 
significant portions of the multi-byte field, and the MSB of each byte is drawn to be on the left hand side.

NOTE—Only the left-hand diagram in Figure 3.3 is required for representation of byte-sequential formats. The 
right-hand diagram is provided in this description for explanatory purposes only, for illustrating how a multi-byte field 
within a byte sequential representation is expected to be ordered. The tag “Transmission order” and the associated 
arrows are not required to be replicated in the figures.

3.10 Ordering of multibyte fields

In many cases, bit fields within byte or multibyte objects are expanded in a horizontal fashion, as illustrated 
in the right side of Figure 3.4. The fields within these objects are illustrated as follows: left-to-right is the 
byte transmission order; the left-through-right bits are the most significant through least significant bits 
respectively.

Figure 3.3—Byte sequential field format illustrations

Figure 3.4—Multibyte field illustrations

field1
field2

field3

field4

field5

field6

field7

field8
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1
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byte[4]
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Transmission 
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byte[4] byte[5]

byte[0] byte[1] byte[2] byte[3]

byte[0]

byte[1]

byte[2]

byte[3]

byte[4]

byte[5] twoByteField

MSB LSB

fourByteField
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byte representation

field representation

byte representation
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The first fourByteField can be illustrated as a single entity or a 4-byte multibyte entity. Similarly, the second 
twoByteField can be illustrated as a single entity or a 2-byte multibyte entity. 

To minimize potential for confusion, four equivalent methods for illustrating frame contents are illustrated in 
Figure 3.5. Binary, hex, and decimal values are always shown with a left-to-right significance order, 
regardless of their bit-transmission order.

3.11 MAC address formats

The format of MAC address fields within frames is illustrated in Figure 3.6. 

3.11.1 oui: A 24-bit organizationally unique identifier (OUI) field supplied by the IEEE/RAC for the 
purpose of identifying the organization supplying the (unique within the organization, for this specific 
context) 24-bit dependentID. (For clarity, the locallyAdministered and groupAddress bits are illustrated by 
the shaded bit locations.)

NOTE—The following text was taken from 802.17, where it was found to have benefits: 
The details should, however, be revised to illustrate fields within an RE frame header serviceDataUnit.

Figure 3.5—Illustration of fairness-frame structure

Figure 3.6—MAC address format

a) Sequential-byte format

1 subType

6 sa

2 protocolType

1 hopcount

6 da

(…)

b) Field names

subType

da_lo

sa_lo

protocolType hopCount

da_hi

sa_hi

c) Hexadecimal values

0116

45 6716

48 76 54 3216

FA CE16 0316

AC DE 48 2316

AC DE16

d) Binary values

0000 00012

0100 0101 0110 01112

0100 1000 0111 0110 0101 0100 0011 00102

1111 1010 1100 11102 0000 00112

1010 1100 1101 1110 0100 1000 0010 00112

1010 1100 1101 11102

MSB LSB

oui

6

dependentID

gl

Legend: 
l : locallyAdministered 
 (called the ‘U/L address bit’ or ‘universally or locally administered bit in IEEE 802) 

g : groupAddress 
(called the ‘I/G address bit’ or ‘individual/group bit’ in IEEE 802)
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3.11.2 dependentID: An 24-bit field supplied by the oui-specified organization. The concatenation of the oui
and dependentID provide a unique (within this context) identifier.

To reduce the likelihood of error, the mapping of OUI values to the oui/dependentID fields are illustrated in 
Figure 3.7. For the purposes of illustration, specific OUI and dependentID example values have been 
assumed. The two shaded bits correspond to the locallyAdministered and groupAddress bit positions illus-
trated in Figure 3.6. 

3.12 Informative notes

Informative notes are used in this working paper to provide guidance to implementers and also to supply 
useful background material. Such notes never contain normative information, and implementers are not 
required to adhere to any of their provisions. An example of such a note follows.

NOTE—This is an example of an informative note.

3.13 Conventions for C code used in state machines

Many of the state machines contained in this working paper utilize C code functions, operators, expressions 
and structures for the description of their functionality. Conventions for such C code can be found in 
Annex J.

Figure 3.7—48-bit MAC address format

MSB LSB

AC166 2316 4516 6716

OUI value: AC-DE-48
Organization assigned extension: 23-45-67

DE16 4816

byte transmission order
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4. Abbreviations and acronyms

This working paper contains the following abbreviations and acronyms:

BER bit error ratio
CRC cyclic redundancy check
FCS frame check sequence
FIFO first in first out
GARP Generic Attribute Registration Protocol
HEC header error check
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
ISO International Organization for Standardization
ITU International Telecommunication Union
LAN local area network
LSB least significant bit
MAC medium access control
MAN metropolitan area network
MIB management information base
MSB most significant bit
MTU maximum transfer unit
OAM operations, administration, and maintenance
OSI open systems interconnect
PDU protocol data unit
PHY physical layer
RE Residential Ethernet
RFC request for comment
RPR resilient packet ring
SRP simple reservation protocol
TDM time division multiplexing
VOIP voice over internet protocol

NOTE—This clause should be skipped on the first reading (continue with Clause 5). 
This text has been lifted from the P802.17 draft standard, which has a relative comprehensive list. 
Abbreviations/acronyms are expected to be added, revised, and/or deleted as this working paper evolves.
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5. Architecture overview

5.1 Latency constraints

5.1.1 Interactive audio delay considerations

The latency constraints of the RE environment are based on the sensitivity of the human ear. To be comfort-
able when playing music, the delay between the instrument and the human ear should not exceed 
10-to-15 ms, as illustrated in Figure 5.1. The individual hop delays must be considerably smaller, since 
instrument-sourced audio traffic may pass through multiple links and processing devices before reaching the 
ear, as illustrated in 5.1.2 and 5.1.3.

5.1.2 Home recording session

To illustrate hop-latency requirements, consider RE usage for a home recording session, as illustrated in Fig-
ure 5.2. The audio inputs (microphone and guitar) are converted, passed through a bridge, mixed within a 
laptop computer, converted at the speaker, and return to the performer’s ear through the air. 

A fixed time T is assumed for each passage through a link, based on potential buffering and 
conflicting-traffic delays. Due to multiple link hops and the latency contributions, the constraints on the 
value of T are much less than the constraining 15ms instrument-to-ear latency, as illustrated in Equation 5.1.

Figure 5.1—Interactive audio delay considerations

Figure 5.2—Home recording session

t < 10ms~15ms

t0 = 1 ms
A/D conversion

delay

t1 = T
link delay

t5 = T

t2 = T

t4 = T

t3 = 5 ms
processing

delay

t6 = 1 ms
D/A conversion

delay

t7 = 6ms (air delay for 6’ distance)
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 t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7 < 15 ms (5.1)
1ms+ T + T +5ms+ T + T +1ms+6ms < 15ms
4 × T + 13ms < 15ms
T < 0.5 ms

To better understand the range of possibilities, consider an extremely aggressive implementation of 
end-point stations could reduce the link-latency requirements. For example, more aggressive end-point 
processing delays {t0 = 0.25 ms, t3 = 2 ms, t6 = 0.25 ms, t7 = 6 ms} would yield a constraint of T<1.6 ms.

Note that these aggressive processor delays are unlikely to decrease as the MIPs rating of processors 
increase, due to the inherent delays associated with finite input response (FIR) filters and efficiencies 
achieved through block-processing. For example, 16-sample block processing of a 128-point FIR filter 
implies an inherent 80-cycle delay (16 for input block accumulation, 64 for filtering). With a 40 kHz 
sampling rate, this corresponds to a theoretical processing-latency limitation of 2 ms.

These numbers are only approximations; actual values (as determined by the marketplace) could vary 
substantially. For audiophiles, an overall processing latency of 5 ms may be desired; for discount shoppers, 
an overall latency of 15 ms may be tolerable. Larger ad-hoc networks of cascaded 4-port or 8-port bridges 
may be present. As with golden speaker cables, purchases may be based on perceptions of quality (the 
bridge latency specification), rather than reality (perceivable latencies).

5.1.3 Garage jam session

As another example, consider RE usage for a garage jam session, as illustrated in Figure 5.3. The audio 
inputs (microphone and guitar) are converted, passed through a guitar effects processor, two bridges, mixed 
within an audio console, return through two bridges, and return to the ear through headphones.

Again, a fixed time T is assumed for each passage through a link, based on potential buffering and 
conflicting-traffic delays. Due to multiple hops and the latency contributions, the constraints yield a T value 
that is much less than the constraining 15ms instrument-to-ear latency (see Equation 5.2).

Figure 5.3—Garage jam session

t0 = 1 ms
A/D conversion

delay

t1 = T
link delay

t2 = T

t4 = T
t5 = T

t9 = T t6 = T
t8 = T

t7 = 2 ms
processing

delay

t12 = 6 ms
(air delay for
6’ distance)

t3 = 1 ms
processing

delay

t11 = 1 ms
D/A conversion

delay

t10 = T
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 t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9 + t10 + t11 + t12 < 15 ms (5.2)
1ms+ T + T +1ms+ T + T + T +2ms+ T + T + T + 1ms+ 6ms < 15ms
8  × T + 11ms < 15ms
T < 0.5 ms

To better understand the range of possible latencies, consider extremely aggressive implementations of 
end-point stations. For example, more aggressive end-point processing delays {t0=0.25 ms, t3=0.25 ms, 
t7 = 2 ms, t11 = 0.25 ms, t12 = 6 ms} would yield a constraint of T<0.78 ms.

5.1.4 Urban home recording session

Within urban environments, headphones may be preferred to audio speakers, as illustrated in Figure 5.4 (a 
small modification of Figure 5.2). The audio inputs (microphone and guitar) are converted, passed through a 
bridge, mixed within a laptop computer, converted at the headphones, and near immediately presented to the 
performer’s ear. 

While the earphones eliminate the air-to-ear hop-count delays, the sensitivity to delays is increased for the 
case of a vocal performer due to a comb filter formed by the interaction of headphone sound and sound 
conducted through the head. Remaining below the 0.5 to 5 ms range where comb filtering is prevalent is 
impractical, since the {t0 = 1 ms, t3 = 5 ms, t6 = 1 ms} values already exceed the 0.5 ms limitation.

Professionals believe that increasing latency to 5 ms or more within such headphone-feedback environments 
is preferred over operation in the 0.5 to 5 ms range where comb filtering is prevalent. Again, due to multiple 
hops and the latency contributions, the constraints yield a T value that is much less than the constraining 
15ms instrument-to-ear latency (see Equation 5.3).

 t0 + t1 + t2 + t3 + t4 + t5 + t6 < 15 ms (5.3)
1ms+ T + T +5ms+ T + T +1ms  < 15 ms 
4 × T + 7ms < 15 ms 
T < 2ms

To better understand the range of possible latencies, consider extremely aggressive implementations of 
end-point stations. For example, more aggressive end-point processing delays {t0 = 0.25 ms, t3 = 2 ms, 
t6 = 0.25 ms} would yield a T<3.1 ms constraint.

Figure 5.4—Urban recording session
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5.1.5 Conflicting data transfers

Home networks may carry data traffic as well as time-sensitive traffic, as illustrated in Figure 5.3. During 
musical performances (or evening A/V screenings), high bandwidth computer-to-server transfers could 
occur over the same data-transfer links, as illustrated in Figure 5.5.

With the high data-transfer rates of disks and disk-array systems, the bandwidth capacity of residential 
Ethernet links could (if not otherwise limited) easily be reached. Thus, some form of prioritized bridging is 
necessary to ensure robust delivery of time-sensitive traffic.

5.2 Service classes

This working paper defines three service classes (A, B, or C) with which the data transfer is associated, as 
summarized in Table 5.1. The classA service provides low-jitter transfer of traffic (and therefore lower 
worst-case delays) up to its allocated rate. Traffic above the allocated rate is rejected. The classB service 
provides bounded delay transfer of traffic. The classC service provides best-effort data-transfer services.

Link capacity required to support the classA and classB service is allocated via provisioning and these 
services can be characterized as allocated services. The provisioning activity is expected to ensure that the 

Figure 5.5—Conflicting data transfers

Editors’ Notes: To be removed prior to final publication.
The classA and classC service classes have consensus among the contributors to this working paper. The 
concept of classB services was included in IEEE Std 802.17-2004 and is being included for consideration 
by universal plug and play (UP&P), congestion management (CM), or legacy applications.

Table 5.1 — Service classes and their quality-of-service relationships

class of service qualities of service

class examples of use jitter guaranteed 
bandwidth type

A real time low yes allocated

B near real time bounded

unbounded no opportunisticC best effort

writes

reads
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aggregate service commitment on each link does not exceed that link’s capacity. The allocation rates 
distributed by provisioning regulates access to these guaranteed services.

Link capacity has to be ensured to support classA and classB service guarantees. This is done by allocating 
bandwidth through provisioning that prevents over-provisioning the links, using a subscription protocol 
(see 5.4).

5.3 Architecture overview

5.3.1 Abstract concepts

From the perspective of end-point stations, RE systems supports classA data-frame traffic, called streams. 
Each stream has one talker and one or more listeners, as illustrated in Figure 5.6-a.

The delay between the talker and listener(s) is nominally a fixed number of 125µs cycles, although the num-
ber of cycles may be cable-length and/or bridge topology dependent. Additional delays can be inserted by 
the application(s), when synchronization between multiple listeners is required, since the talker’s data can be 
time-stamped and all clocks are synchronized.

To reduce costs (and support GPS-inaccessible locations), synchronized clocks are provided by the intercon-
nect. All classA talkers provide clock references, but only one of these stations is nominated to be the clock 
master; the others are called clock slaves (see Figure 5.6-b). The selected clock master is called the grand 
clock master, oftentimes abbreviated as “grand master”.

Clock synchronization involves synchronizing the clock-slave clocks to the reference provided by the grand 
clock master. Tight accuracy is possible with matched-length duplex links, since bidirectional messages can 
cancel the cable-delay effects.

Figure 5.6—Hierarchical control
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5.3.2 Detailed illustrations

In many cases, abstract illustrations (see Figure 5.6) are insufficient to illustrate expected behaviors. Thus, 
more detailed illustrations are oftentimes used to also show bridges and spans within the network cloud, as 
illustrated in Figure 5.7.

5.3.3 Architecture components

The architecture of a home RE system involves the following protocols:

a) Discovery (beyond the scope of this working paper). 
A controller discovers the proper streamID/bandwidth parameters to allow the listener to subscribe 
to the desired talker-sourced stream.

b) Subscription. The controller commands the listener to establish a path from the talker. 
Subscription may pass or fail, based on availability of routing-table and link-bandwidth resources.

c) Synchronization. The distributed clocks in talkers and listeners are accurately synchronized. 
Synchronized clocks avoid cycle slips and playback-phase distortions.

d) Pacing. The transmitted classA traffic is paced to avoid other classA traffic disruptions.

Figure 5.7—Hierarchical flows
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5.4 Subscription

5.4.1 Simple Reservation Protocol (SRP) overview

Subscription involves explicit negotiation for bandwidth resources, performed in a distributed fashion, 
flowing over the paths of intended communication. This subscription protocol are called the Simple 
Reservation Protocols (SRP). SRP represents an instance of the Generic Attribute Registration Protocol 
(GARP), with similar objectives to the layer-3 based Resource Reservation Protocol (RSVP). SRP shares 
many of the baseline RSVP and GARP features, including the following: 

— SRP is simplex, i.e. reservations apply to unidirectional data flows.
— SRP is receiver-oriented, i.e., the receiver of a stream initiates and maintains the resource reser-

vation used for that stream.
— SRP maintains “soft” state in bridges, providing graceful support for dynamic membership changes 

and automatic adaptations to changes in network topology.
— SRP is not a routing protocol, but depends on transparent bridging and STP routing protocols.

SRP simplicity is derived from its restricted layer-2 ambitions, as follows. 

— SRP is symmetric, i.e. the listener-to-talker path is the inverse of the talker-to-listener path.
— SRP does not provide for transcoding; any stream is fully characterized by its streamID and 

bandwidth.

The viability of SRP is enhanced by basing its protocols on GARP, a protocol defined within IEEE Std 
802.1D. Specifically, the RequestJoin and RequestLeave messages correspond to primitives defined within 
GARP.

SRP is defined to be a general 1-to-N resource-reservation scheme, although this discussion focuses on 
subscription of classA bandwidth resources. The SRP protocols could, however, be used to reserve other 
resource-limited resources, such as buffer allocations, latency targets, and frame-loss rates.

NOTE—SRP is thought to be applicable to N-to-N topologies, as well as 1-to-N topologies. However, the detailed 
review of N-to-N topologies (which would be necessary to verify the feasibility of such extensions) is beyond the scope 
of this working paper.

5.4.2 Soft reservation state

SRP takes a “soft state” approach to managing the reservation state in bridges. SRP soft state is created and 
periodically refreshed by listener generated RequestJoin messages; this state is deleted if no matching 
RequestJoin messages arrive before the expiration of a “cleanup timeout” interval. Listener’s may also force 
state deletions by generating an explicit RequestLeave message.

RequestJoin messages are idempotent. When a route changes, the next RequestJoin message will initialize 
the path state to the new route, and future RequestJoin messages will establish state there. The state on the 
now-unused segment of the route will be deleted after a timeout interval. Thus, whether a RequestJoin
message is “new” or a “refresh” is determined separately by each station, depending upon the existence of 
state at that station.

SRP soft state is also deleted in the continued absence of associated talker-generated ConfirmJoin messages; 
the listener’s registration is discarded if no matching ConfirmJoin indication arrives before the expiration of 
a “cleanup timeout” interval. Thus, talker stations or agents may implicitly deregister by stopping its 
ConfirmJoin confirmations, or explicitly deregister by sending distinct ConfirmGone messages.
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SRP sends it messages as layer-2 datagrams with no reliability enhancement. Periodic transmissions by 
listener/talker stations and agents is expected to handle the occasional loss of an SRP message. 

In the steady state, state is refreshed on a hop-by-hop basis to allow merging. Propagation of a change stops 
when and if it reaches a point where merging causes no resulting state change. This minimizes the SRP con-
trol traffic and is essential for scaling to large audiences.

5.4.3 Subscription bandwidth constraints

The SRP subscription protocols limit cumulative bandwidth allocations to a fixed percentage less than the 
capacity of the link, much like IEEE 1394 limits isochronous traffic to less than the capacity of its bus. This 
guarantees that high priority management information can be transmitted across the link. For RE systems, 
classA traffic is limited to 75% of the capacity of any RE link. Enforcement of such a limit is done in multi-
ple ways:

a) Subscription. Requests for establishing classA transmission paths are rejected if the cumulative 
bandwidths of all paths would consume more than 75% of the link bandwidth.

b) Transmit queue hardware of RE stations (including bridges) discards classA content that (if trans-
mitted) would cause classA traffic to exceed 75% of the transmit link capacity. Details are TBD.

Method (b) is desired to recovery from unexpected transient conditions (typically topology changes) that 
result in admission control violations, and is also useful for managing misbehaving devices

5.4.4 Controller entities

Subscription when a relative-intelligent controller discovers the need to establish a classA path between 
talker and listener entities. For example, user interactions with a television (called the controller) may cause 
streams flowing between the content source (called the talker) and speakers (the listeners), as illustrated in 
Figure 5.8.

A controller can potentially simplify the listener by reducing the need to providing user interface and 
device-discovery capabilities. However, a controller could also reside within talker and/or listener 
components. However, actions between controllers and talker/listener stations are beyond the scope of this 
working paper.

Editors’ Notes: To be removed prior to final publication.
Additional discussions may be appropriate to discuss operation of the ConfirmGone messages.

Figure 5.8—Controller activation
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5.4.5 Bridge-resident agents

Subscription facilities register classA communication paths from a talker to one or more listeners. Streams 
of time-sensitive data can then flow over these established paths, as illustrated by the dark arrow paths in 
Figure 5.9-a. Maintaining these established paths involves active participation of agents within the end-point 
talker, local listener, local talker, and end-point listener entities, as illustrated in Figure 5.9-b.

The talker stations/agents are responsible for maintaining an account consisting of {streamID, bandwidth} 
pairs, one for each of their distinct flows. Requests for additional link bandwidth are checked against these 
accounts and denied if the cumulative bandwidth would exceed 75% of the link capacity.

For each of the registered talker agents within a bridge, the listener agent remains active until all but the last 
talker agent registration is discarded. Thus, the talker agent in an upstream station receives its deregistration 
notice only after the last of the downstream listener stations has been deregistered.

The listener agent uses the same RequestJoin messages to establish and to maintain the path. This reduces 
design complexity and (most importantly) automatically re-routes stream flows after topology changes.

Figure 5.9—Agents on an established path
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5.4.6 Registration

Registering a new listener and talker starts with a RequestJoin message sent from the listener f 0 towards the 
talker a0, as illustrated by the dark arrow (1a) in Figure 5.10-a. These registration messages are not for-
warded directly, but activate cooperative listener and talker agents with the bridge.

In response to the received RequestJoin message (1a), bridgeE reserves talker-agent and listener-agent 
registration table entries in ports e0 and e1 respectively. A cascaded RequestJoin message (2a) is then sent 
towards talker station a0.

The cascaded forwarding continues through bridgeC. In response to the received RequestJoin message (2a), 
bridge C reserves talker-agent and listener-agent registration table entries in ports c3 and c0 respectively. A 
cascaded RequestJoin message (3a) is then sent towards talker station a0.

The cascaded forwarding continues through bridgeB. In response to the received RequestJoin message (3a), 
bridge B reserves talker-agent and listener-agent registration table entries in ports b1 and b0 respectively. A 
cascaded RequestJoin message (4a) is then sent towards talker station a0.

Referring now to Figure 5.10-b, the talker and talker agents are responsible for providing confirming 
ConfirmJoin messages, to confirm their continued presence. In this example, the RequestJoin messages 
{1a,2a,3a,4a} of Figure 5.10-a are continually confirmed by the ConfirmJoin messages {1b,2b,3b,4b} of 
Figure 5.10-b), respectively. In the continued absence of the expected ConfirmJoin messages, the talker (or 
talker-agent) assumes the listener (or listener-agent) is absent or has been deactivated.

Another timeouts is associated with the absence of periodic RequestJoin messages. In the continued absence 
of these expected messages, the talker assumes the listener is absent or has been deactivated. Based on this 
assumption, the associated talker (station or agent) registration resources are released.

Figure 5.10—Periodic registration messages
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5.4.7 Secondary listener registrations

A second listener registers by sending a RequestJoin message towards the talker, as illustrated by the 
dark-arrow path in Figure 5.11-a. When an established registration is discovered, the bridge (not the talker) 
processes the message. Thus, the registration is expanded to include a new-listener side path, as illustrated in 
Figure 5.11-b.

Each talker and listener agent maintains separate registration state, so that only active paths are registered. 
Maintaining distinct registrations also allows the bridge to detect when the last listener disconnects, so that 
its previously shared upstream span can be deregistered appropriately.

Each path is uniquely identified by its associated streamID. The streamID consists of a {talkerId, plugID} 
information that uniquely identifies the associated talker resource), as illustrated by the rectangle inserts 
within Figure 5.11-a. The talkerID represents the MAC address of the talker and the plugID distinguishes 
between possible streaming sources within the talker. 

The multicast address used to route the classA multicast frames, as well as the allocated classA bandwidth, 
are returned to the listeners within ResponseForm messages.

Figure 5.11—Secondary registrations
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5.4.8 Secondary listener deregistration

A retiring secondary listener normally leaves an established registration by sending a RequestLeave
message towards the talker. That RequestLeave message (1a) propagates to the nearest merging bridge con-
nection, as illustrated in Figure 5.12-a. When an established/merged registration is discovered, the bridge 
(not the talker) deregisters the listener, as illustrated by the disappearance of external path e0-to-f0 and 
internal path e1-to-e0 within Figure 5.12-b.

5.4.9 Final deregistration

The final retiring listener also sends a RequestLeave message (1a) towards the talker. In this case, variants of 
that message {2a,3a,4a} eventually propagate to the talker, as illustrated in Figure 5.13-a. No listeners 
remain registered after this cascaded propagation of RequestLeave messages, as illustrated in Figure 5.13-b.

Figure 5.12—Side-path deregistration

Figure 5.13—Final-path deregistration
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5.4.10 Stream transmissions

Once listeners are registered (see Figure 5.14-a), a talker communicates critical parameters within the 
ConfirmPath message (instead of the initial ConfirmJoin messages) and starts its stream transmissions over 
the registered paths, as illustrated by the arrows in Figure 5.14-b.

The ConfirmPath message could be a variant of the ConfirmJoin message with a distinct command-code 
value. Like the baseline ConfirmJoin message, the ConfirmPath message is also sufficient to sustain the 
talker’s registration. This simplifies the talkers (and talker agents) by eliminating the need to concurrently 
transmit two distinct periodic registration-sustaining messages.

5.4.11 Insufficient bandwidth conditions

The available link bandwidths can sometimes be insufficient when the talker starts its stream transmissions. 
For example, bandwidths may be sufficient to sustain listener f 0 but not listener f 3, as illustrated by the 
e0-to-f 0 and e3-to-f 3 paths in Figure 5.15-a, respectively.

Figure 5.14—Streaming data over registered paths

Figure 5.15—Insufficient bandwidth conditions
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In this case, listener f 3 does not receive the talker’s streaming classA traffic. However, listener f 3 continues 
to receive its ConfirmJoin messages, each of which contains an error indication code. Listener f 3 is thus 
informed of the insufficient-bandwidth error condition, allowing corrective/reporting actions to be initiated 
by higher level protocols.

5.4.12 Errors conditions

Errors may be associated with a variety of failure conditions, including (but not limited to) those listed 
below. 

a) Resources. Insufficient resources are available within the bridge. 
(These insufficient-resource errors are handled by GARP specified mechanisms, see TBD.)

1) Insufficient registration-table storage is available in the bridge’s downstream talker agent.
2) Insufficient registration-table storage is available in the bridge’s upstream listener agent.

b) Bandwidth. Insufficient bandwidths are available within the bridge. 
(These insufficient-bandwidth errors are handled by ConfirmJoin error codes, see 5.4.11.)

1) Insufficient bandwidth is available on the link from the talker agent to its adjacent listener.
2) Insufficient link or memory bandwidth is available with the bridge.

5.4.13 Heartbeat timeouts

Talker agents/stations are responsible for periodically polling locally registered listener agents/stations, to 
demonstrate their continued presence. In the absence of these polling updates, the listeners assume the talker 
is absent and deregister the inactive path (or inactive branch from the path). These talker-absent timeouts are 
performed independently on each span. 

Listener agents/stations are responsible for periodically reregistering with locally registered talker 
agents/stations, to confirm their continued presence. In the absence of these reregistration updates, the 
talkers assume the listener is absent and deregister the inactive path (or inactive branch from the path). 
These listener-absent timeouts are performed independently on each span. 

These periodic heartbeat-based timeouts handle a variety of error conditions, including the following:

a) A RequestJoin, RequestLeave, ConfirmJoin, or ConfirmPath is (corrupted and) not delivered.

b) The physical topology is changed, causing changes in the paths of streaming classA traffic.

c) A talker or listener is decommissioned and thus is no longer functionally present.

d) A flooded RequestJoin message reaches a non-talker end station or subnet.

e) After the talker’s port is learned, a bridge discontinues flooding extraneous RequestJoin messages.
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5.4.14 Untended flooding

Registering a new listener normally involves cascaded RequestJoin message sent from the listener f 0
towards the talker a0, as illustrated in Figure 5.10-a. In some cases, the talker’s address may be unlearned 
and flooding may be necessary. Thus, BridgeB could sometimes be forced to flood the RequestJoin to 
stations {a0,a2,a3}, when an unlearned address can’t be directed to station a0, as illustrated in 
Figure 5.10-b.

In this example, talker a0 is present and its ConfirmJoin messages will soon propagate back to bridgeB, 
where the address of talker station a0 is learned. When this occurs, the flooding to stations {a2,a3} stops.

As noted previously (see 5.4.13), the talker agent is responsible for providing confirming ResponseJoin
messages, so that the absence of a talker station can be readily detected. Allocated registration-table entries 
within bridges can be released after the talker-station absence is detected. Thus, flooding causes no harm. 

5.4.15 GARP primitives

This subclause was intended to clarify the higher level SRP functionality. Thus, names of primitives were 
chosen form clarity, rather than consistency with the expected GARP messages. For the benefit of experi-
enced GARP users, a sketch of the intended mappings of primitives is provided within this subclause.

The RequestJoin and RequestLeave messages correspond to like-names primitives within GARP. The 
ConfirmJoin and ConfirmPath messages correspond to variants of the leave-all messages within GARP.

Figure 5.16—Periodic registration messages

Editors’ Notes: To be removed prior to final publication.
Additional discussions may be appropriate to discuss what happened when the talker address is absent, 
as simply summarized below.
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5.5 Synchronized time-of-day clocks

5.5.1 Assumptions

This working paper specifies a protocol to synchronize independent timers running on separate stations of a 
distributed networked system, based on concepts specified within IEEE Std 1588-2002. Although a high 
degree of accuracy and precision is specified, the technology is applicable to low-cost consumer devices. 
The protocols are based on the following design assumptions:

a) Each end station and intermediate bridges provide independent clocks.

b) All clocks are accurate, typically to within ±100PPM.

c) Point-to-point transmit/receive duplex connections are provided.

d) Transmit/receive propagation delays within duplex cables are well matched.

5.5.2 Objectives

With these assumptions in mind, the time synchronization objectives include the following:

a) Precise. Multiple timers can be synchronized to within 10’s of nanoseconds.

b) Inexpensive. For consumer A/V devices, the costs of synchronized timers are minimal. 
(GPS, atomic clocks, or 1PPM clock accuracies would be inconsistent with this criteria.)

c) Scalable. The protocol is independent of the networking technology. In particular:

1) Cyclical physical topologies are supported.
2) Long distance links (up to 2 kM) are allowed.

d) Plug-and-play. The system topology is self-configuring; no system administrator is required.

5.5.3 Strategies

Strategies used to meet these objectives include the following:

a) Precision is achieved by calibrating and adjusting timeOfDay clocks.

1) Offsets. Offset value adjustments eliminate immediate clock-value errors.
2) Rates. Rate value adjustments reduce long-term clock-drift errors.

b) Simplicity is achieved by the following:

1) Concurrence. Most configuration and adjustment operations are performed concurrently.
2) Feed-forward. PLLs are unnecessary within bridges, but possible within applications.
3) Symmetric. Clock-master/clock-slave computations are similar (only slave results are saved).
4) Periodic. Messages are sent periodically, rather than in timely response to other requests.
5) Frequent. Frequent (typically 1 kHz) interchanges reduces needs for precise clocks.

c) Balanced functionality.

1) Low-rate. Complex computations are infrequent and can be readily implemented in firmware.
2) High-rate. Frequent computations are simple and can be readily implemented in hardware.
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5.5.4 Grand-master selection

5.5.4.1 Grand-master selection

Clock synchronization involves streaming of clock-synchronization information from a grand-master timer 
to one or more slave timers. Although primarily intended for non-cyclical physical topologies 
(see Figure 5.17a), the synchronization protocols also function correctly on cyclical physical topologies 
(see Figure 5.17b), by activating only a non-cyclical subset of the physical topology.

In concept, the clock-synchronization protocol starts with the selection of the reference-timer station, called 
a grand-master station (oftentimes abbreviated as grand-master). Each station is associated with a distinct 
preference value; the grand-master is the station with the “best” preference values.

Stations forward the best of their observed preference values to neighbor stations, allowing the overall 
best-preference value to be ultimately selected and known by all. The station whose preference value 
matches the overall best-preference value ultimately becomes the grand-master.

5.5.4.2 Communicated preference values

The grand-master station observes that its precedence is better than values received from its neighbors, as 
illustrated in Figure 5.18a. A slave stations observes its precedence to be worse than one of its neighbors and 
forwards the best-neighbor precedence value to adjacent stations, as illustrated in Figure 5.18b. To avoid 
cyclical behaviors, a hopsCount value is associated with preference values and is incremented before the 
best-precedence value is communicated to others.

Figure 5.17—Timer synchronization flows

Figure 5.18—Grand-master precedence flows
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The grand-master selection precedence includes multiple components, listed and described below 
(see 7.1.2). The portTag value is only needed within a bridge and is therefore not transmitted between 
stations.

a) systemTag. A changeable value that is associated with each grand-master capable station. 
This value is can specify grand-master preferences (e.g., a home gateway may be preferred).

b) uniqueID. A unique value associated with each station, typically based on its MAC address. 
This value is used as a tie breaker, when two contenders have identical systemTag values.

c) hopsCount. A value that is incremented when passing through stations. 
This is the tie breaker, when two ports receive identical systemTag:uniqueID values.

d) portTag. A changeable value that is associated with each port on a grand-master capable station. 
This is the tie breaker, when two ports receive identical systemTag:uniqueID:hopsCount values.

5.5.5 Synchronization principles

Timer synchronization is based on the concept of free-running local times (localD, localE, and localF) with 
compensating offset values (offsetD, offsetE, and offsetF), as illustrated in Figure 5.19. Updates involve 
changes to the offset values, not the free-running local timer values. In this example, we assume that: 
StationE is synchronized to its adjacent StationD; StationF is synchronized to its adjacent StationE. As a 
result, StationF is indirectly synchronized to StationD (through StationE).

The formulation of the offsetE value begins the assumption that the globalE and globalD times are identical. 
Addition of (localE– localE) and regrouping of terms leads to the formulation of the desired offsetE value, 
based on offsetD and (localE– localD) time difference values, as illustrated in Figure 5.19-a. Synchroniza-
tion is thus possible using periodic transfers of offsetD values and computations of (localE– localD) timer 

The formulation of the offsetF value begins the assumption that the globalF and globalE times are the 
identical. Addition of (localF– localF) and regrouping of terms leads to the formulation of the desired 
offsetF value, based on offsetE and (localF– localE) time difference values, as illustrated in Figure 5.19-b. 
Synchronization is thus possible using periodic transfers of offsetE values and computations of (localF–
 localE) timer differences.

In concept, the offsetE value is adjusted first; its adjusted value is then used to compute the desired offsetF
value. In actuality, the periodic computations of offsetE and offsetF values are performed concurrently.

Figure 5.19—Time synchronization principles

StationE

localE offsetE

add
globalE

StationF

localF offsetF

add
globalF

a) StationE synchronizes to StationD

StationD

localD offsetD

add
globalD

globalE = globalD 
             = localD + offsetD 
             = localD − (localE − localE) + offsetD 
             = (localD − localE) + localE + offsetD 
             = localE + offsetE 
Where: 
  offsetE = offsetD − (localE − localD)

StationE

localE offsetE

add
globalE

StationF

localF offsetF

add
globalF

b) StationF synchronizes to StationE

StationD

localD offsetD

add
globalD

globalF = globalE 
             = localE + offsetE 
             = localE − (localF − localF) + offsetE 
             = (localE − localF)  + localF + offsetE 
             = localF + offsetF 
Where: 
  offsetF = offsetE – (localF – localE)
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5.5.6 Timer snapshot locations

Mandatory jitter-error accuracies are sufficiently loose to allow transmit/receive snapshot circuits to be 
located with the MAC, as illustrated in Figure 5.20a. Vendors may elect to further reduce timing jitter by 
latching the receive/transmit times within the PHY, where the uncertain FIFO latencies can be best avoided.

5.5.7 Bridge PLL possibilities

In addition to other valuable properties, the precise low-latency time-of-day synchronization protocols 
reduce jitter sufficiently to eliminate the needs for PLLs within bridges, as illustrated in Figure 5.21a. 
Elimination of such PLLs (illustrated in Figure 5.21b) simplifies the bridge design, while allowing each 
end-point application to independently optimize the effective capture-time and jitter-magnitude 
requirements of its PLL.

Figure 5.20—Timer snapshot locations

Figure 5.21—Bridge PLL possibilities
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5.6 Formats

5.6.1 Content framing

ClassA content is the client supplied per-cycle classA information, transferred from a talker to one or more 
listeners. The content within each cycle can be small or large; stereo audio stream transfers involve only 
approximately 20 bytes per cycle. Uncompressed 32-bits/pixel frame buffers (2 megapixels, 30Hz) would 
transmit 30 kilobytes per cycle. Framing of this content must be efficient for small sizes and sufficient for 
large sizes, as illustrated in Figure 5.22.

For low bandwidth transmissions, each frame transports distinct classA content, as illustrated in 
Figure 5.22-a. For high bandwidth transmissions, the content can span multiple frames, as illustrated in 
Figure 5.22-b (see also C.3.2).

As an alternative improved-efficiency alternative, low bandwidth content could be encapsulated into blocks, 
where multiple blocks are included within each frame transmission, as illustrated in Figure 5.22-c. This 
allows the per-frame overhead (the inter-packet gap, header, and trailer fields) to be amortized over multiple 
blocks. For example, the eight inputs from a guitar may be packed together into the same frame. However, 
the packing of multichannel content is beyond the scope of this working paper.

Another approach would be to reduce the need for concatenated frames by using the (defacto standard) 
jumbo-frame sizes, which are approximately 9,000 bytes in size. However, support of the jumbo frame size 
is not ensured, and (when supported) is considerably less than 216-byte maximum size of an IEEE 1394 
isochronous frame, or the 118 kilobyte size implied by 75% utilization of a 10Gb/s link.

Figure 5.22—Content framing methods
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5.6.2 Station plug addressing

Stream addressing is based on the concept of plugs, as illustrated in Figure 5.23. Streams are identified by 
their 48-bit talker-station identifier concatenated with that talker’s 16-bit plugId. Each talker station may 
have up to 216 streams, via logical plugs, in addition to the station’s hardwired connections Stations are 
expected to provide higher level commands for connecting/mixing/amplifying/converting/etc. data between 
combinations of hardwired and logical plugs. However, the details of such commands are beyond the scope 
of this working paper.

5.6.3 Stream frame formats (alternative 1)

Streaming classA frames are no different than other multicast Ethernet frames. The distinction is that each of 
these multicast addresses is assumed to have associated streamID and bandwidth information saved within 
each forwarding bridge, as illustrated in Figure 5.24.

The streamID consists of two components: sourceID and plugID. The 48-bit sourceID identifies the source 
and usually equals the sa value; the plugID identifies the resource within that source. A distinct maxBw
(maximum bandwidth) field identifies the negotiated maximum for classA bandwidth.

Figure 5.23—Plug addressing

Figure 5.24—ClassA frame format and associated data
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5.6.4 Stream frame formats (alternative 2)

Streaming classA frames are no different than other Ethernet frames. The distinction is that each of these 
frames supplies a nonzero user_priority field, as illustrated in Figure 5.25.

The streamID consists of two components: sourceID and plugID. The 48-bit sourceID identifies the source 
and usually equals the sa value; the plugID identifies the resource within that source. A distinct maxBw
(maximum bandwidth) field identifies the negotiated maximum for classA bandwidth.

5.6.5 Stream frame formats (alternative 3)

Frames within a stream are no different than other Ethernet frames, with the exception of their distinct da
(destination address) field, as illustrated in Figure 5.26. The most significant 32-bit portion of the da
classifies the frame as an classA frame. The less significant 16-bit portion specifies the plugID portion of the 
streamID associated with the frame.

Figure 5.25—ClassA frame format and associated data

Figure 5.26—ClassA frame formats
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5.6.6 Stream frame format alternatives comparison

Quality of service is thus specified by the user_priority field parameter within VLAN-tagged frames, as 
listed in Table 5.2. 

The DA-multicast header is the compact, its forwarding mechanism are similar to those now supported, but 
a multicast server is required to provide unique multicast-stream addresses.

The VLAN-priority header is the 4 bytes larger, its forwarding mechanism is nearly identical to those now 
supported, but a multicast server is required to provide unique multicast-stream addresses.

The SA-multicast header is the compact, its forwarding mechanism is quite different than those now 
supported by bridges, but has the advantage that no multicast server is not required.

Table 5.2—Tagged priority values

Alternative Compact Similar Multicast 
server

1: DA-multicast good good poor

2: VLAN-priority poor best poor

3: SA-multicast good poor good
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5.7 Pacing

5.7.1 Assumptions

This working paper specifies a protocols for pacing classA traffic streams as they pass through multiple 
bridges. Although a high degree of scalability is implied, the technology is applicable to inexpensive 
consumer devices. The protocols are based on the following design assumptions:

a) Sizes. The maximum frame size is assumed to be 2 kB, for consistency with established 802.3 
frame-extension working group directions.

b) Speeds. Only full-duplex 100 Mb/s, 1 Gb/s, and 100 Gb/s 100-meter links must be supported.

c) Limits. The classA traffic transmissions are limited to 75% of the available link bandwidth.

5.7.2 Objectives

With these assumptions in mind, the time synchronization objectives include the following:

a) Reliable. The worst-case delay between talker and listener stations is small, deterministic, and not 
effected by operating conditions, including the following:

1) Loading. Arbitrary talker-station and listener-station traffic patterns can be supported.
2) Scaling. Any 802.1 supported spanning tree topologies can be supported.

b) Plug-and-play. Manual provisioning of the system is not required.

c) Compatible. The pacing of high-class frames cannot disrupt legacy or lower-class transmissions.

d) Friendly. Some higher-class traffic that cannot be reliably paced, due to legacy sources or bridges; 
retains precedence over lower-class traffic.

e) Robust. Higher-class traffic never starves the forwarding of lower-class control traffic.

f) Efficient. Unused higher-class bandwidth can be readily reclaimed lower-class traffic.

5.7.3 Strategies

Strategies used to meet these objectives include the following:

a) Buckets. Higher-class traffic is grouped into buckets; buckets are forwarded every 125 µs cycle.

b) Limits. The levels of higher-class traffic are limited to 75% of the link bandwidths.

1) Excess classA traffic above this 75% limit is discarded.
2) Excess classB traffic above this 75% limit is temporarily processed as classC traffic.

c) Reuse. Unused higher-precedence bandwidths are reused if not consumed as intended.

1) Unused classA traffic within the 75% limit is available for classB traffic.
2) Unused classA/classB traffic within this 75% limit is available for classC traffic.

d) Downgrade. When passing through unsupportive bridges, classA traffic is downgraded to classB. 
The classB traffic is no longer paced, but retains its precedence over classC traffic.
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5.7.4 Service classes

Pacing is intended to ensure timely delivery of pre-subscribed classA traffic, in the presence of arbitrary 
classB and classC loading conditions. Interactions between these three service classes is summarized below:

a) ClassA. A pre-subscribed paced time-sensitive service with guaranteed latency. 
The classA traffic is paced and (at its scheduled transmit time) has priority over classB traffic.

b) ClassB. A pre-subscribed time-sensitive service with guaranteed bandwidth. The classB traffic is 
shaped and has priority over classC traffic. Two type of classB traffic are expected, as follows:

1) Legacy. Time-sensitive multicast traffic sourced by non-supportive talker stations.
2) Hybrid. ClassA traffic that has passed through a nonsupportive bridge. 

Such previously-classA traffic can no longer be paced and therefore is downgraded to classB.

c) ClassC. A best-effort service that utilizes bandwidths not consumed by classA or classB traffic. 
The classA and classB subscription/shaping restrictions ensure a minimum 25% of link bandwidths 
are available for classC transmissions.

5.7.5 Fine-grained pacing

Pacing involves the throttling of classA streams so that their average bandwidth can be guaranteed over 
small averaging intervals. Such fine-grained pacing has the following advantages:

a) Latency. Talker-to-listener delays are small, deterministic, and link-utilization independent.

b) Jitter. Delay variations between a talker and listeners are bounded and topology independent.

c) Intervals. Short intervals simplify the detection/enforcement of maximum classA bandwidths. 
(A goal is to limit classA bandwidths to no more than 75% of the link capacity, see 1.2.3.)
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6. Frame formats

6.1 ClassA frames

6.1.1 ClassA frame fields

A classA frame differs from other frames in the format of its multicast da (destination address), as illustrated 
in Figure 6.1.

6.1.1.1 da: A 6-byte (destination address) field that specifies a multicast address associated with the stream.

6.1.1.2 sa: A 48-bit (source address) field that specifies the local station sending the frame. The sa field 
contains an individual 48-bit MAC address (see 3.11) as specified in 9.2 of IEEE Std 802-2001.

6.1.1.3 protocolType: A 16-bit field contained within the payload. When the value of protocolType is greater 
than or equal to 1536 (60016) the protocolType field indicates the nature of the MAC client protocol (type 
interpretation), selecting from values designated by the IEEE Type Field Register. When less than 1536 
(016 – 5FF16), the protocolType is interpreted as the length of the frame (length interpretation). The length 
and type interpretations of this field are mutually exclusive.

6.1.1.4 serviceDataUnit: An m-byte field the contains the service data unit provided by the client.

6.1.1.5 pad: If the sum of the other field lengths is less than 64 bytes, then the number of zero-valued pad
bytes are sufficient to make a 64-byte frame. Otherwise, the pad field is not present.

6.1.1.6 fcs: A 4-byte (frame check sequence) field whose 32-bit CRC covers the frame’s content.

Figure 6.1—ClassA frame formats

6 da

6 sa

2 protocolType

m serviceDataUnit

4 fcs

— Identifies data[n] format and function

— Transmitted information

— Frame check sequence

— Destination MAC address

— Source MAC address

n pad — Pad to the avoid overly small frames
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6.2 clockSync frame format

6.2.1 clockSync fields

Clock synchronization (clockSync) frames facilitate the synchronization of neighboring clock span-master 
and clock span-slave stations. The frame, which is normally sent once each isochronous cycle, includes 
time-snapshot information and the identity of the network’s clock master, as illustrated in 6.2. The gray 
boxes represent physical layer encapsulation fields that are common across all Ethernet frames.

6.2.1.1 da: A 48-bit (destination address) field that specifies the station(s) for which the frame is intended. 
The da field contains either an individual or a group 48-bit MAC address (see 3.11), as specified in 9.2 of 
IEEE Std 802-2001.

6.2.1.2 sa: A 48-bit (source address) field that specifies the local station sending the frame. The sa field 
contains an individual 48-bit MAC address (see 3.11), as specified in 9.2 of IEEE Std 802-2001. 

6.2.1.3 protocolType: A 16-bit field contained within the payload that identifies the format and function of 
the following fields (see 6.5.1).

6.2.1.4 subType: A 16-bit field that identifies the format and function of the following fields (see 6.5.2).

6.2.1.5 hopsCount: An 8-bit field that identifies the maximum number of hops between the talker and 
associated listeners.

6.2.1.6 syncCount: An 8-bit field that is incremented on each clockSync frame transmission.

Figure 6.2—clockSync frame format

6 da

6 sa

2 protocolType

4 fcs

8 uniqueID — Less-significant grand-master election precedence

8 offsetTime — Offset time within the neighbor

8 lastFlexTime — Incoming link’s frame transmssion time (1 cycle delayed)

8 deltaTime — Outgoing link’s frame propagation time

— Frame check sequence

— More-significant grand-master election precedence

— Destination MAC address

— Source MAC address

1 subType

— Distinguishes RE frames from others (see 6.5.1)

— Distinguishes clockSync from other RE frames (see 6.5.2)

— Incoming link’s frame transmssion time (1 cycle delayed)4 lastBaseTime

— Cumulative rates from the grand-master4 diffRate

2 systemTag

1 hopsCount — Hop count from the grand master

1 syncCount — Sequence number for clockSync frames

1 cycleCount — Cycle count for pacing
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6.2.1.7 cycleCount: A 7-bit field that equals (cycle%125), where cycle represents units of 125 µs within the 
transmitting station’s timeOfDay value.

6.2.1.8 systemTag: A 16-bit field that has highest precedence in the grand-master selection protocols.

6.2.1.9 uniqueID: A 64-bit field that specifies the precedence of the grand clock master, specified in 6.2.3.

6.2.1.10 lastFlexTime: A 64-bit field that specifies the time within the source station when the previous 
clockSync frame was transmitted. The format of this field is specified in 6.2.4.

6.2.1.11 deltaTime: A 64-bit field that specifies the differences between clockSync receive and transmit 
times, as measured on the opposing link. The format of this field is specified in 6.2.4.

6.2.1.12 offsetTime: A 64-bit field that specifies the offset time within the source station. The format of this 
field is specified in 6.2.4.

6.2.1.13 diffRate: A 32-bit field that specifies the diffRate value within the source station.

6.2.1.14 lastBaseTime: A 32-bit field that specifies the timer1 value within the source station when the 
previous clockSync frame was transmitted.

6.2.1.15 fcs: A 32-bit (frame check sequence) field that is a cyclic redundancy check (CRC) of the frame.

6.2.2 systemTag subfields

The format of the 16-bit systemTag field is based on the format of the spanning tree protocol precedence 
value, as illustrated in Figure 6.3.

6.2.2.1 systemLevel: A 4-bit field that comprise a settable priority component that permits the relative 
priority of bridges to be managed.

6.2.2.2 systemNumber: A 12-bit field that comprise a locally assigned system identifier extension. 
(The term systemID is equivalent to ‘system ID’, as specified within IEEE Std 802.1D-2004.)

Figure 6.3—systemTag subfields

MSB LSB
systemLevel systemNumber
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6.2.3 uniqueID fields

The format of the 64-bit uniqueID field is a unique identifier. For stations that have a uniquely assigned 
48-bit macAddress, the 64-bit uniqueID field is derived from the 48-bit MAC address, as illustrated in 
Figure 6.4.

6.2.3.1 oui: A 24-bit field assigned by the IEEE/RAC (see xx).

6.2.3.2 extension: A 16-bit field assigned to encapsulated EUI-48 values.

6.2.3.3 ouiDependent: A 24-bit field assigned by the owner of the oui field (see xx).

6.2.4 Time field formats

Time-of-day values within a frame are specified by 64-bit values, consistent with IETF specified NTP[B8]
and SNTP[B9] protocols. These 64-bit values consist of two components: a 32-bit seconds and 32-bit 
fraction fields, as illustrated in Figure 6.5.

6.2.4.1 seconds: A 32-bit field that specifies time in seconds.       

6.2.4.2 fraction: A 32-bit field that specified time offset within the second, in units of 2-32 second.        

The concatenation of 32-bit seconds and 32-bit fraction field specifies a 64-bit time value, as specified by 
Equation 6.1.

time = seconds + (fraction / 232) (6.1)
Where: 

seconds is the most significant component of the time value (see Figure 6.5). 
fraction is the less significant component of the time value (see Figure 6.5).

Figure 6.4—uniqueID format

Figure 6.5—Complete seconds timer format

MSB LSBmacAddress

FFFE16

oui ouiDependent

oui ouiDependentextension

seconds fraction

32 bits32 bits

MSB LSB
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6.3 Subscription frame

6.3.1 Subscription frame fields

Subscription frames contain channel-acquisition information, as illustrated in Figure 6.6.

6.3.1.1 da: A 6-byte (destination address) field that normally specifies the destination address for the frame 
transmission, with unicast and multicast forms.

6.3.1.2 sa: A 6-byte (source address) field that normally specifies the source address for the frame 
transmission. If a bridge is present between the frame and its associated listener, the sa value identifies the 
bridge.

6.3.1.3 protocolType: A 2-byte field that normally specifies the frame length, or the format and function of 
the following fields (excluding the 4-byte fcs field). This RE assigned value distinguishes its frame formats 
from others (see 6.5.1).

6.3.1.4 subType: A 1-byte field that distinguishes the ResponseError frame from other frames defined 
within this working paper.

6.3.1.5 count: A 1-byte field that specifies the number of elements within the following info-block array.

6.3.1.6 info: A 24-byte array element that provides listener subscription information (see 6.4).

6.3.1.7 pad: If the sum of the other field lengths is less than 64 bytes, then the number of zero-valued pad
bytes are sufficient to make a 64-byte frame. Otherwise, the pad field is not present.

6.3.1.8 fcs: The 4-byte (frame check sequence) field whose 32-bit CRC covers the frame’s content. For RE 
content frames, the standard definition applies.

Figure 6.6—Subscription frame format

6

6

da

sa

— The station(s) receiving the frame (48-bit destination address)

— The station sending the frame (48-bit source station address) 

protocolType2

fcs4

subType1

— The 32-bit CRC for preceding fields

n pad — Pad to the avoid overly small frames

24 info[0]

24 info[1]

24 info[count–1]

24 (…)

count1

– Stream information blocks (see 6.4)

— Distinguishes RE frames from others (see 6.5.1)

— Distinguishes RequestRefresh from other RE frames (see 6.5.2)
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6.4 Common info field format

Many frame transports an array of one or more info[ ] fields, whose content is illustrated in Figure 6.7.

6.4.1 command: A 2-byte field that differentiates between database-update actions.

6.4.2 talkerID: A 6-byte field that identifies the stream’s talker.

6.4.3 plugID: A 16-bit field that specifies the plug identifier within the talker.

The concatenation of the 48-bit talkerID and 16-bit plugID fields forms a 64-bit streamID that uniquely 
identifies the classA multicast stream.

6.4.4 mcastID: A 6-byte (multicast identifier) field that routes frames betwee the talker and audience.

6.4.5 maxCycles: A 2-byte field that is updated by bridges, as the RequestRefresh flows from the talker to 
the listener, allowing the maximum number of delay cycles between the talker and listener stations to be 
known to the talker.

6.4.6 maxBw: A 4-byte field that specifies the level of negotiated classA bandwidth, measured in bytes of 
per-cycle content.

6.4.7 reserved: A 2-byte zero-valued field that is ignored.

Figure 6.7—Common info field format

maxCycles2 — Delay from the talker

maxBw4 — Maximum required bandwidth

reserved2 — Reserved

6 mcastID — Multicast destination label

6 talkerID — Multicast talker identifier

plugID2 — Resource within the talker

command2 — Database action command
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6.5 Unique identifier values

6.5.1 protocolType identifier

The clockSync (see 6.2) and subscription (see 6.3) frames are distinguished from other frames by their 
16-bit distinct protocolType value, as illustrated in Figure 6.8. The following 1-byte subType field further 
distinguishes between these uses (see 6.5.2).

6.5.2 subType identifier

Distinct subType identifiers distinguish between RE frame types, as specified by Table 6.1.

NOTE—The following protocolType-assignment text will ultimately be updated with assigned values.

Figure 6.8—protocolType field value

Table 6.1 — Assigned subType identifiers

Value Name

R
ow See Description

TBD CLOCK_SYNC 1 6.2 Demarcates boundaries between isochronous cycles.

192-255 E1394 2 C.2.2 Encapsulated IEEE 1394 packet (or portion of 1394 packet)

6 da

6 sa

2 protocolType

4 fcs

— Identifies content format

n serviceDataUnit — protocolType dependent

— Frame check sequence

— Destination MAC address

— Source MAC address

Assigned protocolType value: 
QR-ST

subType
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7. Clock synchronization

7.1 Clock-synchronization overview

7.1.1 Clock synchronization services

Clock synchronization involves the transmission and reception of clockSync frames interchanged between 
adjacent-span stations, using the state machines defined within this clause. When considered as a whole, 
these provide the following services:

a) Election. The grand clock master is elected from among the grand-clock-master capable stations.

b) Isolation. Timeouts identify the boundaries, beyond which RE services are not supported.

c) Clock-sync. Clock-slave stations are synchronized to the grand master station’s time reference.

7.1.2 Grand-master precedence

Grand-master precedence is based on the concatenation of multiple fields, as illustrated in Figure 7.1. The 
portTag value is used within bridges, but is not transmitted between stations.

Figure 7.1—Grand-master precedence

MSB
systemTag uniqueID hops portTag

LSB

sLevel systemNumber pLevel portNumber

Legend: 
sLevel: systemLevel hops: hopsCount pLevel: portLevel
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7.1.3 Clock-synchronization agents

Clock-synchronization information conceptually flows from a grand-master station to clock-slave stations, 
as illustrated in Figure 7.2a. A more detailed illustration shows pairs of synchronized clock-master and 
clock-slave components, as illustrated in Figure 7.2b.

7.1.4 Clock-synchronized pairs

Each bridge port provides clock-master and clock-slave agents, although both are never simultaneously 
active. External communications (see 7.2b) synchronize clock-slaves to clock-masters, as listed in Table 7.1.  

Figure 7.2—Hierarchical flows

Table 7.1—External clock-synchronization pairs

Grand master Clock master
agent

Clock slave
agent Clock slave Type of

synchronization

d1 – c1 – Station-to-bridge

– c0 b1 – Bridge-to-bridge

– c3 e1 –

– b0 – a0 Bridge-to-station

– b2 – a2

– b3 – a3

– c2 – d2

– e0 – f0

– e2 – f2

– e3 – f3

b0

b1

c0 c1 c2 c3

e0

e1

e2

S

S
e3

S

a) Clock synchronization flow

Legend: 
grand-master clock slave 
streaming data

G

G S

b2

b3

SS

S

S

b) Agents along the synchronization path

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b3 e3

e0

e1

e2

Legend: 
grand master slave station 
master agent slave agent 
internal coupling clock-synch flow

b2
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Internal communications distribute synchronized time from clock-slave agents b1, c1, and e1 to the other 
clock-master agents on bridgeB, bridgeC, and bridgeE respectively. However, bridge-internal port-to-port 
synchronization protocols are implementation-dependent and beyond the scope of this working paper.

Within a clock-slave, precise time synchronization involves adjustments of timer offset and rate values. The 
adjustments of the timer’s offset is called offset synchronization (see 7.1.6); the adjustments of the timer’s 
rate is called rate synchronization (see 7.1.8). Both involve calibration of local clock-master/clock-slave dif-
ferences and the propagation of cumulative differences in the clock-slave direction, as described by the C 
code of Annex J.

Time synchronization yields distributed but closely-matched timeOfDay values within stations and bridges. 
No attempt is made to eliminate intermediate jitter with bridge-resident jitter-reducing phase-lock loops 
(PLLs,) but application-level phase locked loops (not illustrated) are expected to filter high-frequency jitter 
from the supplied timeOfDay values

7.1.5 Clock-synchronization intervals

Clock synchronization involves the processing of periodic events. Three distinct time periods are involved, 
as listed in Table 7.2. The clock-period events trigger the update of free-running timer values; the period 
affects the timer-synchronization accuracy and is therefore constrained to be small. 

The send-period events trigger the interchange of clockSync frames between adjacent stations. While a 
smaller period (1 ms or 100 µs) could improve accuracies, the larger value is intended to reduce costs by 
allowing computations to be executed by inexpensive (but possibly slow) bridge-resident firmware.

The slow-period events trigger the computation of timer-rate differences. The timer-rate differences are 
computed over two slow-period intervals, but recomputed every slow-period interval. The larger 100 ms (as 
opposed to 10 ms) computation interval is intended to reduce errors associated with sampling of 
clock-period-quantized slow-period-sized time intervals. 

Table 7.2—Clock-synchronization intervals

Name Time Description

clock-period < 20 ns Time between timer-register value updates

send-period 10 ms Time between sending of periodic clockSync frames between adjacent stations

slow-period 100 ms Time between computation of clock-master/clock-slave rate differences
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7.1.6 Offset synchronization

Offset synchronization involves a subset of the time-synchronization components, as illustrated by 
white-colored boxes in Figure 7.5. Each clock consists of a progressing timeOfDay value, whose offset and 
rate are periodically adjusted. The free-running flexTimer timer is never reset; synchronization of stationE
(with respect to stationD) is accomplished by adjustments to the flexOffset and flexRate values within 
stationE.

The offset-synchronization protocols interchange parameters periodically, possibly every 10 ms. The 
lastFlexTime, deltaTime, and offsetTime values are sent periodically from the clock-master to the 
clock-slave. The lastFlexTime is sent periodically from the clock-slave to the clock-master, providing 
information necessary for the clock-master to produce a deltaTime value for the clock-slave.

The offset-compensation protocols for stationE adjust its myOffset value so that the instantaneous values of 
stationE.timeOfDay and stationD.timerOfDay are the same. Computations are performed on clockStrobe
reception and clockStrobe transmission.

As an option, an additional linkOffset value is available to manually compensate for mismatched 
transmit-link/receive-link duplex-cable delays on the clock-master side. The linkOffset value is expected be 
manually set when the cable mismatch is known through other mechanisms, such as specialized cable-char-
acterization equipment.

The station’s offsetTime value is constructed by adding the received clockStrobe.offsetTime, local myOffset, 
and local linkOffset values. This revised clockStrobe.offsetTime value is used within each station and is 
passed to the downstream neighbor (when such a neighbor is present).

Figure 7.3—Offset synchronization
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7.1.7 Cascaded offsets

The concept of cascaded offset values can be better understood by considering a simple 3-bridge example, as 
illustrated in Figure 7.4. The slave-agent in bridgeB is synchronized to its neighbor grand-master via 
clockSync frames sent on the connecting bidirectional span. Within bridgeB, the clock-slave agent passes 
the time directly to the clock-master agent. The slave-agent in bridgeC is synchronized to its neighbor 
clock-master via clockSync frames sent on the connecting bidirectional span. Other ports are similarly syn-
chronized, thus synchronizing the right-most clock-slave station to the left-most grand-master station.

To simplify this illustration, consider only the seconds portion of the flexTimer value within each station or 
bridge. These values may differ dramatically, based (perhaps) on the power-cycling or topology formation 
sequence. Thus, the grand-master could have a flexTimer value of 100 while its bridgeB neighbor has a 
flexTimer value of 500.

The myOffset value within bridgeB will converges to the value of −400, representing the differences 
between grand-master and bridgeB flexTimer values. The flexOffset value received from the grand-master is 
added to this myOffset value, so that bridgeB’s flexOffset becomes −390. The flexTimer and flexOffset values 
are added, to yield a resultant bridgeB timeOfDay value of 110, properly synchronized to the identical 
grand-master’s value.

Similarly, bridgeC is synchronized to bridgeB, bridgeD to bridgeC, and the clock-slave to bridgeD.

Parameter

name grand-master bridgeB bridgeC bridgeD clock-slave

number 1 2 3 4 5

flexTimer 100 500 -300 200 400

myOffset 10 -400 800 -500 -200

flexOffset 10 -390 410 -90 -290

timeOfDay 110

Representing: 
  myOffset[k+1] = flexTimer[k]−flexTimer[k+1];
  flexOffset[k+1] = flexOffset[k]+myOffset[k+1];
  timeOfDay[k] = flexTimer[k] + flexOffset[k];

Figure 7.4—Cascaded offsets (a possible scenario)
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7.1.8 Rate synchronization

Rate synchronization involves a subset of the time-synchronization components, as illustrated by 
white-colored boxes in Figure 7.5. The free-running baseTimer timer facilitate the determination of rate 
differences between the clock-master and clock-slave stations.

The rate-synchronization protocols interchange parameters periodically, but less frequently than the 
offset-synchronization protocols, possibly every 100 ms. The lastBaseTime value is sent periodically from 
the clock-master to the clock-slave. Nothing is returned from the clock-slave station.

The rate-compensation protocols for stationE adjust its myDiffRate value to accommodate for differences 
between the stationD.baseTimer and stationE.baseTimer rates. Computations are performed on clockStrobe
reception and clockStrobe transmission.

The station’s diffRate value is constructed by adding the received clockStrobe.diffRate and local myDiffRate 
values. This revised clockStrobe.diffRate value is used within each station and is passed to the clock-slave 
side neighboring station (if present).

Figure 7.5—Rate synchronization
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7.1.9 Cascaded rate differences

The concept of cascaded rate values can be better understood by considering a simple 3-bridge example, as 
illustrated in Figure 7.6. Within this figure, the myDiffRateN and diffRateN represent parts-per-million 
(PPM) normalized values of myDiffRate and diffRate respectively. 

The slave-agent in bridgeB is synchronized to its neighbor grand-master via clockSync frames sent on the 
connecting bidirectional span. Within bridgeB, the clock-slave agent passes the time directly to the 
clock-master agent. The slave-agent in bridgeC is synchronized to its neighbor clock-master via clockSync 
frames sent on the connecting bidirectional span. Other ports are similarly synchronized, thus synchronizing 
the right-most clock-slave station to the left-most grand-master station.

To simplify this illustration, consider only the parts-per-million (PPM) normalized rate values within each 
station or bridge. These values may differ significant, based (perhaps) on the nominal value or ambient tem-
perature. Thus, the grand-master could have a crystal deviation of +10 while its bridgeB neighbor has a 
crystal deviation of +100.

The myDiffRate value within bridgeB will converges to the value of −90 PPM, representing the differences 
between grand-master and bridgeB crystal accuracies. The diffRate value received from the grand-master is 
added to the myDiffRate value, so that bridgeB’s diffRate becomes −90 PPM. The diffRate and crystal devia-
tion values are additive, yielding a resultant bridgeB flexTimer deviation of 10 PPM, properly synchronized 
to the identical grand-master’s value.

Similarly, the rate of bridgeC is synchronized to bridgeB, bridgeD to bridgeC, and the clock-slave to 
bridgeD.

Parameter

name grand-master bridgeB bridgeC bridgeD clock-slave

number 1 2 3 4 5

crystal deviation +10 PPM +100 PPM −100 PPM −75 PPM   +75 PPM

myDiffRateN    0 PPM  −90 PPM  200 PPM −25 PPM −150 PPM

diffRateN    0 PPM  −90 PPM  110 PPM +85 PPM   −65 PPM

flexTimer
deviation

10 PPM

Representing: 
  myDiffRateN[k+1] = flexRate[k]−flexRate[k+1];
  diffRate[k+1] = diffRate[k]+myDiffRate[k+1];
  flexTimerDeviation[k] = crystalDeviation[k] + diffRate[k];

Figure 7.6—Cascaded rate differences (a possible scenario)
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7.1.10 Rate-difference effects

If the absence of rate adjustments, significant timeOfDay errors can accumulate between send-period 
updates, as illustrated on the left side of Figure 7.7. The 2 ms deviation is due to the cumulative effect of 
clock drift, over the 10 ms send-period interval, assuming clock-master and clock-slave crystal deviations of 
−100 PPM and +100 PPM respectively.

While this regular sawtooth is illustrated as a highly regular (and thus perhaps easily filtered) function, 
irregularities could be introduced by changes in the relative ordering of clock-master and clock-slave trans-
missions, or transmission delays invoked by asynchronous frame transmissions. Tracking peaks/valleys or 
filtering such irregular functions are thought unlikely to yield similar timeOfDay deviation reductions.

The differences in rates could easily be reduced to less than 1 PPM, assuming a 200 ms measurement inter-
val (based on a 100 ms slow-period interval) and a 100 ns arrival/departure sampling error. A clock-rate 
adjustment at time 100 ms could thus reduce the clock-drift related errors to less than 5 ns. At this point, the 
timer-offset measurement errors (not clock-drift induced errors) dominate the clock-synchronization error 
contributions.

Figure 7.7—Rate-adjustment effects
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7.1.11 flexTimer implementation example

The selection of the best time-of-day format is oftentimes complicated by the desire to equate the clock for-
mat granularity with the granularity of the implementation’s ‘natural’ clock frequency. Unfortunately, the 
‘natural’ frequency within a multimodal {1394, 802-100Mb/s, 802.3 1Gb/s} implementation is uncertain, 
and may vary based on vendors and/or implementation technologies.

The difficulties of selecting a ‘natural’ clock-frequency can be avoided by realizing that any clock with suf-
ficiently fine resolution is acceptable. Flexibility involves using the most-convenient clock-tick value, but 
adjusting the timer advance rate associated with each clock-tick occurrence.

The same mechanism easily supports both near-arbitrary clocking rates and fine-grained rate-adjustments, 
needed to support timer-synchronization protocols, as illustrated in Figure 7.8. Within this figure, the shaded 
bytes represent values that can safely be hardwired to zero with insignificant loss of accuracy.

This illustration is not intended to constrain implementations, but to illustrate how the system’s clock and 
timer formats can be optimized independently. This allows the timeOfDay timer format to be based on 
arithmetic convenience, timing precision, and years-before-overflow characteristics (see Annex E).

Figure 7.8—flexTimer implementation example
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7.1.12 An alternative baseTimer implementation

An alternative implementation could implement the baseTimer-related circuitry in hardware. For such 
implementations, the associated firmware can be simplified, since the multiplies are eliminated from the 
most frequently executed loop (see Annex J).

A possible baseTimer hardware implementation is much simpler than the fully adjustable timer implementa-
tion, due to the absence of offset-compensation, rate-compensation, and seconds-accumulation hardware, as 
illustrated in Figure 7.9. Within this figure, the shaded bytes represent values that can safely be hardwired to 
zero with insignificant loss of accuracy.

7.2 Terminology and variables

7.2.1 Common state machine definitions

The following state machine inputs are used multiple times within this clause.

CYCLES 
The number of isochronous cycles within each second; defined to be 8,000.

NULL 
Indicates the absence of a value and (by design) cannot be confused with a valid value.

queue values 
Enumerated values used to specify shared queue structures. 

Q_CRX_SYNC—The identifier associated with the received clockSync frames. 
Q_CTX_SYNC—The identifier associated with the transmitted clockSync frames. 
Q_ARX_REQ*—The identifier associated with the received subscription request frames. 
Q_ATX_REQ*—The identifier associated with the transmitted subscription request frames. 
Q_ATX_RES*—The identifier associated with the transmitted ResponseError frames. 
Q_ARX_STR*—The identifier associated with the talker agent’s streaming input. 
Q_ATX_STR*—The identifier associated with the talker agent’s streaming output.

NOTE—Those queue identifiers with an ‘*’ are used in other clauses, but are described above. This allows all queue 
identification values in one location, rather than interleaving their definitions throughout this working paper.

Figure 7.9—baseTimer implementation example
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7.2.2 Common state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.

currentTime 
A value representing the current time.

7.2.3 Common state machine routines

ClockSyncArrived(stationInfoPtr, portInfoPtr ) 
Snapshots the clockSync frame arrival time, on specified station and port (see Annex J).

ClockSyncDeparted(stationInfoPtr, portInfoPtr ) 
Snapshots the clockSync frame departure time, on specified station and port (see Annex J).

ClockSyncTransmit(stationInfoPtr, portInfoPtr, clockSyncPtr ) 
Forms a clockSync frame for transmission (see Annex J).

ClockSyncReceive(stationInfoPtr, portInfoPtr, clockSyncPtr, rateAdjust ) 
Processes a clockSync frame after reception (see Annex J).

Dequeue(queue) 
Returns the next available frame from the specified queue. 

frame—The next available frame. 
NULL—No frame available.

Enqueue(queue, frame) 
Places the frame at the tail of the specified queue.

Min(value1, value2) 
Returns the numerically smaller of two values.

QueueEmpty(queue) 
Indicates when the queue has emptied. 

TRUE—The queue has emptied. 
FALSE—(Otherwise.)

TimerTick(stationInfoPtr) 
Updates flexTimer (and baseTimer) entities on each clock tick (see Annex J).

7.2.4 Variables and literals defined in other clauses

This clause references the following parameters, literals, and variables defined in Clause TBD:

TBDs

7.3 Clock synchronization state machines

7.3.1 ClockCore state machine

7.3.1.1 ClockCore state machine definitions

The following state machine inputs are used multiple times within this clause:

None.

7.3.1.2 ClockCore state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.
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clockPeriod 
The duration of a synchronized timer update interval. 

clockPeriod < 20 ns
currentTime 

See 7.2.2.
clockDeviation 

The deviation from nominal frequency of the station-local crystal-stabilized clock.
msCount 

A count that is incremented at the end of each 1 millisecond interval.
msTime 

The start time of the current 1 millisecond timing interval.
nominalFrequency 

The nominal frequency of the station-local crystal-stabilized clock.
tickTime 

A time snapshot taken at the start of each clockPeriod interval.

7.3.1.3 ClockCore state machine routines

TimerTick(stationInfoPtr) 
See 7.2.3.

7.3.1.4 ClockCore state table

The ClockAgent state machine calls other C-code routines, as specified in Table 7.3. A purpose of the 
ClockAgent state machine is to ensure correctness of the other routines, by ensuring their indivisible 
executions. The notation used in the state table is described in 3.4.

Row 7.3-1: Compute the clockPeriod, based on the nominal frequency and deviation.

Row 7.3-2: Update the flexTimer and baseTimer once every clockPeriod interval. 
Row 7.3-3: Update the millisecond counter once every millisecond. 
Row 7.3-4: Otherwise, no operations are performed.

Table 7.3 — ClockCore state table

Current

R
ow

Next

state condition action state

START — 1 clockPeriod = 
 1.0 / (nominalFrequency * 
 (1.0 + (deviation / 1000000.)))

START

FIRST (currentTime − tickTime) >= clockPeriod 2 TimerTick(siPtr); 
tickTime = currentTime;

FIRST

(currentTime − msTime) >= .001 3 msTime = currentTime; 
msCount += 1;

— 4 —
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7.3.2 ClockPort state machine

7.3.2.1 ClockPort state machine definitions

The following state machine inputs are used multiple times within this clause.

None.

7.3.2.2 ClockPort state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.

frame 
The contents of a clockSync frame.

lastInterval 
A saved value of rateInterval, when the last rate-interval update was scheduled to occur.

rateInterval 
A counter that increments on transitions of 100 ms rate-update intervals.

rateCount 
A milliseconds-snapshot taken during the clockSync receive processing. 
The rateCount value paces the relatively infrequent rate-update computations.

rxClockLast 
The previously observed value of rxClockSync, used to detect changes in this toggling value.

rxClockSync 
An indication whose value is toggled on the PHY-sensed arrival of each clockSync frame. 
This value is toggled before a frame can be dequeued from the Q_CRX_SYNC queue.

rxCount 
A milliseconds-snapshot taken during clockSync receive processing. 
The rxCount value paces the detection of clockSync-silence timeouts.

sendCount 
A milliseconds-snapshot taken during the clockSync transmission processing. 
The sendCount value paces the normal clockSync frame transmissions.

selectCount 
A value that tracks siPtr−>selectCount, to facilitate detection of station-precedence changes.

sinkCount 
A milliseconds-snapshot taken during the clockSync reception and timeout processing. 
The sinkCount value paces the infrequent clockSync-reception timeout processing.

txClockSync 
An indication whose value is toggled on the PHY-sensed departure of each clockSync frame. 
This value is toggled shortly after a frame has departed from the Q_CTX_SYNC queue.

txClockLast 
The previously observed value of txClockSync, used to detect changes in this toggling value.

7.3.2.3 ClockPort state machine routines

ClockSyncArrived(stationInfoPtr, portInfoPtr )
ClockSyncDeparted(stationInfoPtr, portInfoPtr )
ClockSyncTransmit(stationInfoPtr, portInfoPtr, clockSyncPtr )
ClockSyncReceive(stationInfoPtr, portInfoPtr, clockSyncPtr, rateAdjust )
ClockSyncTransmit(stationInfoPtr, portInfoPtr, clockSyncPtr ) 

See 7.2.3.
Dequeue(queue)
Enqueue(queue, frame) 

See 7.2.3.
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7.3.2.4 ClockPort state table

The ClockPort state machine calls other C-code routines, as specified in Table 7.4. A purpose of the 
ClockPort state machine is to ensure correctness of the other routines, by ensuring their timely and 
indivisible executions. The notation used in the state table is described in 3.4.

Row 7.3-1: When a clock-sync frame arrives, mark its arrival time and process. 
Row 7.3-2: Process the PHY-generated signal to determine when the clockSync frame arrived. 
Row 7.3-3: Process the PHY-generated signal to determine when the clockSync frame departed. 
Row 7.3-4: Transmit quickly when the grand-master selection is changing. 
Row 7.3-5: Transmit routinely when the grand-master selection has stabilized. 
Row 7.3-6: Trigger the rate adjustments on approximate 100 ms intervals. 
Row 7.3-7: A port timeout occurs in the continued absence of clockSync frame arrivals. 
Row 7.3-8: Otherwise, wait for the next event to occur.

Row 7.3-9: Restart the rate interval condition after the last rate-measurement completion. 
Row 7.3-10: Otherwise, process the received clockSync frame without rate-interval measurements.

Row 7.3-11: Restart the receive-timeout counter after processing each clockSync frame.

Table 7.4 — ClockPort state table

Current

R
ow

Next

state condition action state

START (frame = Dequeue(Q_CRX_SYNC))
!= NULL

1 rxCount = sendCount; NEAR

rxClockSync != rxClockLast 2 ClockSyncArrived(siPtr, piPtr); 
rxClockLast = rxClockSync

START

txClockSync != txClockLast 3 ClockSyncDeparted(siPtr, piPtr); 
txClockLast = txClockSync

selectCount != siPtr−>selectCount 
&& (msCount − sendCount) >= 1

4 selectCount = siPtr−>selectCount; 
sendCount = siPtr−>msCount;
ClockSyncTransmit(siPtr, piPtr, &frame); 
Enqueue(Q_CTX_SYNC, frame);(siPtr−>msCount − sendCount) >= 10 5

(siPtr−>msCount − rateCount) >= 100 6 rateInterval + = 1;

(siPtr−>msCount − sinkCount) >= 50 7 ClockSyncReceive(siPtr, piPtr,NULL, 0); 
sinkCount = siPtr−>msCount;

— 8 —

NEAR lastInterval != rateInterval 9 ClockSyncReceive(siPtr, piPtr, &frame, 1); 
lastInterval = rateInterval;

FINAL

— 10 ClockSyncReceive(siPtr, piPtr, &frame, 0);

FINAL — 11 rxCount = sinkCount = siPtr−>msCount; START
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8. Subscription state machines

Subscription state machines are responsible for performing talker-agent and listener-agent duties.

8.1 Terminology and variables

8.1.1 Common state machine definitions

The following state machine definitions are used multiple times within this clause.

NULL 
Indicates the absence of a value and (by design) cannot be confused with a valid value.

subtype specifiers 
ST_ERROR—A control response that provides an SRP refresh-operation error indication. 
ST_FRESH—A control request that provides blocks of SRP refresh parameters. 
ST_LEAVE—A control request that provides a block of SRP leave parameters.

8.1.2 Common state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.

localTimer 
A 64-bit timer representing the current 64-bit internal free-running time-of-day value.

myMacAddress 
MAC address of the bridge.

refreshFlag 
A variable that is toggled periodically; each change activates refresh interval activities.

srpState 
The information associated with an element of talker-agent state. This includes: 

maxBw—The maximum bandwidth of the associated stream. 
maxCycles—The maximum cycles to the attached listener. 
refreshTime—The time of the last observed RequestRefresh frame. 
srcPortID—The port identifier of the assumed source. 
srcMac—The address of the downstream bridge. 
state—The connectivity state, one of the following: 

IS_JOINING—Stream communications are now using this path. 
IS_LEAVING—Stream communication are no longer using this path. 
IS_FAILED—Stream communications have failed; message must be sent. 
IS_ACTIVE—Stream communications remain active. 
IS_PASSIVE—The SRP state is queued for deletion, behaving as though nonexistent. 

streamTime—The time of the last observed stream flow. 
streamID—The streamID of the associated stream. 
subCode—The error subcode associated with the IS_FAILED state.

NOTE—This clause should be skipped on the first reading (continue with Annex B). 
The following state machines were previously highly preliminary and subject to change. 
They have not yet been updated to track on recent changes to the SRP, so they are also obsolete. 
Thus, the structure and formatting is useful but the details should be ignored.
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8.1.3 Common state machine routines

StateSearch(streamID) 
Returns the talker-state information associated with the specified stream value. 

srpState—matching talker-agent state 
NULL—no matching state found

8.1.4 Variables and literals defined in other clauses

This clause references the following parameters, literals, and variables defined in Clause 7

Dequeue(queue)
Enqueue(queue, frame)
localTimer
Q_ARX_REQ
Q_ATX_REQ
Q_ARX_STR
Q_ATX_STR
Q_ATX_RES

8.2 Subscription state machines

8.2.1 AgentAction state machine

The AgentAction state machine controls the sequencing of AgentTalker, AgentTimer, and AgentListener
state machines. There are multiple instances of these state machine, one per bridge port, each of which is 
invoked. A refresh flag is also complemented at a regular interval.

The following subclauses describe parameters used within the context of this state machine.

8.2.1.1 AgentAction state machine definitions

–none–

8.2.1.2 AgentAction state machine variables

localTimer
refreshFlag 

See 8.1.2.
refreshTime 

The time when the last refresh was performed.
refreshTimeout 

The time interval between successive refresh operations.

8.2.1.3 AgentAction state machine routines

AgentListeners( ) 
A routine that calls all of the AgentListener state machines (one for each bridge port).

AgentTalkers( ) 
A routine that calls all of the AgentTalker state machines (one for each bridge port).

AgentTimers( ) 
A routine that calls all of the AgentTimer state machines (one for each bridge port).
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8.2.1.4 AgentAction state table

The AgentAction state machine is specified in Table 8.1.

Row 8.1-1: Execute each of the AgentTalker, AgentTimer, and AgentListener state machines.

Row 8.1-2: Complement the refresh flag at the end of each refresh interval. 
Row 8.1-3: Otherwise, wait until the arrival of the next refresh interval.

8.2.2 AgentTalker state machine

The AgentTalker state machine monitors received RequestRefresh and RequestLeave frames. There are 
multiple AgentTalker state machines per bridge, one for each of the bridge ports.

The following subclauses describe parameters used within the context of this state machine.

8.2.2.1 AgentTalker state machine definitions

IS_FAILED
IS_JOINING
IS_LEAVING 

See 8.1.2.
NULL 

Indicates the absence of a value and (by design) cannot be confused with a valid value.
Q_ARX_REQ
Q_ARX_STR
Q_ATX_STR 

See 8.1.4.
ST_REFRESH
ST_LEAVE 

See 8.1.1.
subCode field values 

SC_DA_LOST—No route to the specified destination is present. 
SC_DA_MINE—The route to the specified destination loops back. 
SC_BAD_HERE—This port’s SRP state has different parameters than the refresh request. 
SC_BW_LIMIT—The requested stream bandwidth would exceed 75% of the link capacity. 
SC_BAD_THERE—Another port’s SRP state has different parameters than the refresh request. 
SC_UP_FULL—The associated listener port has insufficient space to support the refresh request.

Table 8.1 — AgentAction state table

Current

R
ow

Next

state condition action state

START — 1 AgentTalkers(); 
AgentTimers(); 
AgentListeners();

LOOP

TIMER (localTimer – refreshTime) 
  >= refreshTimeout

2 refreshTime = localTimer; 
refreshFlag ^= 1;

FINAL

— 3 —
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8.2.2.2 AgentTalker state machine variables

block 
A data structure representing the contents of a RequestRefresh info block.

frame 
The received RequestRefresh/RequestLeave control frame (see 6.3).

linkCapacity 
A variable representing the operational bandwidth of the link. 
(This can be affected by autonegotiation protocols and capabilities of the span partners.)

localTimer 
See 8.1.4.

matching 
A variable representing the presence of matching SRP state within another talker-agent port.

myMacAddress 
See 8.1.2.

oldState 
The information associated with a closely matching element of another talker-agent state.

refreshTime 
A variable representing the arrival time of the preceding RequestRefresh message.

srpState 
See 8.1.2.

tstState 
The information associated with a closely matching element of this talker-agent state.

stream 
A variable representing a stream identifier.

8.2.2.3 AgentTalker state machine routines

Dequeue(queue) 
See 8.1.4.

FullSearch(srpState, info) 
Searches through other talker agents searching for an entry with matching info parameters. 
The search starts at the srpState-specified entry and returns each matching entry at most once. 
The search ignores the srpState entries with a phase of IS_FAILED or IS_PASSIVE. 

tstState—Another talker agent has the same streamID and matching state. 
NONE—Another talker agent has the same streamID, but different state. 
NULL—No more other-talker agents have the same streamID.

InfoSelect(frame, i) 
Returns the streamID-specified information block within the RequestRefresh frame. 

info—selected frame parameters 
NULL—no matching parameters found

LinkBandwidth( ) 
Returns the cumulative link bandwidth associated with the talker agent. 
(This excludes bandwidths associated with entries in the IS_FAILED phase.)

ListenerListing(srpState ) 
Publishes the srpState information in the associated listener agent registry. 

srpState—Completes sucessfully. 
NULL—(Otherwise).

SrcRoute(da) 
Returns the port identifier passed through when routed to the da-specified MAC. 

positive—matching portID value 
negative—no matching port found

StateSearch(streamID) 
See 8.1.3.
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StateForm(streamID, bandwidth) 
Allocates and initializes the talker-state information associated with the argument values. 

srpState—matching talker-agent state 
NULL—no state-space available

8.2.2.4 AgentTalker state table

The AgentTalker state machine is responsible for establishing and demolishing paths, as specified in 
Table 8.2. In the case of any ambiguity between the text and the state machine, the state machine shall take 
precedence. The notation used in the state table is described in 3.4.

Table 8.2 — AgentTalker state table

Current

R
ow

Next

state condition action state

START (frame = Dequeue(Q_ARX_REQ))
  != NULL

1 — PARSE

— 2 — RETURN

PARSE frame.subtype = = ST_FRESH 3 info = NULL; LOOP

frame.subtype = = ST_LEAVE 4 tstState = StateSearch( 
  (info.talkerID<<16) | info.portID);

LEAVE

— 5 — RETURN

LOOP (info = InfoSelect(frame, info)) 
  != NULL

6 tstState = StateSearch( 
  (info.talkerID<<16) | info.portID);

TEST

— 7 — RETURN

TEST tstState = = NULL 8 — FORM

tstState.phase = = IS_FAILED 9 — LOOP

tstState.mcastID ! = block.mcastID 10 — FORM

tstState.maxCycles ! = block.maxCycles 11

tstState.maxBw ! = block.maxBw 12

tstState.phase = = IS_LEAVING 13 tstState.phase  = IS_ACTIVE POKE

— 14 —

POKE — 15 tstState.refreshTime = localTimer; LOOP

FORM (srpState = StateForm( )) != NULL 16 srpState.mcastID =  info. mcastID; 
srpState.talkerID  = info.talkerID; 
srpState.plugID  = info.plugID; 
srpState.maxCycle = info.maxCycles; 
srpState.maxBw  = info.maxBw; 
oldState = FullSearch(NULL, info);

CHECK

— 17 — LOOP
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Row 8.2-1: Dequeue a received subscription-request message, if available. 
Row 8.2-2: Otherwise, wait for the next subscription-request message.

Row 8.2-3: Process received RequestRefresh messages. 
Row 8.2-4: Process received RequestLeave messages. 
Row 8.2-5: Discard unrecognized refresh messages.

Row 8.2-6: Find state associated with the selected blocks within the RequestRefresh messages. 
Row 8.2-7: Stop processing after the last RequestRefresh block has been processed.

Row 8.2-8: If a matching entry cannot be found, a new one must be formed. 
Row 8.2-9: The refresh is ignored while the matching entry is dedicated to error reporting. 
Row 8.2-10: If the matching entry has a distinct multicast identifier, the refresh is erroneous. 
Row 8.2-11: If the matching entry has a distinct maxCycles count, the refresh is erroneous. 
Row 8.2-12: If the matching entry has a distinct maximum bandwidth, the refresh is erroneous 
Row 8.2-13: If the state was leaving, it changes to active. 
Row 8.2-14: Otherwise, the state (joining or active) remains unchanged.

CHECK tstState != NULL 18 srpState.subCode = SC_BAD_HERE; NACK

port < 0 19 srpState.subCode = SC_DA_NONE;

port = = myPortID 20 srpState.subCode = SC_DA_MINE;

LinkBandwidth( ) > 0.75 * linkCapacity 21 srpState.subCode = SC_BW_LIMIT;

oldState = = DIFF 22 srpState.subCode = SC_BAD_THERE

— 23 srpState.refreshTime = localTimer; 
srpState.streamTime = localTimer;

PEEK

NACK — 24 srpState.phase = IS_FAILED LOOP

PEEK oldState ! = NULL 25 srpState.phase = IS_ACTIVE; TOSS

ListenerListing(srpState) == NULL 26 srpState.subCode = SC_UP_FULL; NACK

— 27 srpState.phase = IS_JOINING; LOOP

TOSS oldState.phase = = IS_LEAVING 28 oldState.phase = IS_PASSIVE; LAST

— 29 —

LAST (oldState = FullSearch(oldState, info)) 
  != NULL

30 — TOSS

— 31 — LOOP

LEAVE tstState = = NULL 32 — RETURN

tstState.phase = = IS_FAILED 33

FullSearch(NULL, info) = = NULL 34 tstState.phase = IS_LEAVING;

— 35 Release(tstState);

Table 8.2 — AgentTalker state table

Current

R
ow

Next

state condition action state
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Row 8.2-15: Update the refresh timeout when a matching entry is observed.

Row 8.2-16: If storage is available, update the new state based on the supplied info field parameters. 
Row 8.2-17: If no storage is available, nothing can be done and the info state is discarded. 
(A timeout is necessary to detect this discard, since no storage state is available for error reporting purposes.)

Row 8.2-18: With a matching/inconsistent same-port state, the appropriate error-status code is returned. 
Row 8.2-19: If no upstream port can be found, the appropriate error-status code is returned. 
Row 8.2-20: If the upstream port is one’s self, the appropriate error-status code is returned. 
Row 8.2-21: If the cumulative bandwidth limit is exceeded, the appropriate error-status code is returned. 
Row 8.2-22: With a matching/inconsistent other-port state, the appropriate error-status code is returned. 
Row 8.2-23: Otherwise, the timeouts are reset before the refresh is accepted.

Row 8.2-24: The SRP state is marked to communicate the failure condition.

Row 8.2-25: If matching state is found on another talker agent, this port’s state is set to active. 
Row 8.2-26: Otherwise, this port’s state is set to joining. 
(This triggers the near-immediate transmission of a limited refresh message, to first establish the stream.)

Row 8.2-28: If an existing entry is marked as leaving, its state is changed to passive to ensure removal. 
(This talker agent is joining, so the connection remains and there is no need to announce another’s leaving.) 
Row 8.2-29: Otherwise, the existing entry is ignored.

Row 8.2-30: Check to confirm the presence an another existing entry. 
Row 8.2-31: Or, terminate the search in the absence of another existing entry.

Row 8.2-32: If no matching to the leaving request is found, the leave request is ignored. 
Row 8.2-33: If a matching error response is found, the leave request is ignored. 
Row 8.2-34: If no other port has an active request, the leave request is accepted. 
Row 8.2-35: If another port has an active request, this leave request can be safely ignored.

8.2.3 AgentTimer state machine

The AgentTimer state machine monitors received RequestRefresh and RequestLeave frames. There are 
multiple AgentTimer state machines per bridge, one for each of the bridge ports.

The following subclauses describe parameters used within the context of this state machine.

8.2.3.1 AgentTimer state machine definitions

IS_ACTIVE
IS_FAILED 

See 8.1.2.
NULL 

Indicates the absence of a value and (by design) cannot be confused with a valid value.
Q_ATX_RES
Q_ARX_STR
Q_ATX_STR 

See 8.1.4.
ST_ERROR 

See 8.1.1.
A subtype specifier that distinguishes the ResponseError frame from other RE frames.
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8.2.3.2 AgentTimer state machine variables

frame 
The received streaming classA frame or generated SRP ResponseError frame (see 6.1).

info 
A data structure representing the contents of a RequestRefresh/RequestLeave info block.

localTimer 
See 8.1.4.

myMacAddress 
See 8.1.2.

refreshTime 
A variable representing the arrival time of the preceding RequestRefresh message.

refreshTimeout 
A variable representing a timeout interval for RequestRefresh messages.

srpState 
See 8.1.2.

stream 
A variable representing a stream identifier.

8.2.3.3 AgentTimer state machine routines

CastSearch(mcastID) 
Returns the talker-state information associated with the specified multicast identifier. 

srpState—matching talker-agent state 
NULL—no matching state found

Dequeue(queue)
Enqueue(queue, frame) 

See 8.1.4.
QueueHasSpace(index) 

Indicates whether space is available for frame transmissions. 
TRUE—Space is available. 
FALSE—(Otherwise.)

StateSearch(streamID) 
See 8.1.3.

StateSelect(index) 
Returns the talker-agent state associated with the specified index. 

info—matching talker-agent state 
NULL—no state-space available

StateToss(index) 
Discards talker-state information associated with the argument value.
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8.2.3.4 AgentTimer state table

The AgentTimer state machine is responsible for reporting timeout and upstream-communicated errors, as 
specified in Table 8.3. In the case of any ambiguity between the text and the state machine, the state machine 
shall take precedence. The notation used in the state table is described in 3.4.

Table 8.3 — AgentTimer state table

Current

R
ow

Next

state condition action state

START (frame = Dequeue(Q_ARX_STR))
  != NULL

1 srpState = CastSearch(frame.da); FLOW

(frame = Dequeue(Q_ARX_RES))
  != NULL

2 info = frame.info; 
tstState = StateSearch( 
  (info.talkerID<<16) | info.portID);

SERVE

— 3 srpState = NULL LOOP

FLOW srpState == NULL 4 — START

— 5 Enqueue(Q_ATX_STR, frame); 
srpState.streamTime = localTimer;

SERVE tstState ! = NULL 6 tstState.phase = IS_FAILED; 
tstState.subCode = frame.subCode;

START

— 7 —

LOOP (srpState = StateSelect(srpState)) 
  != NULL

8 — TIMES

— 9 — RETURN

TIMES srpState.phase = = IS_FAILED 10 — NEAR

srpState.phase = = IS_JOINING 11 — LOOP

srpState.phase = = IS_LEAVING 12

srpState.phase = = IS_PASSIVE 13 StateToss(srpState);

(localTimer – srpState.refreshTime) >= 
  refreshTimeout

14

(localTimer – srpState.streamTime) >= 
  dataTimeout

15

— 16 —

NEAR QueueHasSpace(Q_ATX_RES) 17 frame.da = srpState.srcMac; 
frame.sa = myMacAddress; 
frame.subType = ST_ERROR; 
frame.subCode = srpState.subCode; 
frame.streamId = srpState.streamID; 
frame.maxBw = srpState.maxBw; 
frame.cycles = srpState.maxCycles; 
Enqueue(Q_ATX_RES, frame); 
StateToss(srpState);

LOOP

— 18 —
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Row 8.3-1: Monitor the received stream flow, as frames pass through. 
Row 8.3-2: Process received error messages, when they become available. 
Row 8.3-3: Otherwise, aging timeouts are invoked.

Row 8.3-4: Stream flows are not forwarded in the absence of matching state. 
Row 8.3-5: Otherwise, stream flows are monitored and flow downstream.

Row 8.3-6: In the presence of matching talker-agent state, the stream passes through. 
Row 8.3-7: In the absence of matching talker-agent state, the stream passes through.

Row 8.3-8: Select each talker-state element associated with the port. 
Row 8.3-9: Stop when all talker-state elements have been processed.

Row 8.3-10: A failed entry is processed distinctively. 
Row 8.3-11: The joining phase indications has no timeout. 
Row 8.3-12: The leaving phase indications has no timeout. 
Row 8.3-13: The passive phase indication has been effectively discarded, so discard it immediately. 
Row 8.3-14: In the absence of sustained refresh messages, the active SRP state is discarded. 
Row 8.3-15: In the absence of sustained stream flows, the active SRP state is discarded. 
Row 8.3-16: Otherwise, no timeout actions are required.

Row 8.3-17: In the presence of a failed phase indication, a ResponseError is sent downstream. 
Row 8.3-18: Otherwise, no action is taken.
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8.2.4 AgentListener state machine

The AgentListener state machine generates RequestRefresh and RequestLeave control frames. There are 
multiple AgentListener state machines on each bridge, one is associated with each of the bridge ports.

The following subclauses describe parameters used within the context of this state machine.

8.2.4.1 AgentListener state machine definitions

Q_ATX_REQ 
See 8.1.4.

IS_PASSIVE 
See 8.1.2.

NULL 
Indicates the absence of a value and (by design) cannot be confused with a valid value.

8.2.4.2 AgentListener state machine variables

frame 
An SRP control frame.

localTimer 
See 8.1.4.

myMacAddress 
See 8.1.2.

refreshTime 
A variable representing the transmission time of the preceding RequestRefresh message.

refreshTimeout 
A variable representing a timeout interval for RequestRefresh messages.

refreshList 
A list of srpState entries prepared for upstream transmission.

srpState 
See 8.1.2.

8.2.4.3 AgentListener state machine routines

Enqueue(queue, frame) 
See 8.1.4.

EnqueueList(queue, list) 
Transfers content from the rpState lists into one or more frames. 
Each of these frames is then placed into the specified queue.

JoiningList( ) 
Forms a list of the joining-phase entries from the listener agent’s state array.

JoiningToActive(list ) 
Within all listed entries, each phase value of IS_JOINING is changed to IS_ACTIVE.

QueueHasSpace(index) 
Indicates whether space is available for frame transmissions. 

TRUE—Space is available. 
FALSE—(Otherwise.)

RefreshList( ) 
Forms a list of the joining-phase and active-phase entries from the listener agent’s state array.

ReviseListenerList( ) 
Revises the listener list entries to ensure consistency with distributed AgentTalker state content.
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8.2.4.4 AgentListener state table

The AgentListener state machine is responsible for generating upstream RequestRefresh and RequestLeave
frames, as specified in Table 8.4. In the case of any ambiguity between the text and the state machine, the 
state machine shall take precedence. The notation used in the state table is described in 3.4.

Row 8.4-1: Refresh the listener list, ensuring consistency with distributed AgentTalker state content. 
Row 8.4-2: In the presence of transmission-queue storage, transmissions are enabled. 
Row 8.4-3: Otherwise, transmissions are inhibited.

Row 8.4-4: When periodically enabled, the list of joining and active states is sent. 
Row 8.4-5: Leave requests are checked; distinct ones cause a RequestListen frame to be sent. 
Row 8.4-6: When entries are found, the list of joining states is sent. 
Row 8.4-7: Otherwise, no talker-agent refresh/leave messages are transmitted.

Row 8.4-8: Enqueue the refresh-list entries for eventual transmission. 
Afterwards, change the phase from joining to active, to inhibit unnecessary future transmissions.

Table 8.4 — AgentListener state table

Current

R
ow

Next

state condition action state

START — 1  ReviseListenerList(); FIRST

FIRST QueueHasSpace(Q_ARX_REQ) 2  — TIMER

— 3  — RETURN

CHECK localTimer >= 
  (refreshTime + refreshTimeout) && 
((refreshList= RefreshList( )) != NULL)

4 refreshTime = localTimer; FRESH

srpState = QueueHasLeave( ) 5 frame.da = upstreamAddress;
frame.sa = myMacAddress; 
frame.info = srpState.info;
EnqueueFrame(Q_ATX_REQ, frame); 
srpState.phase = IS_PASSIVE;

START

(refreshList = JoiningList( )) != NULL 6 — FRESH

— 7 — RETURN

FRESH — 8 EnqueueList(Q_ATX_REQ, refreshList ); 
JoinToActive(refreshList);

START
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9. Transmit state machines (proposal 1)

9.1 Pacing overview

9.1.1 Delays

The preferred topologies consists entirely of paced bridges, as illustrated in Figure 9.1a. Within such 
topologies, a frame transmitted by station a0 in cycle[n] incurs fixed nominal delays while passing through 
bridges. Thus, this frame nominally departs bridgeB in cycle[n+2], bridge C in cycle[n+4], and bridgeE in 
cycle[n+6]. 

Within Figure 9.1a, the actual transmission times can vary from their nominal targets, due to contention with 
other traffic. Each bridge compensates for early and late arrivals, so that the extent of deviations from nomi-
nal on link b1-to-c0 are the same as those on link e0-to-f 0.

Within Figure 9.1b, an intermediate basic bridge is assumed. Output from bridgeC is therefore downgraded 
from classA to classB, to avoid degradation of well-paced traffic. Thus, the fully-paced properties of 
bridgeE still apply to possible f3-to-f 0 traffic (not illustrated).

The uncertainty of cycle p and q cycle delays in Figure 9.1b are due to passing through the non-paced 
bridgeC. Although much of this traffic would arrive earlier, some of the traffic could be delayed up to the 
nominal delays of Figure 9.1a. In more complex topologies, such delays could exceed the nominal delays 
through paced bridges, due to bunching effects (see Annex F).

To support such topology, this working paper mandates that compliant end stations provide larger elasticity 
buffers (see TBD) than required within fully paced topologies. However, defining topology restrictions to 
ensure elasticity-buffer sufficiency is beyond the scope of this working paper.

NOTE—Multiple bunch-avoiding pacing protocols are presented for consideration: 
a) Clause 9 (this clause) presents a pseudo-synchronous transmission model. 
b) Clause 10 presents a cross-flow shaper transmission model.

Figure 9.1—Topology-dependent pacing delays

a) Full pacing topology
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9.1.2 Paced 1 Gb/s classA flows

Pacing involves sending accumulated classA traffic once every isochronous cycle, rather than allowing 
larger (typically an MTU) frames to be accumulated. After each cycle’s classA traffic has been sent, the 
remaining time is available for sending classB/classC traffic. This provides low-jitter bandwidth guarantees, 
as does time division multiplexing (TDM), while allowing unused classA bandwidths to be utilized by 
classB/classC traffic.

A pacing bridge maintains this pacing behavior, thus avoiding problems normally associated with bunching 
(see Annex F). For a bridge between 1 Gb/s link1 and 1 Gb/s link2 (see Figure 9.2a), paced frames can be 
forwarded with a nominal 1-cycle delay (see Figure 9.2b). The 1-cycle delay is necessary to account for 
offset migration and store-and-forward processing delays.

Offset migration refers to changes in a classA frame’s within-cycle placement on (for example) link1 and 
link2. Depending on the timing of unrelated events, the offset of the classA-data frame within the cycle can 
migrate over time, as other conversations are started, ended, advanced, delayed, joined, or routed elsewhere.

A possible implementation could utilize double output buffers, processed as follows: 
cycle[n+2×k +0]: classA traffic is saved in buffer[A] and transmitted from buffer[B]. 
cycle[n+2×k +1]: classA traffic is saved in buffer[B] and transmitted from buffer[A].

The boundaries between cycles are marked by a distinct set of cycleSync markers (not illustrated), rather 
than relying on precise time-synchronization and deadbands to imply their temporal placement.

The classA transmissions within each cycle are shaped, to allow for unrelated asynchronous frame transmis-
sions. The shaper allows a higher-than 75% transmission rate, to ensure transmission completion well before 
before the next cycle begins, even in the presence of conflicting non-classA transmissions.

Figure 9.2—Paced 1 Gb/s classA flows
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To better understand the minimal buffer requirements, consider frame transfers that are momentarily dis-
rupted by an MTU-sized classC transmission, started near the end of link1’s classA transmissions. For the 
receive-side slippage scenario of 9.3a, data[n] arrives in cycle[n] and fills buffer[A]. Since buffer A is not 
destined for transmission until cycle[n+1], conflicts are avoided.

For the transmit-side slippage scenario of Figure 9.3b, buffer[B] is fully emptied in cycle[n]. Since buffer[B] 
is not destined for filling until cycle n+1, conflicts are avoided.

9.1.3 Paced 100 Mb/s flows

A 100 Mb/s pacing bridge also maintains this pacing behavior, thus avoiding problems normally associated 
with bunching (see Annex F). For a bridge between 100 Mb/s link3 and 100 Mb/s link4 (see Figure 9.4a), 
paced frames can be forwarded with a nominal 2-cycle delay (see Figure 9.4b).

Figure 9.3—Cycle slippage

Editors’ Notes: To be removed prior to final publication.
A two-cycle delay is illustrated, although the protocols can be simplified by assuming a three cycle delay. 
The tradeoff between protocol simplicity and a passthrough latency has not been carefully reviewed.

Figure 9.4—Paced 100 Mb/s classA flows
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A possible implementation would involved six output buffers, processed as follows: 
cycle[n+4×k  +0]: classA traffic is saved in buffer[A] and transmitted from buffer[C]. 
cycle[n+4×k +1]: classA traffic is saved in buffer[B] and transmitted from buffer[D]. 
cycle[n+4×k +2]: classA traffic is saved in buffer[C] and transmitted from buffer[A]. 
cycle[n+4×k +3]: classA traffic is saved in buffer[D] and transmitted from buffer[B].

To better understand the minimal buffer requirements, consider frame transfers that are momentarily dis-
rupted by an MTU-sized classC transmission, started near the end of link3 classA transmissions. For the 
receive-side slippage scenario of Figure 9.5a, data[n] arrives in cycle[n+1] and fills buffer[A]. Since buffer 
A is not destined for transmission until cycle[n+2], conflicts are avoided.

For the transmit-side slippage scenario of Figure 9.5b, buffer[D] is fully emptied in cycle[n+1] and in 
cycle[n+2]. Since buffer[D] is not destined for filling until cycle n+3, conflicts are avoided.

To achieve a robust 2-cycle latency objective, restrictions are placed on non-classA transmissions. These 
restrictions are as follows:

a) An MTU (or sequence of frames not exceeding an MTU) may be appended to the last classA frame 
within any cycle whose cycleSync frame transmission was not delayed.

b) Within any cycle, any non-classA frame may be transmitted after the last classA frame, but only if 
this frame transmission would not delay the transmission of the next cycleSync frame.

Condition (a) is sufficient to ensure that all transmissions occur within the intended or following cycle, 
assuming a 100 Mb/s span, 2000 byte MTU, 125 µs cycle, and 75% classA loading. With these assumptions, 
the worst-case delay from the start of the intended cycle, as specified by Equation 9.1, is well within the 
2-cycle 250 µs constraint. 

delay ≥ (MTU − 0.25 × cycle) + 0.75 × cycle (9.1)
delay ≥ 2  000 × ((8 bits/byte) × (1 second)/(100 Mb/s)) + 0.50  × (125 µs)

delay ≥ (160 µs) + (62.5 µs)

delay ≥ 222.5 µs

Figure 9.5—Cycle slippage
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9.1.4 Transmit port structure

An end station and bridge have functionally distinct transmit queues for classA, classB, and classC traffic, 
allowing each to be managed separately, as illustrated in Figure 9.6. The transmit port is responsible for pac-
ing classA/classB traffic and shaping classB/classC traffic, so as to limit the high-class traffic to 75% of the 
link bandwidth. The transmit-port structure is slightly different for 100 Mb/s and 1 Gb/s transmit ports, due 
to the distinct times associated with an MTU transmission.

Although classA frames have the highest priority, the classA frames are gated to prevent their early 
departure. Gating involves blocking classA frames that arrived with sourceCycle =  n, until the start of cycle 
n + p. After the start of cycle n  + p, the transmitter waits for the completion of preceding non-classA frames 
(or residual cycle n + p –1 classA frames), then transmits these arrived-in-cycle-n frames with 
sourceCycle =  n + p. As noted previously, p is a design-dependent integer constant, preferably no more than 4 
cycles (see 5.1.2 and 5.1.3).

A bridge has to cope with frame-reception uncertainties (due to preceding frame-transmission uncertainties), 
in addition to its own frame-transmission uncertainties. As such, the values of p are expected to be slightly 
larger in bridges than in talker-station or listener-station designs.

Within bridges, the distinction between service classes is based on the multicast addresses within frames. 
These multicast addresses are checked against the multicast database, which supplies class information in 
addition to the normal multicast routing (forward or not-forward) information. This class information 
controls the demultiplexer, which routes to the appropriate classA, classB, or classC output queues.

The cycle slippage on a 100 Mb/s link mandates the use of four 3/4-cycle output buffers, which incur a 
2-cycle pass-through delay. The classA traffic is gated to avoid wrong-cycle transmissions and excessive 
consumption, but is not otherwise not shaped. The overlapping shB shaper of Figure 9.6a is intended to 
illustrate the use of classA transmission counts and the classB shaper, not the shaping of classA traffic.

On such 1 Gb/s transmitter ports, the classA traffic is shaped to reduce lower-class blockage, as well as 
gated to avoid wrong-cycle transmissions and excessive consumption. The adjacency of shA/shB shapers in 
Figure 9.6b is intended to illustrate distinct classA/classB shaping functions, but sharing of classA 
transmission counts between shapers.

Figure 9.6—Transmit-port structure
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Achievable delays through a bridge depend only on the speed of the input-link speed, as summarized in 
Table 9.1. These numbers are slightly misleading, since transmissions on a 100 Mb/s link have implied 
additional delays incurred when passing through its adjacent 100 Mb/s receiver.

9.1.5 Pacing at 1 Gb/s

Pacing at 1 Gb/s, as illustrated in Figure 9.7. For ontime cycles, a residual amount of classB/classC traffic is 
allowed throughout the cycle, as illustrated in Figure 9.7a. For slipped cycles, a residual amount of 
classB/classC traffic becomes available after the delay effects have been overcome, as illustrated in 
Figure 9.7b.

Table 9.1 — ClockPort state table

Link type Delay

Input Output Cycles Time

100 Mb/s — 2 250 µs

1 Gb/s — 1 125 µs

Figure 9.7—Pacing at 1 Gb/s
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9.1.6 Pacing at 100 Mb/s

Pacing at 100 Mb/s, as illustrated in Figure 9.8. For ontime cycles, a residual amount of classB/classC traffic 
is allowed throughout the cycle, as illustrated in Figure 9.8a. For delayed cycles, a residual amount of 
classB/classC traffic becomes available after the delay effects have been overcome, as illustrated in 
Figure 9.8b.

9.1.7 Shaper behavior

Although multiple shaper are specified within this working paper, the behavior of most shapers can be 
characterized by a common algorithm and instance-specific parameters (as done within RPR[B5]). The 
shapers’ credits are adjusted down or up, as illustrated in Figure 9.9. The decrement and increment values 
typically represent sizes of a transmitted frame and of credit increments in each update interval, respectively.

Crossing below the zero threshold generates a rate-limiting indication (the removal of a send indication), so 
that offered traffic can stop. By design, the credit value never goes below the – loLimit extreme. To bound 
the burst traffic after inactivity intervals, when no frames are ready for transmission, credits are reduced to 
zero (if currently higher than zero) and can accumulate to no more than the zero-value limit.

The hiLimit threshold limits the positive credits, to avoid overflow. When frames are ready for transmission 
(and are being blocked by transit traffic), credits can accumulate to no more than this hiLimit value.

Figure 9.8—Pacing at 100 Mb/s
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In concept, the shapers consist of a token bucket. The credits in the token bucket are incremented by the size 
of each debit-frame when it is being transmitted. The number of credits in a token bucket is decremented by 
the size of each credit-frame when it is being transmitted. When a credit-frame is waiting, it is transmitted 
only if the number of credits in the token bucket is positive; When a debit-frame is waiting, it is transmitted 
only if the number of credits in the token bucket is negative.

9.2 Terminology and variables

9.2.1 Common state machine definitions

The following state machine inputs are used multiple times within this clause.

queue values 
Enumerated values used to specify shared queue structures. 

QP_TX_PUSH—The input port’s receive-from-ports queue. 
QP_TX_CA—The first of the output port’s classA buffers. 
QP_TX_CB—The output port’s classB queue. 
QP_TX_CC—The output port’s classC queue. 
QP_TX_LINK—The output port’s transmit-PHY queue. 
QP_TX_SYNC—The port’s queue that provides clockSync frames.

9.2.2 Common state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.

currentTime 
A value representing the current time.

mtuSize 
The size of the maximum transfer unit (MTU). 

Value: 2000 bytes

NOTE—The specified mtuSize is larger than currently supported by IEEE Std 802.3, but consistent with expected 
near-term frame-extension revisions of this standard.

speedIs100Mbs 
A value that communicates the operating speed of the link. 

TRUE—The port is operating at a speed of 100 Mb/s. 
FALSE—The port is operating at speeds of 1 Gb/s or above.

thisCycle 
A cycle counter derived from thisTime, as defined by Equation 9.2.

Floor(thisTime * 8000); (9.2)
thisTime 

A normalized time-of-day counter derived from timeOfDay, as defined by Equation 9.3.
(timeOfDay / (4.0 * (1<<30))) (9.3)
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9.2.3 Common state machine routines

–none–

9.2.4 Routines defined in other clauses

This clause references the following routines defined in Clause 7:

Dequeue(queue)
Enqueue(queue, frame)
Min(value1, value2) 

See 7.2.3.

9.3 Pacing state machines

9.3.1 ReceiveRx state machine

The ReceiveRx state machine is responsible for receiving pacing classA traffic, shaped classB traffic, and 
best-effort classC traffic. An intent is to transfer each to the appropriate output queue.

The following subclauses describe parameters used within the context of this state machine.

9.3.1.1 ReceiveRx state machine definitions

CYCLE_SYNC 
An assigned subType value that distinguishes a clockSync from other Residential Ethernet frames.

GROUP_BIT 
A constant value derived from IEEE Std 802-2001 and specified by Equation 9.4.
((macAddress & GROUP_BIT) != 0) (9.4)

queue values 
Enumerated values used to specify shared queue structures. 

QP_TX_CA, QP_TX_CB, QP_TX_CC 
QP_TX_PUSH 

See 9.2.2.
RES_ETHER 

The protocolType code value assigned to Residential Ethernet.

9.3.1.2 ReceiveRx state machine variables

class 
A value that represents the results of a forwarding database search.

delta 
A value that represents the difference between frame-signaled and computed cycle values.

frame 
The contents of a received frame.

myCycle 
The two least-significant bits of the thisCycle value.

queueA 
The selected classA queue identifier, based on delta-selected locations.

speedIs100Mbs
thisCycle
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thisTime 
See 9.2.2.

9.3.1.3 ReceiveRx state machine routines

DataBaseClass(macAddress, port) 
Provides a forwarding database indication of how the macAddress is routed to the specified port. 

CLASS_A—The associated multicast frame is forwarded as classA traffic. 
CLASS_B—The associated multicast frame is forwarded as classB traffic. 
CLASS_C—The associated multicast frame is forwarded as classC traffic. 
BLOCKED—The associated multicast frame is not forwarded.

Dequeue(queue) 
See 9.2.4.

EnqueuePort(port, queue, frame) 
Places the frame at the tail of the specified queue within the specified port.

ForwardUnicast(frame) 
Forwards a unicast frame to the selected output port, if any. 
This routine mimics existing standards, which remain unaffected by this working paper.

Multicast(macAddress) 
Indicates whether the supplied address is a multicast (or broadcast) address, as specified by 
Equation 9.5. 

TRUE—The address is a multicast (or broadcast) address. 
FALSE—(Otherwise.)

 
((macAddress & GROUP_BIT) != 0) (9.5)
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9.3.1.4 ReceiveRx state table

The ReceiveRx state machine is specified in Table 9.2. In the case of any ambiguity between the text and the 
state machine, the state machine shall take precedence. The notation used in the state table is described in 
3.4.

Row 9.2-1: If a frame has arrived, process that frame. 
Row 9.2-2: Otherwise, compute the cycle offset for later classA queue placement.

Row 9.2-3: Frames that arrive early are processed as though they arrived within this cycle. 
Row 9.2-4: Otherwise, the difference between labeled and actual cycles determines the frame’s placement.

Row 9.2-5: Frames arriving from a 100 Mb/s link are placed 2-cycles ahead, to allow for cycle slips. 
Row 9.2-6: Frames arriving from a 1 Gb/s link are placed 1-cycle ahead, since cycle slips are avoided.

Row 9.2-7: The cycleSync frames identify the cycle number, despite cycle-slip possibilities. 
Row 9.2-8: Multicast frames are sent to all enabled ports. 
Row 9.2-9: Unicast frames are processed normally.

Row 9.2-10: Multicast classA frames are forwarded to the appropriate cycle-sensitive classA queue. 
Row 9.2-11: Multicast classB frames are forwarded to the classB queue. 
Row 9.2-12: Multicast classC frames are forwarded to the classC queue. 
Row 9.2-13: If no class is specified, multicast frames are not routed through this port.

Table 9.2 — ReceiveRx state table 

Current

R
ow

Next

state condition action state

START (frame = Dequeue(QP_TX_PUSH)) != 
NULL

1 — FIRST

— 2 myCycle = (thisCycle % 4); 
delta = (4 + myCycle – rxCycle) % 4;

PLACE

PLACE delta = = 3 3 delta = 0; PLUS

— 4 —

PLUS speedIs100Mbs 5 queueA = QP_TX_CA + (4 + 2 – delta) % 4; START

— 6 queueA = QP_TX_CA + (4 + 1 – delta) % 4;

FIRST frame.protocolType= =RES_ETHER 
&& frame.subType = = CYCLE_SYNC

7 rxCycle = (frame.cycleCount % 4); START

Multicast(frame.da) 8 class = DataBaseClass(frame.da, port); CAST

— 9 ForwardUnicast(frame) START

PUSH class = = CLASS_A 10 EnqueuePort(port, queueA, frame); START

class = = CLASS_B 11 EnqueuePort(port, QP_TX_CB, frame);

class = = CLASS_C 12 EnqueuePort(port, QP_TX_CC, frame);

— 13 —
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9.3.2 TransmitTx state machine

The TransmitTx state machine is responsible for pacing/shaping classA traffic and shaping classB traffic 
destined for 1 Gb/s links. An intent is to support projected MTU-sized transfers and interleaved lower-class 
traffic, without exceeding the 1-cycle delay inherent with cycle-synchronous bridge-forwarding protocols.

The following subclauses describe parameters used within the context of this state machine.

9.3.2.1 TransmitTx state machine definitions

BPS 
Represents a bound on the number of transmitted bytes per second, as defined by Equation 9.6.

(speedIs100Mbs ? 12500000 : 125000000) (9.6)
CAP 

Represents a bound on the number of transmitted bytes, as defined by Equation 9.7.
((speedIs100Mbs && phase != MORE) ? (9.7)
  ((cycle + 1) * 8000. - thisTime) * BPS : MTU)

queue values 
Enumerated values used to specify shared queue structures. 

QP_TX_CA 
QP_TX_CB 
QP_TX_CC 
QP_TX_LINK 
QP_TX_SYNC 

See 9.2.2.

9.3.2.2 TransmitTx state machine variables

creditA 
A shaper credit whose positive value enables classA/classB primary transmissions.

creditB 
A shaper credit whose positive/negative values enable secondary classB/classC transmissions.

cycle 
The cycle whose classA data is being transmitted.

cycleSize 
The number of bytes included within a 125 µs cycle. 

Value: 
1562.5—for 100 Mb/s links 
15625—for 1 Gb/s links

frame 
The contents of a to-be-transmitted frame.

hiLimitB 
A value that limits the cumulative creditB credits. 

Value: MTU.
limit 

A value that limits the amount of transmitted primary classA/classB bandwidth.
loLimitB 

A value that limits the cumulative creditB debits. 
Value: MTU.

phase 
An indication of what remains to be transferred within the cycle. 

HEAD—The cycleSync frame are to be sent. 
MORE—Other classA/classB frames are to be sent. 
DONE—All classA frames have been sent.
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queue 
A variable that identifies the appropriate classA queue for this cycle’s transmissions.

speedIs100Mbs 
See 9.2.2.

thisCycle
thisTime 

See 9.2.2.

9.3.2.3 TransmitTx state machine routines

Cap(speedIs100Mbs, phase, creditA, cycle, thisTime) 
Provides a cap on the lengths of classB and classC transmissions.

if (speedIs100Mbs) { (9.8)
  if (phase == MORE)
    return(0);
  near = (cycle + 1.0) * 8000;
  safe = (cycle + 0.8) * 8000;
  return(thisTime <= safe ? MTU : near * BPS);
} else {
  if (phase == MORE)
    return(–creditsA/16);
  near = (cycle + 1.05) * 8000;
  return((near - thisTime) * BPS);
}

Dequeue(queue) 
See 9.2.4.

DequeueSize(queue, size) 
Returns the next available frame from the specified queue, from frames no larger than size.

Enqueue(queue, frame) 
See 9.2.4.

QueueEmpty(queue) 
Returns the an indication of whether the queue is empty. 

0—The specified queue is not empty. 
1—The specified queue is empty.

Size(frame) 
Returns the size of the specified frame.
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9.3.2.4 TransmitTx state table

The TransmitTx state machine is specified in Table 9.3. The link-speed independent rows are white; the 
link-speed dependent rows are shaded. In the case of any ambiguity between the text and the state machine, 
the state machine shall take precedence. The notation used in the state table is described in 3.4.

Table 9.3 — TransmitTx state table 

Current

R
ow

Next

state condition action state

START cycle > (thisCycle + 1) 1 cycle = thisCycle; 
phase = HEAD;

PREP

cycle < (thisCycle – 1) 2

cycle < thisCycle && phase = = DONE 3 cycle += 1; 
phase = HEAD;

!QueueEmpty(QP_TX_LINK) 4 — START

phase = = HEAD 5 queue = QP_TX_CA + (cycle % 4); 
frame = Dequeue(QP_TX_SYNC); 
limit = 0.75 * cycleSize; 
creditA= 
 16 * BPS *  (thisTime – cycle*8000.); 
phase = MORE;

POST

— 6 cap = Cap(speedIs100Mbs, 
 phase, creditA, cycle, thisTime);

PLUS

PLUS creditB >= 0 && (frame = 
 DequeueSize(QP_TX_CB), cap) != NULL

7 creditB = 
 Max(loLimitB, creditB – Size(frame)); 
creditA += 16 * Size(frame);

FINAL

creditB <= 0 && (frame = 
 DequeueSize(QP_TX_CC, cap)) != NULL

8 creditB = 
 Min(hiLimitB, creditB +Size(frame)); 
creditA += 16 * Size(frame);

(frame = 
 DequeueSize(QP_TX_CB, cap)) != NULL

9 creditA += 16 * Size(frame);

(frame = 
 DequeueSize(QP_TX_CC, cap)) != NULL

10

phase != MORE 11 — START

(frame = 
 DequeueSize(queue, limit)) != NULL

12 — POST

(frame = Dequeue(queue)) != NULL 13 — START

(frame = 
 DequeueSize(QP_TX_CB, limit)) != NULL

14 limit – = Size(frame); FINAL

— 15 phase = DONE; 
creditB= Min(hiLimitB, limit+creditB);

START

POST — 16 limit – = Size(frame); 
creditA – = Size(frame);

FINAL

FINAL — 17 Enqueue(QP_TX_LINK, frame); START
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Row 9.3-1: If cycle has advanced two-beyond thisCycle, something is in error. 
(The cycle value can advance one-beyond thisCycle, due to small timeOfDay update discontinuities.) 
Row 9.3-2: If cycle has dropped two-behind thisCycle, something is in error. 
(Large timeOfDay update discontinuities can cause cycle to advance or retreat beyond normal bounds.)

Row 9.3-3: The phase is initialized to HEAD at the start of each cycle. 
Row 9.3-4: Wait for the queue to be emptied, so something can be transmitted. 
Row 9.3-5: When the next cycle starts, a clockSync frame is transmitted. 
The limit value is set to limit classA transmissions to no more than 75% of the link bandwidth. 
The creditA value initialized to account for cycleSync frame slippage (for 1 Gb/s ports only). 
Row 9.3-6: Set caps on the maximum transmission size of classB/classC transmissions.

Row 9.3-7: If enabled and available, a classB frame is transmitted. 
The creditB values is decremented by the transmitted frame size, to effect a classB shaper. 
Row 9.3-8: If enabled and available, a classC frame is transmitted. 
The creditB values is incremented by the transmitted frame size, to effect a classB shaper. 
Row 9.3-9: If available, a classB frame is transmitted. 
Row 9.3-10: If available, a classC frame is transmitted. 
Row 9.3-11: Otherwise, no frame is transmitted.

Row 9.3-12: An enabled, available, and properly sized classA frame is readied for transmission. 
Row 9.3-13: An enabled, available, and improperly sized classA frame is discarded. 
Row 9.3-14: An enabled, available, and properly sized classB frame is readied for transmission. 
Row 9.3-15: If enabled but unavailable, this cycle’s primary frame transmissions have completed.

Row 9.3-16: The shaper’s creditA value is decremented to lightly throttle primary transmissions. 
The limit value is also decremented, to enforce the 75% cycle classA/classB transmission limitation.

Row 9.3-17: Transmission is affected by placing the frame in the port’s transmit queue.
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10. Transmit state machines (proposal 2)

10.1 Rate-based scheduling overview

The clause describes a rate-based scheduling technique. The rate-based scheduling concepts are similar to 
those within rate monotonic scheduling protocols, commonly used within real-time systems. Objectives 
associated with time-sensitive forwarding alternatives include the following:

a) Multiple time-sensitive transmission rates are supported, including:

1) High rate 8 kHz traffic, such as the traffic generated by simple bridges between RE and 
existing IEEE 1394[B6] A/V devices.

2) Higher -rate 64 kHz traffic, such as the traffic generated by highly interactive latency-sensitive 
video game video and/or sensors.

3) Lower rate traffic, such as voice over internet protocol (VOIP) traffic, without forcing this 
traffic to be reblocked into smaller (and therefore less efficient) frame sizes.

b) Frame forwarding should not be dependent on successful time-of-day synchronization between the 
bridge and adjacent stations. Frame forwarding should succeed before the grand clock-master 
station has been selected, or when the selected grand-master clock station changes.

c) Frame-forwarding protocols should leverage existing bridge queue and service models, although 
specification of abstract rate shaper details is expected.

Rate-based scheduling involves associating a priority with frame transmissions, where the priority is a 
monotonic function of the frame transmission frequency, as illustrated in Figure 10.1. Assuming the cumula-
tive traffic is limited to less than the link capacity, the latency of each traffic class is guaranteed (the latency 
guarantee is approximately an MTU more than an inter-arrival period).

NOTE—Multiple bunch-avoiding pacing protocols are presented for consideration: 
a) Clause 9 presents a pseudo-synchronous transmission model. 
b) Clause 10 (this clause) presents cross-flow shaper transmission model.

Figure 10.1—Rate-based priorities
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10.1.1 Rate-based priorities

Quality of service is based on the availability of user_priority field parameter associated within transmitted 
time-sensitive frames, as listed in Table 10.1.  

Table 10.1—Tagged priority values

Code Interval (ms) Name Description

0 n/a CLASS_C Best effort, with minimal guaranteed BW

1 n/a CLASS_B Preferred, with minimal guaranteed BW

2 32 CLASS_A5 Guaranteed BW over longest interval

3 8 CLASS_A4 Guaranteed BW over longer interval

4 2 CLASS_A3 Guaranteed BW over long interval

5 0.5 CLASS_A2 Guaranteed BW over short interval

6 0.125 CLASS_A1 Guaranteed BW over shorter interval

7 0.03125 CLASS_A0 Guaranteed BW over shortest interval
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10.1.2 Port-to-port reshaping

The concept of rate-based scheduling assumes shaped talkers and reshaped talker agents within bridges, as 
illustrated in Figure 10.2 (only the components associated with specific flows are illustrated). In this 
illustration, classA0 traffic flows between points (a, b, c, d, e), exhibits bunched and reshaped behaviors, as 
illustrated in Figure 10.3. 

The (a) through (e) time lines represent the flow of frames from within one talker-or-bridge into another 
bridge-or-listener, described as follows:

a) A properly shaped source stream is originally generated within a talker, or a port-to-port flow 
(consisting of multiple streams) within a bridge.

b) Forwarding of multiple sources to a shared transmission link can produce jitter, due to slight differ-
ences in frame-to-frame spacings.

c) Forwarding of multiple sources to a shared transmission link can produce additional jitter, when 
higher-class traffic waits for the completion of previously initiated lower-class transmissions.

d) Bunching becomes apparent in the port-to-port flow, representing the portion of the received (c) 
traffic that is forwarded to a specific transmitter port.

e) A shaper delays the forwarding of bunched frames, so that the port-to-port flow is properly shaped. 
Delays can be invoked by time stamping frames with an in-the-future transmission time.

The reshaped flow (e) retains the properly shaped properties of the preceding flow (a), while incurring a 
maximum delay d through the bridge. These properties ensure a linear maximum delay of n  × d, for streams 
that flow through N bridges.

Figure 10.2—Reshaped bridge-traffic topology

Figure 10.3—Reshaped bridge-traffic timing
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10.1.3 Transmit ports

10.1.3.1 Transmit port structure

The transmit port is responsible for shaping classA traffic (to avoid bunching) and pacing classB/classC
traffic (to avoid classC traffic starvation). Pacing and shaping algorithms assume functionally distinct 
queues within each transmit port, as illustrated in Figure 10.4.

The intent of per-class shapers is to avoid priority inversions, wherein higher-class frames are delayed by the 
presence of concurrent lower-class traffic. Independent per-class shapers and queues allow enqueued 
higher-class and lower-class frames to be forwarded independently, thus avoiding priority inversions within 
queues.

The intent of per-source shapers is to avoid increasingly large cumulative bunching delays. The per-source 
reshaping eliminates bunches before merging, so that the pass-through bunching severity for 1-bridge and 
n-bridge flows are the same.

10.1.3.2 Enqueue reshaping contexts

The desired per-class latencies could not be guaranteed in the presence of classA traffic bunching. To avoid 
bunching, frames are shaped before being placed into classified transmit queues.

A shaper is responsible for attaching a time-stamp label to frames. One time-stamp shaper is logically asso-
ciated with each source port and each classA traffic subclass (classA0, classA1, classA2, classA3, classA4, 
classA5). E.g, a four-port switch (which has three possible source ports) would have 18 time-stamp shapers.

The purpose of a time-stamp shaper is to associate a time-stamp label with each queued frame. The 
time-stamp label represents a time in the future; the frame’s transmission is deferred until the current time 
reaches the frame’s time-stamp value. This facilitates the delayed forwarding of successive frames within 
each bunch, thus suppressing the bunching effects found on receive-link transmission.

The context for each time-stamp shaper is based on the frame’s receive port and traffic class. While the con-
text is considerably larger than that associated with strict per-port shapers, only one shaper (within each 
port) is ever active. Thus, context-switching per-port shaper instances represent a viable implementation 
technology

Figure 10.4—Transmit-queue structure
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10.1.3.3 Dequeue shaping and pacing

Transmit ports utilize a shaper and pacer, as illustrated as shaperA and B components within Figure 10.4. 
The purpose of these is to ensure forward progress of best-effort control traffic. In concept, this involves a 
two-step bandwidth partitioning mechanism:

a) The shaperA limits the cumulative classA and primary classB traffic to 75% of the link bandwidth. 
The intent is to ensure that 25% residual bandwidth remains available for lower-class traffic.

b) Pacer B partitions the residual 25% traffic equally between classB and classC traffic. 
This ensures that classB traffic is never starved, in the presence of 75% classA traffic. 
This ensures that classC traffic is not starved, in the presence of excess classB traffic.

10.1.4 Credit-based shapers and pacers

10.1.4.1 Credit-based shapers

Although multiple shapers are specified within this working paper, the behavior of most shapers can be 
characterized by a common algorithm and instance-specific parameters (as done within RPR[B5]). The 
shaper’s credits are adjusted down or up, as illustrated in Figure 10.5. The decrement and increment values 
typically represent sizes of a transmitted frame and of credit increments in each update interval, respectively.

Crossing below the zero threshold generates a rate-limiting indication, so that offered traffic can stop. By 
design, the credit value never goes below the – loLimit extreme. To bound the burst traffic after inactivity 
intervals, when no frames are ready for transmission, credits are reduced to zero (if currently higher than 
zero) and can accumulate to no more than the zero-value limit.

The hiLimit threshold limits the positive credits, to avoid overflow. When frames are ready for transmission 
(and are being blocked by transit traffic), credits can accumulate to no more than this hiLimit value.

In concept, the shaper consist of a token bucket. The number of credits in a token bucket is decremented by 
the size of each transmitted frame. The credits in the token bucket are incremented at the end of every credit 
update interval. A frame is only transmitted when the credits are positive.

Figure 10.5—Credit-based shapers
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10.1.4.2 Credit-based pacers

Although multiple pacers are specified within this working paper, the behavior of most pacers can be 
characterized by a common algorithm and instance-specific parameters (as done within RPR[B5]). The 
pacer’s credits are adjusted down or up, as illustrated in Figure 10.6. The decrement and increment values 
typically represent sizes of debit and credit frames in each update interval, respectively.

Crossing below the zero threshold generates a rate-limiting indication, so that offered traffic can stop. By 
design, the credit value never goes below the – loLimit extreme. To bound the burst traffic after inactivity 
intervals, when no frames are ready for transmission, credits are reduced to zero (if currently higher than 
zero) and can accumulate to no more than the zero-value limit.

The hiLimit threshold limits the positive credits, to avoid overflow. When frames are ready for transmission 
(and are being blocked by transit traffic), credits can accumulate to no more than this hiLimit value.

In concept, the pacer consists of a token bucket. The credits in the token bucket are incremented by the size 
of each transmitted debit-frame. The number of credits in a token bucket is decremented by the size of each 
transmitted credit-frame. A credit-frame is only transmitted when the credits are positive; a debit-frame is 
only transmitted when the credits are negative.

10.2 Terminology and variables

10.2.1 Common state machine definitions

The following state machine inputs are used multiple times within this clause.

Figure 10.6—Pacer credit adjustments over time
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queue values 
Enumerated values used to specify shared queue structures. 

QP_TX_PUSH—The transmit port’s internal queue, where received frames are placed. 
QP_TX_A0—The first of the output port’s classA buffers. 
QP_TX_A1—The second of the output port’s classA buffers. 
QP_TX_A2—The third of the output port’s classA buffers. 
QP_TX_A3—The fourth of the output port’s classA buffers. 
QP_TX_A4—The second of the output port’s classA buffers. 
QP_TX_A5—The third of the output port’s classA buffers. 
QP_TX_BP—The output port’s classB queue. 
QP_TX_CP—The output port’s classC queue. 
QP_TX_LINK—The output port’s transmit-PHY queue.

10.2.2 Common state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.

currentTime 
A value representing the current time.

framed 
The contents of a received frame, with supplemental information, as follows: 

frame—The contents of a frame. 
sourcePort—The source port that received the frame. 
txTime—A time-stamp value representing the intended (bunching delayed) transmission time.

10.2.3 Common state machine routines

Max(value1, value2) 
Returns the numerically larger of two values.

10.2.4 Variables and routines defined in other clauses

This clause references the following variables and routines defined in Clause 7:

currentTime 
See 7.2.2.

Dequeue(queue)
Enqueue(queue, frame)
Min(value1, value2) 

See 7.2.3.

10.3 Pacing state machines

10.3.1 TransmitRx state machine

The TransmitRx state machine is responsible for enqueuing traffic (received on other ports and broadcast to 
all possible transmitter ports) for possible forwarding. An intent is to transfer each to the appropriate output 
queue.

The following subclauses describe parameters used within the context of this state machine.
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10.3.1.1 TransmitRx state machine definitions

queue values 
Enumerated values used to specify shared queue structures. 

QP_TX_A0, QP_TX_A1, QP_TX_A2, QP_TX_A3, QP_TX_A4, QP_TX_A5 
QP_TX_BP, QP_TX_CP 
QP_TX_PUSH 

See 10.2.1.

10.3.1.2 TransmitRx state machine variables

class 
A value that represents the frame’s priority class.

count 
A value that represents the current credits, while miminum and maximum limits are being applied.

currentTime 
See 10.2.4.

delay 
A value that represents the time delay assigned by the frame’s shaper.

framed 
See 10.2.2.

sPtr 
Represents a pointer to shaper values.

10.3.1.3 TransmitRx state machine routines

ContextCheck(sourcePort, class) 
Returns a pointer to the associated pacer context, with the following fields: 

credit—The cumulative credit from past pacer activities. 
lastTime—The last time the pacer was invoked. 
loLimit—The low limit for shaper credits. 
rate—The highest allowed rate of the paced traffic, in bytes-per-second.

Dequeue(queue) 
See 10.2.4.

Enqueue(queue, frame) 
Places the frame at the tail of the specified queue within the assumed port.

ForwardClass(framed) 
The forwarding database is checked. If forwarding is enabled, the priority class is returned. 
Otherwise, a NULL class value is returned. The following enumerated values are returned: 

CLASS_A0—The associated multicast frame is forwarded as classA traffic. 
CLASS_A1—The associated multicast frame is forwarded as classA traffic. 
CLASS_A2—The associated multicast frame is forwarded as classA traffic. 
CLASS_A3—The associated multicast frame is forwarded as classA traffic. 
CLASS_A4—The associated multicast frame is forwarded as classA traffic. 
CLASS_A5—The associated multicast frame is forwarded as classA traffic. 
CLASS_B—The associated multicast frame is forwarded as classB traffic. 
CLASS_C—The associated multicast frame is forwarded as classC traffic.

Max(value1, value2) 
See 10.2.3.

Min(value1, value2) 
See 10.2.4.
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10.3.1.4 TransmitRx state table

The TransmitRx state machine is specified in Table 9.2. In the case of any ambiguity between the text and 
the state machine, the state machine shall take precedence. The notation used in the state table is described in 
3.4.

Row 10.2-1: If a frame has arrived, process that frame. 
Row 10.2-2: Otherwise, wait for the next frame to arrive.

Row 10.2-3: When forwarded frames, the shaper context is based on the source port and class. 
Row 10.2-4: The non-forwarded frames are discarded.

Row 10.2-5: The classA0 frames are forwarded to the appropriate time-sensitive classA0 queue. 
Row 10.2-6: The classA1 frames are forwarded to the appropriate time-sensitive classA1 queue. 
Row 10.2-7: The classA2 frames are forwarded to the appropriate time-sensitive classA2 queue. 
Row 10.2-8: The classA3 frames are forwarded to the appropriate time-sensitive classA3 queue. 
Row 10.2-9: The classA4 frames are forwarded to the appropriate time-sensitive classA4 queue. 
Row 10.2-10: The classA5 frames are forwarded to the appropriate time-sensitive classA5 queue. 

Table 10.2 — TransmitRx state table 

Current

R
ow

Next

state condition action state

START (framed = 
Dequeue(QP_TX_PUSH))!=NULL

1 — FIRST

— 2 — START

FIRST (class = 
ForwardClass(framed)) != NULL

3 sPtr = ContextCheck(framed.sourcePort, class); NEXT

— 4 — START

NEXT class = = CLASS_A0 5 queue = QP_TX_A0; PACE

class = = CLASS_A1 6 queue = QP_TX_A1;

class = = CLASS_A2 7 queue = QP_TX_A2;

class = = CLASS_A3 8 queue = QP_TX_A3;

class = = CLASS_A4 9 queue = QP_TX_A4;

class = = CLASS_A5 10 queue = QP_TX_A5;

class = = CLASS_B 11 queue = QP_TX_BP; FINAL

— 12 queue = QP_TX_CP;

PACE — 13 count  = sPtr–>credit + sPtr–>rate * 
 (currentTime – sPtr–>lastTime) – Size(frame); 
count = Max(0, Min(sPtr–>loLimit, count)); 
sPtr–>credit = count; 
sPtr–>lastTime = currentTime; 
delay = Max(0, – count / sptr–>rate); 
framed.txTime = currentTime + delay;

FINAL

FINAL — 14 Enqueue(queue, frame); START
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Row 10.2-11: The classB frames are forwarded to the appropriate time-sensitive classB queue. 
Row 10.2-12: The classC frames are forwarded to the appropriate time-sensitive classC queue.

Row 10.2-13: ClassA frames are time stamped by shapers. 
Shaper pacer parameters for each distinct {class, source} pair constrains bunching within each class. 
Shaper parameters are updated as in 10.1.4.1: decremented on transmissions and incremented over time. 
High and low limits are applied to the updated credits and the last-updated time is updated. 
Negative credits correspond to transmission-delay values, which are attached to output-port queued frames.

Row 10.2-12: The received frames are placed into the appropriate queue.

10.3.2 TransmitTx state machine

The TransmitTx state machine is responsible for pacing/shaping classA traffic and shaping classB traffic 
destined for 1 Gb/s links. An intent is to support projected MTU-sized transfers and interleaved lower-class 
traffic, without exceeding the 1-cycle delay inherent with cycle-synchronous bridge-forwarding protocols.

The following subclauses describe parameters used within the context of this state machine.

10.3.2.1 TransmitTx state machine definitions

BPS 
The nominal link transmission rate, in bytes per second.

MTU 
The maximum frame size, in bytes.

queue values 
Enumerated values used to specify shared queue structures. 

QP_TX_A0, QP_TX_A1, QP_TX_A2, QP_TX_A3 
QP_TX_BP, QP_TX_CP 
QP_TX_LINK 

See 10.2.1.
TICK 

The amount of time between shaper updates. 
Range: [1 bytes transmit time, 16-bit transmit time] 
Default: 1 byte transmit time

10.3.2.2 TransmitTx state machine variables

best 
A value that represents the weight and identify of the next-best classA queue. 

goodness—The smallest weight×wait value associated with alternate classA transmissions. 
queue—The queue associated with the best futuristic encapsulated frame.

countA 
A speculative value of creditA, used only when the frame is qualitified for transmission.

countB 
A speculative value of creditB, used only when the frame is qualitified for transmission.

creditA 
A shaper credit whose positive value enables classA/classB primary transmissions.

creditB 
A shaper credit value whose positive and negative values enable secondary classB and classC 
transmissions respectively.

currentTime 
See 10.2.4.
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frame 
The contents of a to-be-transmitted frame.

framed 
See 10.2.2.

hiLimitA 
A value that limits the cumulative creditA credits. 

Value: MTU.
hiLimitB 

A value that limits the cumulative creditB credits. 
Value: MTU.

limit 
A value that limits the amount of transmitted primary classA/classB bandwidth.

loLimitA 
A value that limits the cumulative creditA debits. 

Value: MTU.
loLimitB 

A value that limits the cumulative creditB debits. 
Value: MTU.

tickTime 
A value that defines when the time-tick interval ends.

10.3.2.3 TransmitTx state machine routines

Dequeue(queue) 
See 10.2.4.

Unqueue(queue, weight, &best, currentTime) 
Dequeues and returns the most overdue frame from the specified queue, excluding those frames 
whose scheduled transmission time is after the specified currentTime value. 

framed—The oldest of the overdue frame. 
NULL—No frame available. 

In the presence of only futuristic frames, a test= weight ×(txTime-currentTime) value is computed. 
If best.queue is NULL or test < best.goodness, the best.queue and best.goodness components are 
updated to reflect the best alternate classA transmission queue.

Enqueue(queue, frame) 
See 10.2.4.

Size(frame) 
Returns the size of the specified frame.

StaleFrame(frame, queue) 
Indicates whether the specified frame is stale and discardable, as specified by Equation 10.1. 

0—The specified frame is not stale. 
1—(Otherwise.)

 
// The value of "internal" depends on the class, as specified in Table 10.1. (10.1)
(index = (QP_TX_A0 - queue), 
(currentTime - framed.txTime) > (2 * (MTU + interval[index] * BPS)))

10.3.2.4 TransmitTx state table

The TransmitTx state machine is specified in Table 9.3. In the case of any ambiguity between the text and 
the state machine, the state machine shall take precedence. The notation used in the state table is described in 
3.4.

Row 10.3-1: Update the classA credits after each tick interval. 
Row 10.3-2: Wait for the queue to be emptied, so that something can be transmitted. 
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Row 10.3-3: In the absence of classA credits, fairly transmit enqueued classB and classC frames. 
Row 10.3-4: Fairly service classB/classC when the classA/classB transmissions are disallowed.

Table 10.3 — TransmitTx state table 

Current

R
ow

Next

state condition action state

START (currentTime – tickTime) >= TICK; 1 creditA = Min(hiLimitA, 
 creditA + 0.75 * TICK * BPS); 
tickTime = currentTime ;

START

!QueueEmpty(QP_TX_LINK) 2 —

creditA < 0 3 — FAIR

— 4 best.queue = NULL; BEST

BEST (framed = Unqueue(queue= QP_TX_A0,  
 32, &best, currentTime)) != NULL

5 countA = Min(loLimitA, 
 creditA – Size(framed));

NEAR

(framed = Unqueue(queue= QP_TX_A1, 
 16, &best, currentTime)) != NULL

6

(framed = Unqueue(queue= QP_TX_A2, 
 8, &best, currentTime)) != NULL

7

(framed = Unqueue(queue= QP_TX_A3, 
 4, &best, currentTime)) != NULL

8

(framed = Unqueue(queue= QP_TX_A4, 
 2, &best, currentTime)) != NULL

9

(framed = Unqueue(queue= QP_TX_A5, 
 1, &best, currentTime)) != NULL

10

best.queue != NULL && (framed = 
Dequeue(queue= best.queue)) != NULL

11

(framed = Dequeue(QP_TX_BP)) != NULL 12 creditA = Min(loLimitA, 
 creditA – Size(framed));

FINAL

— 13 creditA = 0; START

FAIR creditB >= 0 && 
(framed = Dequeue(QP_TX_BP)) != NULL

14 creditB = creditB – Size(framed); FINAL

creditB <= 0 && 
(framed = Dequeue(QP_TX_CP)) != NULL

15 creditB = creditB + Size(framed);

(framed = Dequeue(QP_TX_BP)) != NULL 16 creditB = 0;

(framed = Dequeue(QP_TX_CP)) != NULL 17

— 18 creditB = 0; START

NEAR StaleFrame(framed, queue) 19 — START

— 20 creditA = countA; FINAL

FINAL — 21 Enqueue( 
 QP_TX_LINK, framed.frame);

START
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Row 10.3-5: If enabled and available, a classA0 frame is transmitted. 
Row 10.3-6: If enabled and available, a classA1frame is transmitted. 
Row 10.3-7: If enabled and available, a classA2 frame is transmitted. 
Row 10.3-8: If enabled and available, a classA3 frame is transmitted. 
Row 10.3-9: If enabled and available, a classA4 frame is transmitted. 
Row 10.3-10: If enabled and available, a classA5 frame is transmitted. 
Row 10.3-11: If available, a scheduled-for-the-future classA frame is transmitted. 
Row 10.3-12: If enabled and available, a classB frame is transmitted. 
Row 10.3-13: Since nothing is ready to be sent, the classA credits are cleared.

Row 10.3-14: If enabled and available, a classB frame is transmitted. 
The creditB values is decremented by the transmitted frame size, to avoid classC starvation. 
Row 10.3-15: If enabled and available, a classC frame is transmitted. 
The creditB values is incremented by the transmitted frame size, to avoid classB starvation. 
Row 10.3-16: If available, a classB frame is transmitted. 
Row 10.3-17: If available, a classC frame is transmitted. 
Row 10.3-18: Otherwise, no frame is transmitted.

Row 10.3-19: Stale frames, whose delivery times cannot be guaranteed, are discarded. 
Row 10.3-20: Non-stale frames are not discarded.

Row 10.3-21: The next frame is transmitted and credits are updated accordingly.
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Annexes

Annex A

(informative)
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Annex B

(informative)

Background material

B.1 Related standards

B.1.1 IEEE 1394 Serial Bus

As background, real-time features of an existing (and widely adopted on PCs) serial interface standard are 
summarized in this subclause: IEEE 1394-1995 High Performance Serial Bus. To avoid confusion with other 
serial buses (serial ATA, etc.), the term “SerialBus” is used within this annex to refer to this specific IEEE 
standard.

B.1.1.1 SerialBus topologies

Since its conception, SerialBus evolved from being a shared bus (like Ethernet) to a collection of 
point-to-point duplex links, as illustrated in Figure B.1. Arbitrary hierarchical topologies can be supported, 
but dotted-line redundant looping connections are only allowed in recent upgrades of the standard.

This physical duplex-link topology could, in concept, support concurrent non-overlapping data transfers. 
SerialBus only partially utilizes these capabilities (arbitration and data transfers can be overlapped), because 
its arbitration protocols were inherited from its initial conception as an arbitrated shared broadcast bus. 

Figure B.1—SerialBus topologies

root

leaf branch branch

leaf leaf leaf branch
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B.1.1.2 Isochronous data transfers

SerialBus isochronous traffic is transmitted at a 8 kHz rate, as illustrated by the 125 µs cycles within 
Figure B.2.

In the absence of conflicting traffic, an 8kHz cycle starts with the transmission of a cycleStart frame, as 
illustrated in cycle[n+0]. The cycleStart frame triggers the sending of the isochronous frames that have been 
queued for cycle[n+0] transmission; these continue until all isochronous traffic has been sent.

After a cycle’s isochronous traffic has been sent, one or more asynchronous transmissions are allowed, as 
illustrated in cycle[n+1].

Devices can be paused, compression rates can be variable, and connections can fail. For such reasons, the 
amounts of isochronous traffic within each cycle can vary below its scheduled limits, as illustrated in 
cycle[n+2].

The asynchronous traffic is not constrained to start at the end of a cycle, but can start at anytime that the 
frame is available and isochronous transfers are idle, as illustrated near the end of cycle[n+3]. If started near 
the end of a cycle, the isochronous transfer can be forced to start within the following cycle[n+4].

A large late-starting asynchronous frame can extend the start of isochronous transfers, so that spill-over into 
the next cycle is possible, as illustrated in cycle[n+5]. Since isochronous transfers have priority, the delay in 
the next isochronous cycle is reduced, and the isochronous traffic completes within the boundaries of 
cycle[n+6].

B.1.1.3 Isochronous reservations

Even the best of isochronous transfers fails when the offered load exceeds the link capacity. To eliminate this 
possibility, isochronous bandwidth is reserved before being consumed. On a single bus (of up to 64 stations), 
reservations are controlled through access to compare&swap register, which all isochronous stations pro-
vide, although only one is selected to be used (based on the largest populated device address).

On a multiple bus topology (buses interconnected through bridges), reservations management is more com-
plex. In this case, frames are passed from the source to its desired-to-be-connected destination(s), reserving 
reservations along the data-transmission path. As is true on a single bus, reservation requests are rejected 
when insufficient bandwidth capacity remains. This is not described in the baseline 1394 specification, but is 
described in a follow-on P1394.1 draft (currently progressing through Sponsor ballot).

Figure B.2—Isochronous data transfer timing

cycle[n+0] cycle[n+1] cycle[n+2] cycle[n+3] cycle[n+4] cycle[n+5] cycle[n+6]

Legend: cycleStart isochronous frame asynchronous frame
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B.1.1.4 SerialBus experiences

Experiences, as follows:

a) Cycle slip. Cycle-slip reduces design complexity, permits transmissions of large asynchronous 
frames, and improves asynchronous traffic throughput. Transmission precision is unnecessary: 
error in the cycleStart transmission time is encoded within that frame, allowing clock-slave devices 
to accurately adjust their phase-lock-loops, regardless of observed cycleStart transmission times.

b) Cycle time. An 8 kHz cycle rate represents a good trade-off between efficiency (the overhead is 
less, when cycle times are longer) and latency (the latency is less, when cycle times are longer). 

c) Pseudo frames. The SerialBus isochronous frames have a distinct (6-bit channel number) 
addressing scheme. In hindsight, using a standard frame header (destination address and source 
address) would have many benefits, including the simplification of bridges between segments.

d) Service classes. SerialBus has evolved to support three classes of traffic: isochronous, prioritized 
asynchronous, and baseline asynchronous. These are roughly equivalent to the classA, classB, and 
classC service classes defined for RPR (see B.1.2).

B.1.2 Resilient packet ring (RPR)

As background, the time-sensitive capabilities associated with IEEE P802.17 Resilient packet ring (RPR) 
are summarized in this subannex. RPR is a metropolitan area network (MAN) that can be transparently 
bridged to Ethernet.

B.1.2.1 RPR rings

RPR employs a ring structure using unidirectional, counter-rotating ringlets. Each ringlet is made up of links 
with data flow in the same direction. The ringlets are identified as ringlet0 and ringlet1, as shown in 
Figure B.3. 

Stations on the ring are identified by an IEEE 802 48-bit MAC address. All links on the ring operate at the 
same data rate, but may exhibit different delay properties. Ring circumference of less than 2,000 kilometers. 
are assumed.

The portion of a ring bounded by adjacent stations is called a span. A span is composed of unidirectional 
links transmitting in opposite directions.

Figure B.3—RPR rings

S0 S1 S2 S3 S4 S5 … S253 S254

ringlet1
ringlet0

span links

< 2,000 km
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B.1.2.2 RPR resilience

RPR stations are resilient, in that communications can continue in that operations continue in the presence of 
single-point failures, as illustrated in Figure B.4. Resilient features can recover from failed links by 
bypassing the frame-manipulation portions of a partially failed station (see Figure B.4-b), thus avoiding a 
failed station (see Figure B.4-c and Figure B.4-d) or a failed span (see Figure B.4-e and Figure B.4-f).

B.1.2.3 RPR spatial reuse

RPR efficiently strips local unicast frames at their destination, so that bandwidth on unaffected links is 
available for other frame transfers, as illustrated in Figure B.5-a. A unicast frame is added by the source 
station, and is stripped at the destination station. The frame is normally copied at the destination station for 
delivery to the local MAC client or MAC control entity. If ringlet selection is based on shortest hop-count, a 
response frame is likely to take an opposing ringlet path, as illustrated in Figure B.5-b.

Figure B.4—RPR resilience

Figure B.5—RPR destination stripping

a) Failure point

S1 S2 S3 S4 S5 S6 S7

b) Passthrough failure

S1 S2 S3 S4 S5 S6 S7

c) Steered station failure

S1 S2 S3 S4 S5 S6 S7

d) Wrapped station failure

S1 S2 S3 S4 S5 S6 S7

e) Steered span failure

S1 S2 S3 S4 S5 S6 S7

f) Wrapped span failure

S1 S2 S3 S4 S5 S6 S7

S1 S2 S3 S4 S5 S6 S7

a) Unicast on ringlet0

add copy
strip

b) Unicast on ringlet1
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The RPR frame transmissions on one link are largely independent of frame transmissions on other link. This 
allows per-link bandwidths to be utilized beyond that possible with IEEE Std 802.5-1998 Token Ring or 
ANSI FDDI ring based LAN technologies. Spatial reuse is illustrated in Figure B.6.

Concurrent per-ringlet transmissions (see Figure B.6-a) allow stations bandwidths to exceed individual link 
capacities. The effective bandwidths of non-overlapping transfers (see Figure B.6-b) are similarly improved.

B.1.2.4 RPR service classes

RPR provides transit queues, which allow received traffic to be queued during a station’s frame 
transmission, as illustrated in Figure B.7. The highest priority frames are classA and have their own bypass 
buffer; the lower priority frames are classB and classC, and share the use of a distinct bypass buffer. To 
minimize the classA latencies, servicing of the classA buffer has precedence over servicing of the 
classB/classC buffer.

During the initial phases of investigation, techniques for allowing newly-arrived classA traffic to preempt an 
active classB/classC frame transmission were considered. While such techniques are practical, the metro-
politan area networks (MANs) environments limits the effectiveness of such techniques; at these longer 
distances, the link delays can often exceed the retransmission-blocked delays within individual stations.

Figure B.6—RPR spatial reuse

Figure B.7—RPR service classes

S1 S2 S3 S4 S5 S6 S7

a) Concurrent ringlet transfers b) Reused allocated bandwidth

S1 S2
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Annex C

(informative)

Encapsulated IEEE 1394 frames

To illustrate the sufficiency and viability of the RE isochronous services, the transformation of IEEE 1394 
packets is illustrated. A connection between an IEEE 1394 talker, IEEE 1394 adapter, intermediate Ethernet 
links, IEEE 1394 adapter, and an IEEE 1394 listener is assumed.

C.1 Hybrid network topologies

C.1.1 Supported IEEE 1394 network topologies

This annex focuses on the use of RE to bridge between IEEE 1394 domains, as illustrated in Figure C.1. The 
boundary between domains is illustrated by a dotted line, which passes through a SerialBus adapter station. 

C.1.2 Unsupported IEEE 1394 network topologies

Another approach would be to use IEEE 1394 to bridge between IEEE 802.3 domains, as illustrated in 
Figure C.2. While not explicitly prohibited, architectural features of the topology-supportive adapters and 
encapsulated-frame formats are beyond the scope of this working paper. 

Figure C.1—IEEE 1394 leaf domains

Figure C.2—IEEE 802.3 leaf domains

IEEE 1394IEEE 1394 IEEE 802.3

IEEE 1394IEEE 802.3 IEEE 802.3
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C.2 1394 isochronous frame formats

C.2.1 1394 isochronous frame formats

An IEEE 1394 isochronous frame contains header and payload components, as illustrated by Figure C.3. 
While all components could be encapsulated into an Ethernet frame, some of these fields would be redun-
dant (with fields in the encapsulating frame) or unnecessary. 

C.2.2 Encapsulated IEEE 1394 frame payload

For uniframe groups, the IEEE 1394 isochronous frames are modified slightly and placed within an Ethernet 
serivceDataUnit. The format of this serviceDataUnit is illustrated by Figure C.4. 

C.2.2.1 subType: A 3-bit field that distinguishes encapsulated 1394 frames from other formats with the 
same protocolType specifier.

C.2.2.2 cycleCount: A 13-bit field that identifies the isochronous cycle during which this frame was trans-
mitted. For the first frame within any group, this information is needed to perform CIP header updates 
(see C.4). These fields also provide error-detecting consistency checks.

Figure C.3—IEEE 1394 isochronous packet format

Figure C.4—Encapsulated IEEE 1394 frame payload
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C.2.2.3 flag: A 2-bit field that distinctively identifies the frame type, as specified in Table C.1.

C.2.2.4 counts: A 6-bit field that identifies additional frame-group parameters, as specified in Table C.2. 
When interpreted as a partCount value, this effectively identifies the number of zero-pad bytes. When 
interpreted as a frameCount value, the values of {n-1,n-2,…,1} label the first through next-to-last frames of 
an n-frame multiframe group.

C.2.2.5 dataField: For a uniframe group, the contents of the SerialBus ‘data field’ bytes.

Table C.1—flag field values

Value Name Description

0 ONLY Only frame within a uniframe group

1 LAST Final frame within a multiframe group

2 CORE Intermediate frame within an multiframe group

3 LEAD First frame within a multiframe group

Table C.2—counts field values

flag Name Description

ONLY partCount The LSBs of the residual data_length field.

LAST

CORE frameCount A sequence identifier for frames within the group

LEAD
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C.3 Frame mappings

C.3.1 Synchronous frame mappings

Adapters are required to manage differences between IEEE 1394 isochronous packets and RE frames, as 
illustrated in Figure C.5. 

The IEEE 1394 to Ethernet frame translation involves the following:

a) The IEEE 1394 data_length field is discarded 
(The data_length information can be reconstructed from the length of the received frame.)

b) The IEEE 1394 tag field is ignored (this connection context is known to higher layer software).

c) The IEEE 1394 channel field becomes an index into an array of communication contexts. 
The selected context provides the plugID value, the least-significant portion of the Ethernet da.

d) The IEEE 1394 isochronous transmission cycle number is copied to the Ethernet cycleCount field. 
(The cycle number is the cycle_time_data.cycle_count field from the preceding cycle-start packet.)

e) The IEEE 1394 tcode and sy fields are copied to the corresponding Ethernet fields.

f) The data_length, header_CRC, and data_CRC fields are checked; if any are found to be incon-
sistent, no RE frame is created (the presumed to be corrupted frame is dropped).

NOTE — Unlike IEEE 1394, no synchronous frame transformations are required when passing through bridges. This is 
consistent with 802.3 specifications, which leave frames unmodified when passing through bridges.

The Ethernet to IEEE 1394 frame translation involves the following:

a) Invalid Ethernet frames (multicast sa address, too-short or too-long, or bad fcs) are discarded.

b) The IEEE 1394 data_length field is derived from the Ethernet frame length.

c) The context with the matching streamId (sa concatenated with plug) values is selected. 
This context provides the provides the channel field value.

d) The IEEE 1394 tag and tcode fields are set to identify isochronous IEEE 1394 packets.

e) The IEEE 1394 tcode and sy fields are copied from the Ethernet frame.

f) The IEEE 1394 data_field is directly mapped to the RE content field. 
(IEC61883-type content may have its synchronization fields updated as needed, see C.4.)

g) The IEEE 1394 header_CRC and data_CRC fields are computed.

Figure C.5—Conversions between IEEE 1394 packets and RE frames
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C.3.2 Multiframe groups

To avoid exceeding the maximum Ethernet frame size, large frames are decomposed into multiframe groups. 
The initial frames within the multiframe group are distinctively identified by their counts values, as 
illustrated in Figure C.6. 

The final frame within the group is identified by its distinctive flag=LAST identifier. For this frame, the 
counts field specifies the number of data bytes within the frame, modulo 64.

C.4 CIP payload modifications

Isochronous 1394 data packets may conform to a common isochronous packet (CIP) format, as defined by 
IEC 61883/FIS. The presence of a CIP format is indicated by a tag=1 bit in the Serial Bus isochronous 
packet header, as illustrated in Figure C.7. The white shading identifies those fields (when present and valid) 
are modified when passing through a RE-to-1394 adapter.

Figure C.6—Multiframe groups

Figure C.7—Isochronous 1394 CIP packet format
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The sid field must be set to the physical ID of the talking portal. This allows the listener to identify the 
bridge’s talker portal.

Two-quadlet CIP headers may also contain absolute time stamp information or indicate its presence else-
where in the packet’s data payload. Absolute time stamps may be found in one or more places in isochro-
nous:

— the syt field of the second quadlet of the CIP header if the fmt field in that quadlet has a value 
between zero and 1F16, inclusive; and

— the cycle_count and cycle_offset fields of all of the source packet headers (SPH) within the 
isochronous subaction.

Both of these time stamps are specified as absolute values that specify a future cycle time. Since isochronous 
subactions experience delays when routed over RE, these time stamps must be adjusted by the difference in 
cycle times between the talker and the RE-to-1394 bridge. The delay, in units of cycles, is the difference 
between the talker and 1394 adapter’s transmission times, as specified in Equation 3.2. 

latency= (adapter.sendCycle - syncBock.talkerCycle); (3.1)

When the syt or cycle_count fields are present, their adjustments are specified by Equation 3.2. Because 
IEEE 1394 constrains cycle_count to the range zero to 7999, inclusive, the time stamp adjustments must be 
performed modulus 8000 

transmitted.syt = (received.syt + latency) % 8000; (3.2)
transmitted.cycle_count = (received.cycle_count + latency) % 8000; (3.3)

C.4.1 Time-of-day format conversions

The difference between RE and IEEE 1394 time-of-day formats is expected to require conversions within 
the RE-to-1394 adapter. Although multiplies are involved in such conversions, multiplications by constants 
are simpler than multiplications by variables. For example, a conversion between RE and IEEE 1394 
involves no more than two 32-bit additions and one 16-bit addition, as illustrated in Figure C.8.

Figure C.8—Time-of-day format conversions

seconds cycleOffsetcycleCount

seconds fraction

a
b = (a*125)>>7;

cycles fraction

c
d = (c*3)>>6;

b

d

Notes: 
  Two 32-bit additions for b: 

b = ((a<<7) - (a<<2) + a) >> 7; 
  One 16-bit additions for d: 

d = ((c<<2) + c) >> 6;

MSB LSB
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C.4.2 Grand-master precedence mappings

Compatible formats allow either an IEEE 1394 or IEEE 802.3 stations to become the network’s grand-mas-
ter station. While difference in format are present, each format can be readily mapped to the other, as illus-
trated in Figure C.9:

Figure C.9—Grand-master precedence mapping
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MSB LSB

systemID pad
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Annex D

(informative)

Review of possible alternatives

D.1 Clock-synchronization alternatives

D.1.1 Statistical averaging

Wide-area network based protocols distribute time by enclosing time-stamp values in specialized calibration 
frames. Higher level frame-processing protocols are responsible for determining the average transmission 
delays through the interconnect, so that calibration-frames can be used for accurate time-synchronization 
purposes.

The frame transmission latency is highly variable, based on delays incurred when waiting behind other 
previously-queue frames. Long-term averaging is typically used to cope with nonrandom delays, whether 
they be periodic, biased, or time-of-day dependent.

The use of long-time averages has limited applicability within the home, where small numbers of streams 
can exhibit very non-random statistical behaviors. Furthermore, long-term averaging intervals restricts 
transient-event response times, such as the insertion or removal of associated clock-synchronized devices.

D.1.2 Phase-locked synchronization

Local-area network based protocols, such as IEEE Std 1588, specify communication protocols for commu-
nicating timer-difference errors from a local clock-master station to its neighboring clock-slave station. 
However, this standard does not define how the clock-slave station compensates its values to track the time 
reference of the neighboring clock-master station.

The most common method of synchronizing clock-master and clock-slave devices involves phase-lock-loop 
(PLL) circuits. Such circuits integrate sensed differences between the clock-master and clock-slave devices, 
using these integrated values to adjust the clock-slave operating frequency.

The clock-slave resident PLLs are useful for reducing the transmission-induced timing-error jitters. 
However, the response time of a cascaded set of PLLs degrades as the number of cascaded devices increases. 
Also, the dynamics of more-responsive (gain peaking) cascaded PLL can be undesirable, causing the devia-
tions of later stages to exponentially increase with their distance from the source, a characteristic commonly 
called the whip-lash effect.

D.1.3 Offset-locked synchronization

Another possible IEEE 1588 synchronization technique involves adding an offset value to the clock-slave 
device, where the value of that offset is based on the time differences sensed between the clock-master and 
clock-slave stations.

Constantly updated offsets ensures tracking of the clock-slave to the clock-master, without the response-time 
and whiplash effects normally associated with PLLs. However, since the clock rates remain unchanged, 
clock drifts can cause significant forward or backward jumps of the synchronized clock-slave timer. These 
discontinuities and transmit-time uncertainties can limit the accuracies of the slave-resident timer values.
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D.2 Pacing alternatives

D.2.1 Higher level flow control

Higher layer protocols (such as the flow-control mechanisms of TCP) throttle the source to the bandwidth 
capabilities of the destination or intermediate interconnect. With the appropriate excess-traffic discards and 
rate-limiting recovery, such higher layer protocols can be effective in fairly distributing available bandwidth.

For real-time applications, however, the goal is to limit the number of talkers (so they can each have suffi-
cient bandwidth), not to distribute the insufficient bandwidth fairly.

D.2.2 Over-provisioning

Over-provisioning involves using only a small portion of the available bandwidth, so that the cumulative 
bandwidth of multiple applications rarely exceeds that of the interconnect. This technique works well when 
frame losses are expected (voice over IP delays and gaps are similar to satellite-connected long distance 
phone calls) or when large levels of cumulative bandwidth ensure a tight statistical bound for maximum 
bandwidth utilization.

For most streaming applications within the home, however, frame losses are viewed as equipment defects 
(stutters in video or audio streams), which correspond to eventual loss of brand name values. Also, the exist-
ing kinds of transfers in a home (disk-to-disk, memory-to-display, tuner-to-display, multi-station games, 
etc.) do not (nor should not) have bandwidth limits.

D.2.3 Strict priorities

Existing networks can assign priority levels to different classes of traffic, effectively ensuring delivery of 
one before delivery of the other. One could provide the highest priority to the video traffic (with large band-
width requirements), a high priority to the audio traffic (lower bandwidth, but critical), and the lowest prior-
ity level to file transfers. A typical number of priorities is eight.

Strict priority protocols are deficient in that the priorities are statically assigned, and the assignments (based 
on traffic class) often do not correspond to the desires of the consumer (my PBS show, rather than my 
teenager’s games, perhaps). For example, priorities could result in transmission of two video streams, but 
not the audio associated with either.

Strict priority protocols usually assign fixed application-dependent priorities, assigning one priority to video 
and another to audio, for example. Mixed traffic (such as video streams with encapsulated audio) are not 
easily classified in this manner.
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D.3 IEEE 1394 alternative

Isochronous data transfers are well supported by the IEEE 1394 Serial Bus family of standards. This IEEE 
standards family (also called FireWire and iLink) is herein referred to simply as IEEE 1394.

Existing consumer equipment (digital camcorders, current generation high-definition televisions (HDTVs), 
digital video cassette recorders (DVCRs), digital video disk (DVD) recorders, set top boxes (STBs), and 
computer equipment intended for media authoring) support the IEEE 1394 interconnect. While some ver-
sions limit cable lengths to 4.5 meters, other physical layers support considerably longer lengths. A hub-like 
connection of IEEE 1394 devices supports seamless real-time services.

Although IEEE 1394 supports longer-reach physical layers, not all devices are compatible with these physi-
cal layers, or the distinct connectors associated with distinct physical layers. The RE protocols are based on 
Ethernet connections, a vast majority of which are based on 100 meter cables and the RJ-45 connector.

The IEEE 1394 isochronous packet addressing was designed with single-bus topologies in mind, which 
complicates the design of such bus bridges. The RE synchronous frames are designed with multiple stations 
and bridges in mind.

IEEE 1394 packets are differentiated by bus-local channel identifier, which must be allocated from a central 
per-bus resources and updated when isochronous packets pass through bridges. Mechanism must therefore 
be defined to agree upon the central per-bus resource, from among multiple available resources, and to rene-
gotiate that agreement when any of the current central per-bus resources are removed.

Furthermore, absolute time stamps within some IEEE 1394 isochronous packets must be adjusted when 
passing through bridges. Such data-format dependent adjustments complicate bridge designs; their data-for-
mat dependent nature would most likely inhibit their successful adoption within an Ethernet bridge standard.
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Annex E

(informative)

Time-of-day format considerations

To better understand the rationale behind the ‘extended binary’ timer format, other formats are evaluated and 
compared within this annex.

E.1 Possible time-of-day formats

E.1.1 Extended binary timer formats

The extended-binary timer format is used within this working paper and summarized herein. The 64-bit 
timer value consist of two components: a 32-bit seconds and 32-bit fraction fields, as illustrated in 
Figure 5.1.

The concatenation of 32-bit seconds and 32-bit fraction field specifies a 64-bit time value, as specified by 
Equation E.1.

time = seconds + (fraction / 232) (E.1)
Where: 

seconds is the most significant component of the time value (see Figure 5.1). 
fraction is the less significant component of the time value (see Figure 5.1).

E.1.2 IEEE 1394 timer format

An alternate “1394 timer” format consists of secondCount, cycleCount, and cycleOffset fields, as illustrated 
in Figure E.2. For such fields, the 12-bit cycleOffset field is updated at a 24.576MHz rate. The cycleOffset
field goes to zero after 3171 is reached, thus cycling at an 8kHz rate. The 13-bit cycleCount field is 
incremented whenever cycleOffset goes to zero. The cycleCount field goes to zero after 7999 is reached, thus 
restarting at a 1Hz rate. The remaining 7-bit secondCount field is incremented whenever cycleCount goes to 
zero.

Figure 5.1—Complete seconds timer format

Figure E.2—IEEE 1394 timer format

seconds fraction

32 bits32 bits

MSB LSB

secondCount cycleOffsetcycleCount

13 bits 12 bits7 bits

MSB LSB
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E.1.3 IEEE 1588 timer format

IEEE 1588 timer format consists of seconds and nanoseconds fields components, as illustrated in Figure E.3. 
The nanoseconds field must be less than 109; a distinct sign bit indicates whether the time represents before 
or after the epoch duration.

E.1.4 EPON timer format

The IEEE 802.3 EPON timer format consists of a 32-bit scaled nanosecond value, as illustrated in 
Figure E.4. This clock is logically incremented once each 16 ns interval.

E.1.5 Compact seconds timer format

An alternate “compact seconds” format could consist of 8-bit seconds and 24-bit fraction fields, as 
illustrated in Figure E.5. This would provided similar resolutions to the IEEE 1394 timer format, without the 
complexities associated with its binary coded decimal (BCD) like encoding.

E.1.6 Nanosecond timer format

An alternate “nanosecond” format could consists of 2-bit seconds and 30-bit nanoSeconds fields, as 
illustrated in Figure E.6.

Figure E.3—IEEE 1588 timer format

Figure E.4—EPON timer format

Figure E.5—Compact seconds timer format

Figure E.6—Nanosecond timer format

seconds
MSB LSB

nanoSecondss

Legend: s: sign

nanoTicks
MSB LSB

seconds = nanoTicks/62500000

seconds fraction

24 bits8 bits

MSB LSB

sec nanoSeconds

30 bits2 bits

MSB LSB

Legend: sec: seconds
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E.2 Time format comparisons

To better understand the relative benefits of different time formats, the relevant properties are summarized in 
Table E.1. Counter complexity is not included in the comparison, since the digital logic complexity (see 
7.1.11) is comparable for all formats.

Column 1: A desirable property is the support of a wide range of second values, to eliminate the need for 
defining/coordinating/implementing auxiliary seconds-synchronization protocols. The 136-year range of the 
extended binary format is sufficient for this purpose.

Column 2: A desirable property is a fine-grained resolution, sufficient to measure each bit-transmission 
times. The ‘extened binary’ provides the most precision; exceeds the resolution of expected cost-effective 
time-capture circuits.

Column 3: Computation of time differences involves the subraction of two timer-snapshot values. Subtrac-
tion of ‘extended binary’ numbers involving standard 64-bit binary arithmetic; no special field-overlow 
compensations are required. Only the less precise ‘compact seconds’ and nanoseconds formats are simpler, 
due to the reduced 32-bit size of the timer values.

Column 4: Time values must oftentimes be compared to externally provided values (e.g., timers extracted 
from GPS or stratum-clock sources). For these purposes, the availability of a seconds component is desired. 
The ‘extended binary’ format provides a seconds component that can be easily extracted or such purposes.

Table E.1—Time format comparison

Name Subclause

R
an

ge

P
re

ci
si

on

A
ri
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Se
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s

D
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an

da
rd

s

Column — 1 2 3 4 5

extended binary TBD 136 years 232 ps Good Good RFC 1305 NTP,
RFC 2030 SNTPv4

IEEE 1394 E.1.2 128 s 30 ns Poor Good IEEE 1394

IEEE 1588 E.1.3 272 years 1 ns Fair Good IEEE 1588

IEEE 802 (EPON) E.1.4 69 s 16 ns Good Poor IEEE 802.3

compact seconds E.1.5 256 s 60 ns Best Good —

nanoseconds E.1.6 4 s 1 ns Best Poor —
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Annex F

(informative)

Bursting and bunching considerations

F.1 Topology scenarios

F.1.1 Bridge design models

The sensitivity of bridges to bursting and bunching is highly dependent on the queue management protocols 
within the bridge. To better understand these effects, a few bridge design models are evaluated, as illustrated 
in Figure F.1.

The input-queue design (see Figure F.1-a) assumes that frames are queued in receive buffers. The transmitter 
accepts frames are from the receivers, based on service-class precedence. In the case of a tie (two receivers 
can provide same-class frames), the lowest numbered receive port has precedence. This model best illus-
trates nonlinear bunching problems.

The output-queue design (see Figure F.1-b) assumes that received frames are queued in transmit buffers. 
Within each service class, frames are forwarded in FIFO order. This model best illustrates linear bunching 
problems (for steady flows), but also exhibits nonlinear bunching (for nonsteady flows).

The throttled-output design (see Figure F.1-c) is an enhanced output-queue model, with an output shaper to 
limit transmission rates. The purpose of the output shaper is to ensure sufficient nonreserved bandwidth for 
less time-sensitive control and monitoring purposes. The model illustrates how shapers can worsen the out-
put-queue bridge’s bunching behaviors.

The retimed-outputs design (see Figure F.1-d) reduces (and can eliminate) bunching problems by detecting 
late-arrival frames at the receivers. Several synchronous-cycle buffers are provided at the transmitters, to 
compensate for transmission delays in the received data.

Figure F.1—Bridge design models
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F.1.2 Three-source hierarchical topology 

A hierarchical topology best illustrate potential problems with bunching, as illustrated in Figure F.2. Traffic 
from talkers {a0,a1,a2} flows into bridge B. Bridge B concentrates traffic received from three talkers, with 
the cumulative b3 traffic sent to c3. Identical traffic flows are assumed at bridge ports {c0,c1,c3}, although 
only one of these sources is illustrated. Bridges {C,D,E,F,G,H} behave similarly.

F.1.3 Six-source hierarchical topology

Spreading the traffic over multiple sources, as illustrated in Figure F.3, exasperates bursting and bunching 
problems. Traffic from talkers {a0,a1,a2,a3,a4,a5} flows into ports on bridge B. Bridge B concentrates 
traffic received from six talkers, with the cumulative b6 traffic sent to c6. Identical traffic flows are assumed 
at bridge ports {c0,c1,c3,c3,c4,c6}, although only one of these sources is illustrated. Bridges {C,D,E,F,G,H} 
behave similarly.

Figure F.2—Three-source topology

Figure F.3—Six-source topology

i3

h0

h1

h2

h3

g0

g1

g2

g3

f0

f1

f2

f3

e0

e1

e2

e3

d0

d1

d2

d3

c0

c1

c2

c3

b0

b1

b2

b3

a0

a2

a1

B C D E F G H

talkers listener

b0

b1

b2

b3

c0

c1

c2

c3

d0

d1

d2

d3

h0

h1

h2

h3

i3

B C D E F G H

talkers listener

a0

a1

a2

a3

a4

a5

c4

c5

c6

b4

b5

b6

d4

d5

d6

e0

e1

e2

e3

e4

e5

e6

f0

f1

f2

f3

f4

f5

f6

g0

g1

g2

g3

g4

g5

g6

h4

h5

h6
Contribution from: dvj@alum.mit.edu. 
This is an unapproved working paper, subject to change. 141



JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54
F.2 Bursting considerations

F.2.1 Three-source bursting scenario

A troublesome bursting scenario on a 100 Mb/s link can occur when small bandwidth streams coincidentally 
provide their infrequent 1500 byte frames concurrently, as illustrated in Figure F.4. Even though the cumula-
tive bandwidths are considerably less than the capacity of the 100 Mb/s links, significant delays are incurred 
when passing through multiple bridges.

Figure F.4—Three-source bunching timing; input-queue bridges
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F.2.1.1 Cumulative bunching latencies

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.1 and plotted in 
Figure F.5.

The values within this table are computed based on Equation F.1.
 
delay[n] = mtu × ( n + pn) (F.1)

Where: 
mtu (maximum transfer unit) is the maximum frame size 
n is the number of hops from the source 
p is the number of receive ports in each bridge.

Conclusion: The classA traffic bandwidths should be enforced over a time interval that is on the order of an 
MTU size (120 µs), so as to avoid excessive delays caused by coincidental back-to-back large-block 
transmissions.

Table F.1—Cumulative bursting latencies

Topology Units
Measurement point

A B C D E F G H

3-source
(see F.2.2.1)

mtu 1 4 11 30 85 248 735 2194

ms .120 .480 1.32 3.6 10.2 29.6 88.2 263

6-source
(see F.2.2.2)

mtu 1 7 38 219 1300 7781 46662 229943

ms .120 .840 4.56 26.3 156 934 5600 27600

Figure F.5—Cumulative coincidental burst latencies
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F.2.2 Bunching scenarios; input-queue bridges

F.2.2.1 Three-source bunching; input-queue bridges

To illustrate the effects of worst case bunching on input-queue bridges, specific flows are illustrated in 
Figure F.6. Bridge ports {b0,b1,b2} concentrates traffic from three talkers; one third of the cumulative traf-
fic is forwarded through b3. Each stream consumes 25% of the link bandwidth; 25% is available for asyn-
chronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c3},…,{e0,e1,e3}, only illustrate the passing-through 
listener traffic; the remainder of the traffic is assumed to be routed elsewhere.

Figure F.6—Three-source bunching; input-queue bridges
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F.2.2.2 Six-source bunching; input-queue bridges

To better illustrate the effects of worst case bunching on input-queue bridges, specific flows are illustrated in 
Figure F.7. Bridge ports {b0,b1,b2,b3,b4,b5} concentrates traffic from three talkers; one sixth of the cumu-
lative traffic is forwarded through b6. Each of six streams consumes 12.5% of the link bandwidth, so that 
25% is available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2,c3,c4,c6} only illustrate passing-through traffic; the 
remainder of the traffic is routed elsewhere.

Figure F.7—Six source bunching timing; input-queue bridges
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F.2.2.3 Cumulative bunching latencies, input-queue bridge

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.2 and plotted in 
Figure F.8.

The first few numbers are generated using graphical techniques, as illustrated in Figure F.2.2.2. The follow-
ing numbers are estimated, based on Equation F.2.

 
delay[n+1] = (mtu +  delay[n]) × (1 / (1−0.75 ×(p-1)/p)) (F.2)

Where: 
mtu (maximum transfer unit) is the maximum frame size 
rate is the fraction of the bandwidth reserved for class A traffic, assumed to be 0.75 
n is the number of hops from the source 
p is the number of receive ports in each bridge.

Conclusion: A FIFO based output-queue bridge should be used. Alternatively (if input queuing is used), 
received frames should be time-stamped to ensure FIFO like forwarding.

Table F.2—Cumulative bunching latencies; input-queue bridge

Topology Units
Measurement point

A B C D E F G H

3-source
(see F.2.2.1)

cycles 0.125 3.5 8.25 17.5 34.25 (70.75) (143.2) (288.2)

ms 0.01 0.44 1.03 2.19 4.28 8.84 17.9 36.0

6-source
(see F.2.2.2)

cycles 0.125 4.875 14.50 (39.33) (107.2) (288.2) (771) 2058

ms 0.01 0.61 1.81 4.92 13.4 36.0 96.4 257

Figure F.8—Cumulative bunching latencies; input-queue bridge
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F.2.3 Bunching topology scenarios; output-queue bridges

F.2.3.1 Three-source bunching timing; output-queue bridges

To illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.9. Bridge ports 
{b0,b1,b2} concentrates traffic from three talkers; one third of the cumulative traffic is forwarded through 
b3. Each stream consumes 25% of the link bandwidth; 25% of the link bandwidth is available for 
asynchronous traffic.

For clarity, the traces for input traffic on ports {b0,b1,b2},…,{ e0 ,e1, e3} only illustrate the passing-through 
listener traffic; the remainder of the traffic is assumed to be routed elsewhere.

Figure F.9—Three-source bunching; output-queue bridges
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F.2.3.2 Six-source bunching; output-queue bridges

To better illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.10. Bridge 
ports {b0,b1,b2,b3,b4,b5} concentrates traffic from six talkers; one sixth of the cumulative traffic is 
forwarded through port b6. Each of six streams consumes 12.5% of the link bandwidth; 25% of the link 
bandwidth is available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2,c3,c4,c6} and {d0,d1,d2,d3,d4,d5} only illustrate 
passing-through traffic; the remainder of the traffic is routed elsewhere.

Figure F.10—Six source bunching; output-queue bridges
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F.2.3.3 Cumulative bunching latencies; output-queue bridge

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.3 and plotted in 
Figure F.11.

Conclusion: For steady-state classA traffic, acceptably small linear latencies are introduced by 
output-queue bridges on 75% loaded links. Unfortunately, the nonsteady-state nature of variable-rate traffic 
makes this conclusion suspect (see F.2.4).

Table F.3—Cumulative bunching latencies; output-queue bridge

Topology Units
Measurement point

B C D E F G H I

3-source
(see F.2.2.1)

cycles .875 2.75 4.5 6.5 8.5 – – –

ms 0.10 0.34 0.56 0.81 1.6 – – –

6-source
(see F.2.2.2)

cycles .875 3.375 7.00 8.375 – – – –

ms 0.10 0.42 .875 1.05 – – – –

Figure F.11—Cumulative bunching latencies; output-queue bridge
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F.2.4 Bunching topology scenarios; variable-rate output-queue bridges

F.2.4.1 Three-source bunching; variable-rate output-queue bridges

To illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.12. Bridge ports 
{b0,b1,b2} concentrates traffic from three talkers; one third of the cumulative traffic is forwarded through 
port b3. Each stream consumes 25% of the link bandwidth; 25% of the link bandwidth is available for 
asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c3},…,{e0, e1, e3} only illustrate the passing-through 
listener traffic; the remainder of the traffic is assumed to be routed elsewhere.

Figure F.12—Three-source bunching; variable-rate output-queue bridges
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F.2.4.2 Six-source bunching; variable-rate output-queue bridges

To better illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.13. Bridge 
ports {b0,b1,b2,b3,b4,b5} concentrates traffic from six talkers; one sixth of the cumulative traffic is 
forwarded through port b6. Each of six streams consumes 12.5% of the link bandwidth; 25% of the link 
bandwidth is available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2,c3,c4,c6}, {d0,d1,d2,d3,d4,d5}, and 
{e0,e1,e2,e3,e4,e6} only illustrate passing-through traffic; the remainder of the traffic is routed elsewhere.

Figure F.13—Six source bunching; variable-rate output-queue bridges
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F.2.4.3 Cumulative bunching latencies; variable-rate output-queue bridge

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.4 and plotted in 
Figure F.14.

Conclusion: For nonsteady-state classA traffic, significant expediential latencies are introduced by 
output-queue bridges on 75% loaded links. Unfortunately, throttled outputs further exasperates this latency 
(see F.2.4).

Table F.4—Cumulative bunching latencies; variable-rate output-queue bridge

Topology Units
Measurement point

A B C D E F G H

3-source
(see F.2.2.1)

cycles 0.75 2.75 4.75 7.25 10.75 – – –

ms 0.10 0.34 0.59 0.90 1.34 – – –

6-source
(see F.2.2.2)

cycles 0.75 3.50 6.50 11.38 19.63 – – –

ms 0.10 0.44 0.81 1.42 2.45 – – –

Figure F.14—Cumulative bunching latencies; variable-rate output-queue bridge
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F.2.5 Bunching topology scenarios; throttled-rate output-queue bridges

F.2.5.1 Three-source bunching; throttled-rate output-queue bridges

To illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.15. Bridge ports 
{b0,b1,b2} concentrates traffic from three talkers; one third of the cumulative traffic is forwarded through 
port b3. Each stream consumes 25% of the link bandwidth; 25% of the link bandwidth is available for 
asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c3}, {d0,d1,d2}, and {e0,e1,e3} only illustrate the 
passing-through listener traffic; the remainder of the traffic is assumed to be routed elsewhere.

Figure F.15—Three-source bunching; throttled-rate output-queue bridges
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F.2.5.2 Six-source bunching; throttled-rate output-queue bridges

To better illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.16. Bridge 
ports {b0,b1,b2,b3,b4,b5} concentrates traffic from six talkers; one sixth of the cumulative traffic is for-
warded through port b6. Each of six streams consumes 12.5% of the link bandwidth; 25% of the link 
bandwidth is available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2,c3,c4,c5},…,{e0, e1,e2, e3, e4, e6} only illustrate 
passing-through traffic; the remainder of the traffic is routed elsewhere.

Figure F.16—Six source bunching; throttled-rate output-queue bridges
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F.2.5.3 Cumulative bunching latencies; throttled-rate output-queue bridge

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.5 and plotted in 
Figure F.17. 

Conclusion: On large topologies, the classA traffic latencies can accumulate beyond acceptable limits. 
Some form of receiver retiming may therefore be desired.

Table F.5—Cumulative bunching latencies; throttled-rate output-queue bridge

Topology Units
Measurement point

A B C D E F G H

3-source
(see F.2.2.1)

cycles 0.75 3.00 5.75 9.75 15.75 – – –

ms 0.09 0.38 0.73 1.21 1.97 – – –

6-source
(see F.2.2.2)

cycles 0.75 4.25 9.5 17.63 – – – –

ms 0.09 0.53 1.19 2.20 – – – –

Figure F.17—Cumulative bunching latencies; throttled-rate output-queue bridge
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F.2.6 Bunching topology scenarios; classA throttled-rate output-queue bridges

The extent of bunching extent is worst when large classC frames are present. However, bunching can also 
occur in the absence of large classC frames, as described in the remainder of this subannex.

F.2.6.1 Three-source bunching; classA throttled-rate output-queue bridges

To illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.18 and Figure F.19. 
Bridge ports {b0,b1,b2} concentrates traffic from three talkers; one third of the cumulative traffic is for-
warded through port b3. Each stream consumes 25% of the link bandwidth; 25% of the link bandwidth is 
available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c3}, {c0,d1,d2}, and {e0,e1,e3} only illustrate the 
passing-through listener traffic; the remainder of the traffic is assumed to be routed elsewhere.

Figure F.18—Three-source bunching; throttled-rate output-queue bridges
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Figure F.19—Three-source bunching; throttled-rate output-queue bridges
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F.2.6.2 Six-source bunching; classA throttled-rate output-queue bridges

To better illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.20. Bridge 
ports {b0,b1,b2,b3,b4,b5} concentrates traffic from six talkers; one sixth of the cumulative traffic is 
forwarded through port b6. Each of six streams consumes 12.5% of the link bandwidth; 25% of the link 
bandwidth is available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2,c3,c4,c5},…,{d0, d1,d2,d3, d4, d6} only illustrate 
passing-through traffic; the remainder of the traffic is routed elsewhere.

Figure F.20—Six source bunching; classA throttled-rate output-queue bridges
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F.2.6.3 Cumulative bunching latencies; classA throttled-rate output-queue bridge

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.6 and plotted in 
Figure F.21. 

Conclusion: On large topologies, the classA traffic latencies can accumulate beyond acceptable limits, even 
in the absence of conflicting lower-class traffic. Some form of receiver retiming may therefore be desired, 
even on higher speed links where the size of the MTU (in time) becomes much smaller than an assumed 
8 kHz cycle time.

Table F.6—Cumulative bunching latencies; classA throttled-rate output-queue bridge

Topology Units
Measurement point

A B C D E F G H

3-source
(see F.2.2.1)

cycles – 1.00 2.00 3.5 5.75 9.00 14.5 22.5

ms – 0.125 0.25 0.44 0.72 1.13 1.81 2.81

6-source
(see F.2.2.2)

cycles – 1.385 3.75 6.625 12.50 – – –

ms – 0.17 0.47 0.83 1.56 – – –

Figure F.21—Cumulative bunching latencies; classA throttled-rate output-queue bridge
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Annex G

(informative)

Denigrated alternatives

G.1 Stream frame formats

G.1.1 VLAN routed frame formats (alternative 4)

Frames within a stream are no different than other Ethernet frames, with the exception of their distinct da
(destination address) and control field values, as illustrated in Figure G.1.

A single multicast address (labeled as RE_GROUP_MAC_ADDRESS) identifies the multicast 
time-sensitive nature of the frame. The following VLAN tag identifies the frame priority and provides a 
distinct vlanID identifier. The vlanID identifier is also the streamID identifier, allowing each stream to be 
independently selectively-switched through bridges.

The over-riding disadvantages of this design approach relates to its forwarding through bridges:

a) Overloaded. This novel vlanID usage could conflict with existing bridge implementations.

b) VLAN service. A method of generating distinct vlanID values would be required. 
(Some for of central server or distributed assignment algorithm would be required).

NOTE—The following streaming classA frame format options were considered but rejected. 
These options are retained for historical purposes and (if opinions change) possible reconsideration. 
For these reasons, the perceived advantages and disadvantages of each technique are listed. 

Figure G.1—classA frame formats
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G.1.2 Broadcast routed frame formats (alternative5)

Frames within a stream are no different than other Ethernet frames, with the exception of their distinct fixed 
multicast da (destination address), as illustrated in Figure G.2.

A single multicast address (labeled as RE_GROUP_MAC_ADDRESS) identifies the multicast 
time-sensitive nature of the frame. 

The over-riding disadvantages of this design approach relates to its forwarding through bridges:

a) Bandwidth. Bandwidth is wasted because frames are broadcast to all potential listeners, rather than 
only the subscribed listeners.

b) Ambiguous. The da field is insufficient to identify the frame, mandating the presence of stream 
identifier information within the data[ ] payload.

Figure G.2—ClassA frame formats
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G.2 Subscription

G.2.1 Simple Reservation Protocol (SRP) overview

Subscription involves explicit negotiation for bandwidth resources, performed in a distributed fashion, 
flowing over the paths of intended communication. The RE subscription protocols are called Simple 
Reservation Protocols (SRP), due to their simplicity as compared to the Resource Reservation Protocol 
(RSVP). SRP shares many of the baseline RSVP features, including the following:

a) SRP is simplex, i.e. reservations apply to unidirectional data flows.

b) SRP is receiver-oriented, i.e., the receiver of a classA stream initiates and maintains the resource 
reservation used for that stream.

c) SRP maintains “soft” state in bridges, providing graceful support for dynamic membership changes 
and automatic adaptations to changes in network topology.

d) SRP is not a routing protocol, but depends on transparent bridging and STP routing protocols.

SRP simplicity is derived from its restricted layer-2 ambitions, as follows.

a) SRP is symmetric, i.e. the listener-to-talker path is the inverse of the talker-to-listener path.

b) SRP does no not provide for transcoding; any stream is fully characterized by its streamID and 
bandwidth.

G.2.2 Soft reservation state

SRP takes a “soft state” approach to managing the reservation state in bridges. SRP soft state is created and 
periodically refreshed by listener generated RequestRefresh messages; this state is deleted if no matching 
RequestRefresh messages arrive before the expiration of a “cleanup timeout” interval. Listener’s may also 
force state deletions by generating an explicit RequestLeave message.

RequestRefresh messages are idempotent. When a route changes, the next RequestRefresh message will ini-
tialize the path state to the new route, and future RequestRefresh messages will establish state there. The 
state on the now-unused segment of the route will be deleted after a timeout interval. Thus, whether a 
RequestRefresh message is “new” or a “refresh” is determined separately by each station, depending upon 
the existence of state at that station.

SRP soft state is also deleted in the continued absence of associated classA traffic; this state is deleted if no 
matching classA traffic arrives before the expiration of a “cleanup timeout” interval. Thus, talker stations or 
agents may force reservation-state deletions by stopping their transmissions of classA traffic.

SRP sends it messages as layer-2 datagrams with no reliability enhancement. Periodic transmissions by lis-
tener stations and agents is expected to handle the occasional loss of an SRP message. 

In the steady state, state is refreshed on a hop-by-hop basis to allow merging. Propagation of a change stops 
when and if it reaches a point where merging causes no resulting state change. This minimizes the SRP con-
trol traffic and is essential for scaling to large audiences.

G.2.3 Subscription bandwidth constraints

The SRP subscription protocols limit cumulative bandwidth allocations to a fixed percentage less than the 
capacity of the link, much like IEEE 1394 limits isochronous traffic to less than the capacity of its bus. This 
guarantees that high priority management information can be transmitted across the link. For RE systems, 
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classA traffic is limited to 75% of the capacity of any RE link. Enforcement of such a limit is done in multi-
ple ways:

a) Admissions controls (described in previous subclauses) reject any RequestRefresh message that 
(when combined with previously accepted request) would consume more than 75% of link 
bandwidth.

b) Transmit queue hardware of RE stations (including bridges) discards classA content that (if trans-
mitted) would cause classA traffic to exceed 75% of the transmit link capacity.

Method (b) is desired to recovery from unexpected transient conditions (typically topology changes) that 
result in admission control violations, and is also useful for managing misbehaving devices

G.2.4 Bridge-resident agents

Subscription facilities establish multicast paths from a talker to one or more listeners. Streams of 
time-sensitive data can then flow over these established paths, as illustrated by the dark arrow paths in 
Figure G.3-a. Maintaining these established paths involves active participation of agents within the 
end-point talker, local listener, local talker, and end-point listener entities, as illustrated in Figure G.3-b.

The talker stations/agents are responsible for maintaining an account consisting of {streamID, bandwidth} 
pairs, one for each of their distinct flows. Requests for additional link bandwidth are checked against these 
accounts and rejected if the cumulative bandwidth would exceed 75% of the link capacity. The talker agents 
are also responsible for sustaining streams of classA data; their absence can result in disconnections of the 
attached listener agent.

The listener agents are responsible for periodically refreshing their adjacent talker agents, to confirm their 
continued presence. A persistent absence of refreshes causes the adjacent talker agent to disconnect its 
stream transmissions and (if appropriate) to inform other station-local agents.

For each established stream within a bridge, the listener agent remains active while all but the last down-
stream flows are disconnected. The upstream station receives its disconnect notice only after the last of the 
downstream flows has disconnected.

The listener agent’s messages that establish and maintain the path are the same. This reduces design com-
plexity and (most importantly) automatically re-routes stream flows after topology changes.

Figure G.3—Agents on an established path
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G.2.5 Controller entities

Subscription when a relative-intelligent controller discovers the need to establish a classA path between 
talker and listener entities. For example, user interactions with a television (called the controller) may cause 
streams flowing between the content source (called the talker) and speakers (the listeners), as illustrated in 
Figure G.4.

A controller can potentially simplify the listener by reducing the need to providing user interface and 
device-discovery capabilities. However, a controller could also reside within talker and/or listener compo-
nents. However, actions between controllers and talker/listener stations are beyond the scope of this 
working paper.

G.2.6 Pinging the talker

After being activated by a talker, listeners are expected to ping the talkers before initiating subscription oper-
ations, as illustrated in Figure G.5. The purpose of the ping is to ensure that bridges have learned listener and 
talker addresses, allowing frames to be sequentially passed from the listener-to-talker.

Figure G.4—Controller activation

Figure G.5—Pinging the talker
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G.2.7 Path creation

Establishing a conversation between a listener and a talker involves sending a RequestRefresh message from 
the listener towards the talker, illustrated by the dark arrow paths in Figure G.6-a. If available bandwidths are 
sufficient, the talker starts its stream transmissions, as illustrated by the gray arrow paths in Figure G.6-b.

In rare circumstances, some talker addresses may not have been learned and the RequestRefresh message 
will terminate with a returned ResponseError message. The listener has the option of repeating the 
RequestRefresh after performing a ping (see G.2.6), which validates the talker presence and activates bridge 
learning.

Another timeouts is associated with the absence of periodic RequestRefresh messages. In the continued 
absence of these expected messages, the listener is assumed to be absent or deactivated. Based on this 
assumption, the associated talker (station or agent) resources are released.

G.2.8 Side-path extensions

A second listener joins an established conversation by sending a RequestRefresh message towards the talker, 
as illustrated by the dark-arrow path in Figure G.7-a. When an established connection is discovered, the 
switch (not the talker) returns stream transmissions, as illustrated by the dark-gray path in Figure G.7-b.

Figure G.6—Path creation

Figure G.7—Side-path extensions

a) Phase 1: RequestRefresh messages

Legend: 
talker new listener other 
RequestRefresh flow

T L

T L

b) Phase 2: Stream transmissions

Legend: 
talker new listener other 
stream transmissions

LT

T L

a) Phase 1: RequestRefresh messages

Legend: 
talker old listener new listener 
other existing path 

RequestRefresh path

L

N

T

T L N

b) Phase 2: Extended paths

LT

N

Legend: 
talker old listener new listener 
other revised paths

T L N
Contribution from: dvj@alum.mit.edu. 
This is an unapproved working paper, subject to change. 165



JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54
Each talker agent maintains separate state, so that classA traffic can be multicast to the applicable stations, 
rather than flooded downstream. The distinct markers also allow the switch to detect when the last listener 
disconnects, so that its previously shared upstream span can be released appropriately.

G.2.9 Side-path release

A retiring listener normally leaves an established conversation, by sending a RequestLeave message towards 
the talker. That message propagates to the nearest merging bridge connection, as illustrated by the 
dark-arrow path in Figure G.8-a. When an established/merged connection is discovered, the switch (not the 
talker) stops the stream transmissions, as illustrated by the disappearance of a side path in Figure G.8-b.

G.2.10 Released path

The final listener bandwidth release involves sending a RequestLeave message towards the talker. In this 
case, that message propagates to the talker, as illustrated by the dark-arrow path in Figure G.9-a. The stream 
transmissions then stop, as illustrated in Figure G.9-b.

Figure G.8—Side-path demolition

Figure G.9—Released path
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G.2.11 Errors and timeouts

G.2.11.1 Subscription failures

A RequestRefresh message can encounter an error while flowing from the listener towards the talker, 
illustrated by the dark arrow paths in Figure G.10-a. When such errors occur, a ResponseError message is 
normally returned to the listener, as illustrated by the gray arrow paths in Figure G.10-b.

Errors may be associated with a variety of errors including (but not limited to) the following:

a) Insufficient resources. Necessary resources are available within the bridge:

1) Insufficient bandwidth is available on the link from the talker agent to its adjacent listener.
2) Insufficient path-related resources are available in the bridge’s talker agent.
3) Insufficient path-related resources are available in the bridge’s upstream listener agent.
4) Insufficient link or memory bandwidth is available with the bridge.

b) Unlearned address. The route from the bridge to the talker is unknown. 
(To avoid complexities and inefficiencies, RequestRefresh messages are never flooded.)

Figure G.10—Error responses
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G.2.11.2 Listener-presence timeouts

Listener agents and stations are responsible for refreshing their local talkers, to demonstrate their continued 
presence. In the absence of these refresh messages, the talkers assume the listener is absent and teardown the 
inactive path (or inactive branch from the path).

Thus, sustaining the active paths of Figure G.11-a requires periodic refresh messages on each hop, as 
illustrated in Figure G.11-b. The refresh messages and associated timeouts are performed independently on 
each span. The messages that establish the path (see G.2.7 and G.2.8) are the same as these listener-initiated 
messages that sustain the established path.

G.2.11.3 Talker-presence timeouts

Talker agents and stations are responsible for updating their local listeners, to demonstrate their continued 
presence. In the absence of these updates, the listeners assume the talker is absent and teardown the inactive 
path (or inactive branch from the path).

Thus, sustaining the active paths of Figure G.11-a requires periodic transmissions of classA traffic on each 
hop (not illustrated). The associated timeouts are performed independently on each span. The frames that 
transfer classA data are the same as these talker-initiated frames that sustain the established path.

Figure G.11—Side-path demolition
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Annex H

(informative)

Frequently asked questions (FAQs)

H.1 Unfiltered email sequences

H.1.1 Bandwidth allocation

Question (AM): Is bandwidth allocation really necessary to meet RE requirements? Over-provisioning and 
best-effort (with class of service) may be adequate. You can get a lot of data through a conventional gigabit 
switch with very low latencies. The RE traffic can be given a higher priority and so not be held up by less 
urgent traffic.

Answer (MJT): I think admission control is needed. In an unmanaged layer 2 environment there is no way 
to guarantee that the streaming QoS parameters can be met … you can only say probably. With GigE and a 
fully bridge-based environment with class of service you can get to a pretty good probably, but you can't get 
to the it will always work QoS that the wonderful BER of Ethernet promises. On the other hand, a simple 
admission control system and simple pacing mechanism can get you there, even with an FE-only network.

H.1.2 Best effort

Question (AM): With access control what happens if access is denied? My assumption is that a user 
connecting to a RE network would prefer best-effort service to no service at all if there is no spare 
bandwidth to be allocated. If you decide you need to support best-effort as a fallback then you need buffers 
in your end stations and the reason for using time slots goes away.

Answer (MJT): Your assumption is only correct if the service the consumer is subscribing to is a best-effort 
service. Right now, consumers expect that when they select a channel, or a CD, or a DVD they will get it 
perfectly. Cable companies get lots of calls if a stream is substandard for any reason. The general procedure 
to select a stream on a CE-oriented network would be something like:

a) Hit the directory or guide button on your remote control

b) Find the content you want (note that the content entries might be labeled with not currently 
available or low quality only or not even present depending on the state of the path to the source).

c) Hit the play button.

Once the consumer hits that play button, the endpoints and network need to make a contract to deliver the 
content with the QoS expected by the consumer. So, in the case you describe where there is no guaranteed 
bandwidth available, you may present an alternative method (such as the low quality tag). This may be 
perfectly OK. If, on the other hand, the consumer wants to see the HD movie with full quality, they can yell 
at their kid to stop watching the movie that is causing the network link of interest to saturate.
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H.2 Formulated responses

TBD
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Annex I

(informative)

Comment responses

I.1 Recent review-comment resolutions

TBD.

NOTE—This clause should be skipped on the first reading (reading starts at Clause 1). 
This clause is provided for communicating detailed responses to reviewer comments.
Contribution from: dvj@alum.mit.edu. 
This is an unapproved working paper, subject to change. 171



JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54
Contribution from: dvj@alum.mit.edu. 
172 This is an unapproved working paper, subject to change.



RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54
Contribution from: dvj@alum.mit.edu. 
This is an unapproved working paper, subject to change. 173



RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54
Contribution from: dvj@alum.mit.edu. 
This is an unapproved working paper, subject to change. 174



ject to change. 175

JggD RE)
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37

An

(inf

C-c

This ormational purposes, and should not be construed 
as m her normative portion of this standard, the other 
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nex J

ormative)

ode illustrations

 Annex provides code examples that illustrate the behavior of RE entities. The code in this Annex is purely for inf
andating any particular implementation. In the event of a conflict between the contents of this Annex and anot
ative portion shall take precedence.

syntax used for the following code examples conforms to ANSI X3T9-1995.

TE—This annex is provided as a placeholder for illustrative C-code. Locating the C code in one loca-
 (as opposed to distributed throughout the working paper) is intended to simplify its review, extraction, 
pilation, and execution by critical reviewers. 

o, placing this code in a distinct Annex allows the code to be conveniently formatted in 132-character 
dscape mode. This eliminates the need to truncate variable names and comments, so that the resulting 
e can be better understood by the reader.
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// * ********************************
//           1         1         1
//           1         2         3
//34 12345678901234567890123456789012

#inc
#inc

// u teger
// u teger
// u teger
// u teger

// s ger
// s ger
// s ger
// s ger

#def ange is very-quick
#def dware is provided
#def  a 32-bit signed integer
#def d fraction component
#def itive integer
#def constraints
#def nition
#def nition
#def
#def lue
#def ivalent of (1<<64)
#def irst station port
#def ext station port
#def rand-master mode
#def r, slave mode

// T
//
//  
//  
//  
//  
//  
//
// I
// O
//

#if 
type
{
    
    
} Do
type
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************************************************************************************************
                                                                                               1
     1         2         3         4         5         6         7         8         9         0
567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

lude <assert.h>
lude <stdio.h>

nsigned char      uint8_t;                                                 // 1-byte unsigned in
nsigned short     uint16_t;                                                // 2-byte unsigned in
nsigned int       uint32_t;                                                // 4-byte unsigned in
nsigned long long uint64_t;                                                // 8-byte unsigned in

igned char        int8_t;                                                  // 1-byte signed inte
igned short       int16_t;                                                 // 2-byte signed inte
igned int         int32_t;                                                 // 4-byte signed inte
igned long long   int64_t;                                                 // 8-byte signed inte

ine OPTION_FAST 0                                                          // 1 if precedence-ch
ine OPTION_BASE 0                                                          // 1 if baseTimer har
ine DIFF_SCALE ((double)4096 * ((uint64_t)1 << 31))                        // Changes <200PPM to
ine EXTRACT_CORE(a, b) (((a) << 32) | ((b) >> 32))                         // Extract seconds an
ine FULL_SCALE (0x7FFFFFFF)                                                // Biggest 32-bit pos
ine LIMIT(a, b, c) MAX(MIN((a), (b)), (c))                                 // Force base/bounds 
ine MAX(a, b) ((a) < (b) ? (b) : (a))                                      // Maximum value defi
ine MIN(a, b) ((a) > (b) ? (b) : (a))                                      // Minimum value defi
ine MINIMUM_WIDE(a, b) (CompareWide((a), (b)) < 0 ? (a) : (b))
ine ONES64 ~((uint64_t)0)                                                  // 64-bit all-ones va
ine SCALE64 ((double)16 * (1 << 30) * (1 << 30))                           // Floating-point equ
ine BASE_PORT(siPtr) (siPtr->portPtr)                                      // A pointer to the f
ine NEXT_PORT(piPtr) (piPtr->portPtr)                                      // A pointer to the n
ine GRAND 2                                                                // An indication of g
ine SLAVE 1                                                                // If not grand-maste

he grand-master precedence check is based on concatenated fields, as follows:

 MSB                                                                                     LSB
 |                    hi                     |                      lo                     |
 +-----------------------------------------------------------------------------------------+
 |   0000    systemTag                     eui64                       00   hops   portTag |
 +----16----’----16----’--------------------64-----------------------’--8--’--8--’----16---+

f hops == ONES, this value is considered VOID and has the worse precedence
therwise, the best precedence corresponds to the smallest of two tested values.

(CPU_TYPE == BIG)
def struct

uint64_t hi;                                 // more-significant portion
uint64_t lo;                                 // less-significant portion
ubleData;
def struct
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{
    
    
    
    
    
    
    
    
} Do
#els
type
{
    
    
} Do
type
{
    
    
    
    
    
    
    
    
} Do
#end

type
{
    
    
} Pr

type
{
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unsigned fill16:16;
unsigned systemTag:16;
unsigned uniqueHi:32;
unsigned uniqueLo:32;
unsigned fill08:8;
unsigned hopsCount:8;
unsigned portLevel:4;
unsigned portNumber:12;
ubleInfo;
e
def struct

uint64_t lo;                                 // less-significant portion
uint64_t hi;                                 // more-significant portion
ubleData;
def struct

unsigned portNumber:12;
unsigned portLevel:4;
unsigned hopsCount:8
unsigned fill08:8;
unsigned uniqueLo:32;
unsigned uniqueHi:32;
unsigned systemTag:16;
unsigned fill16:16;
ubleInfo;
if

def union

DoubleData data;                             // As 64-bit data values
DoubleInfo info;                             // As data fields
ecedenceInfo;

def struct _PortInfo

struct _PortInfo *portPtr;                   // Points to the next linked port
unsigned portLevel:4;                        // Relative priority number of ports
unsigned portNumber:12;                      // Port number
DoubleData portPrecedence;                   // Incoming frame parameters

uint8_t  skipCount;                          // Number of 10ms intervals
uint32_t cableDelay;                         // The cable delay, from local master
uint32_t linkOffset;                         // The cable difference, from local master
uint64_t deltaTime;                          // For inclusion in transmitted frames

                                             // Best if captured accurately by the PHY
uint64_t latchRxFlexTime;                    // Snapshot of flexTimer, on clockSync arrival,
                                             // available for this clockSync reception.
uint64_t latchTxFlexTime;                    // Snapshot of flexTimer, on clockSync departure,
                                             // available for next clockSync transmission

uint64_t savedRxFlexTime;                    // Previous latchRxFlexTime value
uint64_t savedRxFlexData;                    // Previous clockSync.lastFlexTime value



ject to change. 178

JggD RE)
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37

    
    
    
} Po

type
{   
    
    
    
    
    
    

    

    
    
    
    
    

    
    
    

    
    

    
    
    
    
    

    
    

    
    
} St

type
{   
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                                             // If OPTION_BASE is 1, baseTimer snapshots:
uint32_t latchRxBaseTime;                    // Captured clockSync base-time arrival
uint32_t latchTxBaseTime;                    // Captured clockSync base-time departure (delayed)
rtInfo;

def struct
                                             // Customized per-station components
PortInfo *portPtr;                           // Points to a linked-list of ports
double nominalFrequency;                     // Nominal clock frequency, in Hz
int8_t clockDeviation;                       // Deviation in parts-per-million
uint64_t eui64;                              // 64-bit extended unique identifier
unsigned systemLevel:4;                      // Relative priority number of ports
unsigned systemNumber:12;                    // Port number

unsigned selectCount;                        // Grand-master selection count

uint8_t  skipCount;                          // Number of 10ms intervals
uint32_t myDiffRate;                         // The rate difference, from upstream neighbor
uint32_t diffRate;                           // The rate difference, from grand-master
uint32_t linkOffset;                         // The cable difference, from local master
uint64_t deltaTime;                          // For inclusion in transmitted frames

DoubleData thisPrecedence;                   // The precedence of this station
DoubleData bestPrecedence;                   // The best observed precedence
int16_t bestPort;                            // Selected clock-slave port

uint64_t savedRxFlexTime;                    // Previous latchRxFlexTime value
uint32_t savedRxBaseTime;                    // Previous latchRxBaseTime value

uint64_t timeOfDay;                          // Offset and rate-compensated timer value
uint64_t flexTimerHi;                        // Offset and rate adjustable 64-bit timer
uint64_t flexTimerLo;                        // Offset and rate adjustable 64-bit timer
uint64_t flexOffset;                         // Adjustable offset value for flexTimer
uint64_t flexRate;                           // 40-bit adjustable rate for flexTimer

uint64_t baseTimer;                          // Fixed-rate fixed-offset 64-bit timer
uint64_t baseRate;                           // SCALE64/clockFrequency, pre-initialized

uint32_t savedRxBaseTickTime;                // Saved values of savedRxBaseTime
uint32_t savedRxBaseTickData;                // Saved values of clockSync.lastBaseTime;
ationInfo;

def struct                                   // The clockSync frame, reserved-padded to
                                             // the minimum 64-byte frame size.
uint32_t  da_hi;                             // Ethernet’s 48-bit destination address
uint16_t  da_lo;                             //  "
uint16_t  sa_hi;                             // Ethernet’s 48-bit source address
uint32_t  sa_lo;                             //  "
uint16_t  protocolType;                      // Specifies format/meaning of following
uint8_t   subType;                           // Refined format/meaning specification
uint8_t   syncCount;                         // Sequence numbers for consistency checks
uint8_t   hopsCount;                         // Hop counts from the grand master
uint8_t   reserved;                          // A few reserved bytes, for 64-byte minimum
uint16_t  systemTag;                         // Precedence for grand-master election
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} Cl

uint
void
void
void
void
int 
Doub
void
int 

// C
//  
void
Stat
{
    
    
    
    

    
    / The nominal frequency
    / Mid-range default with
    / systemNumber extension
    / This station precedence
      // has zero-valued hopsCount
    
    / Per-port initialization
    / Mid-range default with
    / port-number extension
    
    
}

// C
//  
//  
//  
void
Cloc int8_t rateAdjust)
{
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uint64_t  uniqueID;                          // Identifier for grand-master election
uint64_t  lastFlexTime;                      // flexTimer on last clockSync transmission
uint64_t  deltaTime;                         // Time difference on opposing link
uint64_t  offsetTime;                        // Cumulative grand-master offset differences
uint32_t  diffRate;                          // Cumulate grand-master rate differences
uint32_t  lastBaseTime;                      // baseTimer on last clockSync transmission
uint32_t  fcs;                               // Frame check sequence
ockSyncFrame;

32_t   BaseTimerChange(uint64_t, uint64_t, double);
       ClockSyncArrived(StationInfo *, PortInfo *);
       ClockSyncDeparted(StationInfo *, PortInfo *);
       ClockSyncReceive(StationInfo *, PortInfo *, ClockSyncFrame *, uint8_t);
       ClockSyncTransmit(StationInfo *, PortInfo *, ClockSyncFrame *);
       CompareWide(DoubleData, DoubleData);
leData PrecedenceMerge(uint16_t, uint64_t, uint8_t, uint8_t, uint16_t);
       TimerTick(StationInfo *);
       UpdatePrecedence(StationInfo *, PortInfo *);

alled with:
 stationInfoPtr  -- the station information context

ionSetup(StationInfo *stationInfoPtr)

PortInfo *portPtr;
StationInfo *siPtr = stationInfoPtr;
uint16_t systemTag;
uint16_t count;

assert(siPtr != NULL);
siPtr->baseRate = SCALE64 / siPtr->nominalFrequency;                                           /
siPtr->systemLevel = 0X8;                                                                      /
systemTag = ((uint16_t)(siPtr->systemLevel) << 12) | siPtr->systemNumber;                      /
siPtr->thisPrecedence =                                                                        /
 PrecedenceMerge(systemTag, siPtr->eui64, 0, 0, 0);                                             
count = 0;
for (portPtr = BASE_PORT(siPtr); portPtr != NULL; portPtr = NEXT_PORT(portPtr)) {              /
    portPtr->portLevel = 0X8;                                                                  /
    portPtr->portNumber = count;                                                               /
    count += 1;
}

alled with:
 stationInfoPtr  -- the station information context
 portInfoPtr     -- the port information context
 clockSyncPtr -- the contents of a clockSync frame

kSyncReceive(StationInfo *stationInfoPtr, PortInfo *portInfoPtr, ClockSyncFrame *clockSyncPtr, u

PortInfo *piPtr = portInfoPtr, *portPtr;
PrecedenceInfo precedence;
StationInfo *siPtr = stationInfoPtr;
ClockSyncFrame *csPtr = clockSyncPtr;
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    / Compute the precedence,
    / in the absence of timeouts
    
    / Compute the precedence,
    / in the presence of timeouts

    
    
    
    
    
    
    

    / Measured receive-link delay
    / Reported transmit-link delay
    / Local timer differences
    / Cable transmission delay

    
    / Grand-master properties
    / Slave port identification
    
    / Grand-master properties
    / override slave-port ID
    / Grand-master reference
    / runs at the base rate
    
    
    / Low-rate adjustments
    / Clock-slave difference
    / Clock-master difference
    / Previous saved value
    / Previous saved value
    / Local rate difference
    / Rate difference limits
    
    
    / Rate-range limitation
    / Offset compensation
    / Rate compensation
    
    
    
    / Receiver’s baseTimer snapshot
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uint32_t measuredDelta, receivedDelta, diffRate;
uint64_t rxDelta, txDelta, clockDelta, cableDelay;
double tempRate;
int8_t grand, slave;

assert(siPtr != NULL && piPtr != NULL);
if (csPtr != NULL && csPtr->hopsCount != 0XFF)                                                 /
    piPtr->portPrecedence = PrecedenceMerge(csPtr->systemTag,                                  /
      csPtr->uniqueID, csPtr->hopsCount, piPtr->portLevel, piPtr->portNumber);
else                                                                                           /
    piPtr->portPrecedence.hi = piPtr->portPrecedence.lo = ~((uint64_t)0);                      /

if (OPTION_FAST && UpdatePrecedence(siPtr, piPtr)) {
    for (portPtr = BASE_PORT(siPtr); portPtr != NULL; portPtr = NEXT_PORT(portPtr))
        siPtr->bestPrecedence = MINIMUM_WIDE(piPtr->portPrecedence, siPtr->bestPrecedence);
    siPtr->selectCount += 1;
}
if (csPtr == NULL)
    return; 

rxDelta = piPtr->savedRxFlexTime - csPtr->lastFlexTime;                                        /
txDelta = csPtr->deltaTime;                                                                    /
clockDelta = (txDelta - rxDelta)/2;                                                            /
cableDelay = (txDelta + rxDelta)/2;                                                            /

precedence.data = siPtr->bestPrecedence;
grand = (precedence.info.hopsCount == 0) ? GRAND : 0;                                          /
slave = (precedence.info.portNumber == piPtr->portNumber) ? SLAVE : 0;                         /
switch(grand | slave) {
case GRAND:                                                                                    /
case GRAND | SLAVE:                                                                            /
    siPtr->diffRate = 0;                                                                       /
    siPtr->flexRate = siPtr->baseRate;                                                         /
    break;
case SLAVE:
    if (rateAdjust) {                                                                          /
        measuredDelta = (siPtr->savedRxBaseTime - siPtr->savedRxBaseTickTime);                 /
        receivedDelta = (csPtr->lastBaseTime - siPtr->savedRxBaseTickData);                    /
        siPtr->savedRxBaseTickTime = siPtr->savedRxBaseTime;                                   /
        siPtr->savedRxBaseTickData = csPtr->lastBaseTime;                                      /
        tempRate = DIFF_SCALE * ((double)(receivedDelta - measuredDelta)/receivedDelta);       /
        siPtr->myDiffRate = LIMIT(tempRate, FULL_SCALE, -FULL_SCALE);                          /
    }
    siPtr->diffRate = diffRate =
     LIMIT(siPtr->myDiffRate + csPtr->diffRate, FULL_SCALE, -FULL_SCALE);                      /
    siPtr->flexOffset = csPtr->offsetTime + clockDelta + siPtr->linkOffset;                    /
    siPtr->flexRate = siPtr->baseRate + siPtr->baseRate * (diffRate / DIFF_SCALE);             /
    if (OPTION_BASE)
        siPtr->savedRxBaseTime = piPtr->latchRxBaseTime;
    else
        siPtr->savedRxBaseTime +=                                                              /
         BaseTimerChange(siPtr->savedRxFlexTime, piPtr->latchRxFlexTime, diffRate);
    break;
default:
    break;
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    / Local cable-delay knowledge
    / Saved reference time
    / Saved for retransmission
}

// C
//  
//  
int
Upda
{
    
    
    
    
    / Set grand-master precedence
    
    / Compare precedence values
    / If this is the best port,
    / update baseline precedence 
    / If this is not the best port,
    / update overall precedence
    / A precedence-change result
}

// C
//  
//  
//  
void
Cloc
{
    
    
    
    

    
    / If precedence has changed,
    / start fast transmissions

    
    
    
    
    
    / Derived from latchTxFlexRate
    

    
    / Increment hop-count value
    / Supply systemTag values
    / Unique number tie-breaker
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} 
piPtr->cableDelay = cableDelay;                                                                /
piPtr->savedRxFlexTime = piPtr->latchRxFlexTime;                                               /
piPtr->deltaTime = rxDelta;                                                                    /

alled with:
 stationInfoPtr  -- the station information context
 portInfoPtr     -- the port information context

tePrecedence(StationInfo *stationInfoPtr, PortInfo *portInfoPtr)

PortInfo       *piPtr = portInfoPtr;
DoubleData      pastPrecedence;
PrecedenceInfo  precedence;
StationInfo    *siPtr = stationInfoPtr;
                                                                                               /
assert(siPtr != NULL && piPtr != NULL);
precedence.data = pastPrecedence = siPtr->bestPrecedence;                                      /
if (piPtr->portNumber == precedence.info.portNumber)                                           /
    siPtr->bestPrecedence = MINIMUM_WIDE(piPtr->portPrecedence, siPtr->thisPrecedence);        /
else                                                                                           /
    siPtr->bestPrecedence = MINIMUM_WIDE(piPtr->portPrecedence, siPtr->bestPrecedence);        /
return(CompareWide(siPtr->bestPrecedence, pastPrecedence) != 0);                               /

alled with:
 stationInfoPtr  -- the station information context
 portInfoPtr     -- the port information context
 clockSyncPtr    -- the contents of a clockSync frame

kSyncTransmit(StationInfo *stationInfoPtr, PortInfo *portInfoPtr, ClockSyncFrame *clockSyncPtr)

ClockSyncFrame *csPtr = clockSyncPtr;
PortInfo       *piPtr = portInfoPtr;
PrecedenceInfo  precedence;
StationInfo    *siPtr = stationInfoPtr;

assert(siPtr != NULL && piPtr != NULL && csPtr != NULL);
if (UpdatePrecedence(siPtr, piPtr))                                                            /
    siPtr->selectCount += 1;                                                                   /

// An absent baseTimer is emulated by properly scaling time differences,
// measured from the last recorded received-clockSync event.
//   - baseTime value was computed
//   - a different normDiffRate value has taken effect
if (!OPTION_BASE)
    piPtr->latchTxBaseTime = siPtr->savedRxBaseTime +                                          /
      BaseTimerChange(siPtr->savedRxFlexTime, piPtr->latchTxFlexTime, siPtr->diffRate);

precedence.data = siPtr->bestPrecedence;
csPtr->hopsCount = precedence.info.hopsCount;                                                  /
csPtr->systemTag = precedence.info.systemTag;                                                  /
csPtr->uniqueID  = ((uint64_t)(precedence.info.uniqueHi) << 32) | precedence.info.uniqueLo;    /
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    / Send last timer value
    / Send received-link delay
    / Send last baseTimer value
    / This station’s cumulative offset
    / Send current diffRate value
}

// C
// L
//
// C
//  
//  
void
Cloc
{
    
    

    
    / Latch seconds:fraction fields
    / If a baseTimer is present,
    / latch its fraction field
}

// C
// L
//
// C
//  
//  
void
Cloc
{
    
    

    
    / Latch seconds:fraction fields
    / If a baseTimer is present,
    / latch its fraction field
}

// C
// T
// t
//
//  
//  
//  
//  
//  
//  
//  
//  
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csPtr->lastFlexTime = piPtr->latchTxFlexTime;                                                  /
csPtr->deltaTime    = piPtr->deltaTime;                                                        /
csPtr->lastBaseTime = piPtr->latchTxBaseTime;                                                  /
csPtr->offsetTime   = siPtr->flexOffset;                                                       /
csPtr->diffRate     = siPtr->diffRate;                                                         /

alled when a clockSync frame is received, to latch timer values.
atches timers are available when ClockSyncReceive() is called.

alled with:
 stationInfoPtr -- the station information context
 portInfoPtr     -- the port information context

kSyncArrived(StationInfo *stationInfoPtr, PortInfo *portInfoPtr)

PortInfo    *piPtr = portInfoPtr;
StationInfo *siPtr = stationInfoPtr;

assert(siPtr != NULL);
piPtr->latchRxFlexTime = EXTRACT_CORE(siPtr->flexTimerHi, siPtr->flexTimerLo);                 /
if (OPTION_BASE)                                                                               /
    piPtr->latchRxBaseTime = siPtr->baseTimer >> 32;                                           /

alled when a clockSync frame is transmitted, to latch timer values.
atches timers are available for the next ClockSyncTransmit() call.

alled with:
 stationInfoPtr -- the station information context
 portInfoPtr     -- the port information context

kSyncDeparted(StationInfo *stationInfoPtr, PortInfo *portInfoPtr)

PortInfo    *piPtr = portInfoPtr;
StationInfo *siPtr = stationInfoPtr;

assert(siPtr != NULL);
piPtr->latchTxFlexTime = EXTRACT_CORE(siPtr->flexTimerHi, siPtr->flexTimerLo);                 /
if (OPTION_BASE)                                                                               /
    piPtr->latchTxBaseTime = siPtr->baseTimer >> 32;                                           /

alled at a high clock rate (less than 20 ns) to update flexTimer and baseTimer (if present).
his routine is intended to illustrate the computations involved in updating hardware timers;
his code is _not_ expected to be incorporated into firmware.

                                          +-----------------------------------------+
            0000 0000 0000 0000(hex)      |       fraction           subfraction    | flexRate
                     |                    +---------32---------.---------32---------+
                     |                                         |
 ____________________v____________________ ____________________v____________________
’-----------------------------------------’-----------------------------------------’
(                                   flexAdd:128                                     )
 ----------------------------------------------------------------------------------- 
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//  
//  
//  
//  
//  
//  
//  
//  
//  
//  
//  
//  
//  
//  
//  
//  
//
//
//  
//  
//  
//  
//  
//  
//  
//  
//  
//  
//  
//  
//  
//
//
// C
//  
void
Time
{
    
    

    
    / Saved to detect overflows
    / Addition of the subfractions
    / Propagate carry into seconds
    / Compensate for offset drifts
    
    
}

// C
//  
//  
//  
uint
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                                        ^   |
                                        |   v
+-----------------------------------------------------------------------------------+
|    superSeconds            seconds              fraction           subfraction    | flexTimer
+---------32---------’---------32---------’---------32---------’---------32---------+
                      \_______________________________________/
                                          |
                                          v
                     ----------------------------------------- 
                    (               offsetAdd:64              )-->timeOfDay
                     ----------------------------------------- 
                                          ^
                                          |
                    +-----------------------------------------+
                    |       seconds              fraction     | flexOffset
                    +----------32--------’---------32---------+

                                          +-----------------------------------------+
                                          |       fraction           subfraction    | baseRate
                                          +---------32---------.---------32---------+
                                                               |
                                                               v
                                           ----------------------------------------- 
                                          (               baseAdd:64                )
                                           ----------------------------------------- 
                                                             ^   |
                                                             |   v
                                          +-----------------------------------------+
                                          |       fraction           subfraction    | baseTimer
                                          +---------32---------’---------32---------+

alled with:
 stationInfoPtr -- the station information context

rTick(StationInfo *stationInfoPtr)

StationInfo *siPtr = stationInfoPtr;
int64_t pastTimerLo;

assert(siPtr != NULL);
pastTimerLo = siPtr->flexTimerLo;                                                              /
siPtr->flexTimerLo += siPtr->flexRate;                                                         /
siPtr->flexTimerHi += (pastTimerLo > siPtr->flexTimerLo) ? 1 : 0;                              /
siPtr->timeOfDay = EXTRACT_CORE(siPtr->flexTimerHi, siPtr->flexTimerLo) + siPtr->flexOffset;   /
if (OPTION_BASE)
    siPtr->baseTimer += siPtr->baseRate;

alled with:
 stationInfoPtr -- the station information context
 currentTime    -- the current flexTimer value
 diffRate       -- the scaled rate difference
32_t
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Base
{
    

    / Compute lapsed time
    / Compensate by rate difference
    / Return incremenal change
}

// M
// C
//  
//  
//  
//  
Doub
Prec t portNumber)
{
    
 
    
    
    
    
    
    
    
    
    
}

// P
// C
//  
//  
int
Comp
{
    
    
    
    
    
}
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TimerChange(uint64_t lastTime, uint64_t nextTime, double diffRate)

uint64_t delta;

delta = nextTime - lastTime;                                                                   /
delta -= delta * (diffRate / DIFF_SCALE);                                                      /
return(delta);                                                                                 /

erge multiple fields into an 128-bit integer, for comparisons
alled with:
 systemTag      -- the 16-bit most-significant precedence subfield
 uniqueID       -- the 64-bit unique identifier (EUI-64)
 hopsCount      -- the hop-count distance from the grand master
 portTag        -- the tag associated with the port
leData
edenceMerge(uint16_t systemTag, uint64_t uniqueID, uint8_t hopsCount, uint8_t portLevel, uint16_

PrecedenceInfo result;

result.info.fill16     = 0;
result.info.systemTag  = systemTag;
result.info.uniqueHi   = (uniqueID >> 32);
result.info.uniqueLo   = uniqueID;
result.info.fill08     = 0;
result.info.hopsCount  = hopsCount;
result.info.portLevel  = portLevel;
result.info.portNumber = portNumber;
return(result.data);

erforms a comparison of 128-bit preceision unsigned values
alled with:
 a -- the first of two 128-bit values
 b -- the final of two 128-bit values 

areWide(DoubleData a, DoubleData b)

if (a.hi != b.hi)
    return(a.hi > b.hi ? 1 : -1);
if (a.lo != b.lo)
    return(b.lo > b.lo ? 1 : -1);
return(0);
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cycleCount ..................................................... 61
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cycleCount
See clockSync frame

D
da

See classA frame
See clockSync frame
See RequestRefresh frame

deltaTime
See clockSync frame

diffRate
See clockSync frame

E
extension

See clockSync frame

F
fcs

See classA frame
See clockSync frame
See RequestRefresh frame

fraction
See clockSync frame
See time field

H
hopsCount

See clockSync frame

I
info

See RequestRefresh frame
info  field
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talkerID ......................................................... 64
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maxBw ........................................................... 64
reserved ......................................................... 64

L
lastBaseTime

See clockSync frame
lastFlexTime

See clockSync frame

M
maxBw

See info  field
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

maxCycles
See info  field
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

mcastID
See RequestLeave frame
See ResponseError frame

mcastSrc
See RequestRefresh frame

multicastID
See info  field

O
offsetTime

See clockSync frame
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ouiDependent
See clockSync frame

P
pad

See RequestRefresh frame
plugID
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See RequestLeave frame
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See ResponseError frame

protocolType
See classA frame
See clockSync frame
See RequestRefresh frame

R
RequestLeave frame
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ResponseError frame
info

mcastID................................................... 64
talkerID................................................... 64
plugID..................................................... 64
maxCycles............................................... 64
maxBw .................................................... 64

reserved .................................................. 64

S
sa

See classA frame
See clockSync frame
See RequestRefresh frame

seconds
See clockSync frame
See time field

serviceDataUnit
See classA frame

subType
See clockSync frame
See RequestRefresh frame

syncCount
See clockSync frame

systemLevel
See clockSync frame

systemNumber
See clockSync frame

systemTag
See clockSync frame

T
talkerID

See info  field
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

time field
seconds .......................................................... 62
fraction .......................................................... 62

U
uniqueID

See clockSync frame
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