
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Residential Ethernet (RE)
(a working paper)

The following paper represents an initial attempt to codify the content of
multiple IEEE 802.3 Residential Ethernet (RE) Study Group slide presenta-
tions. The author has also taken the liberty to expand on various slide-based
proposals, with the goal of triggering/facilitating future discussions.

For the convenience of the author, this paper has been drafted using the style
of IEEE standards. The quality of the figures and the consistency of the
notation should not be confused with completeness of technical content.

Rather, the formality of this paper represents an attempt by the author to
facilitate review by interested parties. Major changes and entire clause
rewrites are expected before consensus-approved text becomes available.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 1

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 2

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
JggDvj2005Apr16
August 10, 2005

Residential Ethernet (RE)
(a working paper)

Draft 0.136

Contributors:
See page 4.

Abstract: This working paper provides background and introduces possible higher level concepts
for the development of Residential Ethernet (RE).
Keywords: residential, Ethernet, isochronous, real time
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 3

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Contributors

This working paper is based on contributions or review comments from the people listed below. Their listing
doesn't necessarily imply they agree with the entire content or the author's interpretation of their input.

Jim Battaglia Pioneer
Alexei Beliaev Gibson
Dirceu Cavendish NEC Labs America
George Claseman Micrel
Feifei (Felix) Feng Samsung Electronics
John Nels Fuller Independent
Geoffrey M. Garner Samsung Electronics
Kevin Gross Cirrus Logic
Jim Haagen-Smit HP
David V James JGG
Dennis Lou Pioneer
Michael D. Johas Teener Broadcom
Fred Tuck EchoStar

Version history

Version Date Author Comments

0.082 2005Apr28 DVJ Updates based on 2005Apr27 meeting discussions
– Restructure document presentation order
– Provide list of contributors, with appropriate disclaimer
– Provide version history, for convenience of frequent reviewers
– Fix page numbering for easy review (continuous count from start)
– Fix clause numbering cross-reference bug (period after number)
– Urban recording session (see 5.1.4) added for completeness
– Conflicting traffic (see 5.1.5) added for completeness
– Changed ‘ping’ to ‘refresh’, within the context of SRP
– Changes the multicast addressing for classA frames
– Refined state machines

0.085 2005May11 DVJ – Updated front-page list of contributors
– Updated book for continuous pages (Clause 1 discontinuity fixed)
– Miscellaneous editing fixes
– Initial pinging description added.
– Previous Clause 9 (identifier assignments) moved to format clause.
– The subType identifier assignments now specified.
– The bunching annex (work in progress) now includes:
 A more typical age-based classA prioritization assumption.
 Other parameters of interest (idle and full-load durations).
 (Further thought on queue sizing, to avoid discards, is needed.)

0.088 2005Jun03 DVJ – Application latency scenarios clarified.
 Generalized based on Norm Finn concerns.
 Clarified/corrected based on Kevin Gross comments.
– Subscription revised, to converge with Felix presentation.
– Bursting and bunching scenarios revised for applicability and clarity.

0.090 2005Jun06 DVJ – Misc editorials in bursting and bunching annex.

0.092 2005Jun10 DVJ – Extensive cleanup of Clause 5 subscription protocols, based on
 2005Jun08 teleconference review comments.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 4

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
0.121 2005Jun24 DVJ – Extensive cleanup of clock-synchronization protocols, base on
 2005Jun22 teleconference review comments. Affected areas include:
 Subclause 5.1: Revised, based comments from Alexei
 Subclause 5.5: Time-synchronization overview updated
 Clause 7: Time-synchronization descriptions added
 Note that the state machines have now become obsolete.
 Annex J: Time-synchronization code added

0.125 2005Jun30 DVJ – Grand-master description provided in 5.5.4.
– Clock deviation moved from code to state machine.
– Clock-synchronization code enhanced and split into distinct.
 core (one per station) and port components.
– Code cleanups, corresponding to the above.

0.127 2005Jul04 DVJ – Pacing descriptions greatly enhanced.
 Miscellaneous error/clarity fixes, primarily clock related
 5.7—A better overview provided
 Clause 9—Detailed state machines provided
 Synchronized time-of-day clock/Limitations of current approaches
 has been migrated to Annex D, where other alternatives are listed.

0.133 2005Jul12 DVJ – Update of contributors list.
– Pacing assumptions/objectives/strategies added to Clause 5.
– Pacing state machine in Clause 8 simplified:
 migrated shapers into transmit code, eliminating shapers A,B,C
 merged Transmit100Mbs and Transmit1Gbs into TransmitTx

0.134 2005Jul17 DVJ – Pacing disclaimers, based on preceding meeting discussions.l
 classB could be found to be unnecessary
 3-cycle to 2-cycle delay reduction may not be worth its complexity.
– Miscellaneous fixups.
– Additions to pacing, resisions of state machines.
– Excess material deletions.

0.135 2005Jul30 DVJ – Alternative rate-based pacing protocol provided.
– The stream-addressing alternatives have been better organized.

— TBD — —

Version Date Author Comments
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 5

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Background

This working paper is highly preliminary and subject to changed. Comments should be sent to its editor:

David V. James
3180 South Ct
Palo Alto, CA 94306
Home: +1-650-494-0926
Cell: +1-650-954-6906
Fax: +1-360-242-5508
Email: dvj@alum.mit.edu

Formats

In many cases, readers may elect to provide contributions in the form of exact text replacements and/or
additions. To simplify document maintenance, contributors are requested to use the standard formats and
provide checklist reviews before submission. Relevant URLs are listed below:

General: http://grouper.ieee.org/groups/msc/WordProcessors.html
Templates: http://grouper.ieee.org/groups/msc/TemplateTools/FrameMaker/
Checklist: http://grouper.ieee.org/groups/msc/TemplateTools/Checks2004Oct18.pdf

Topics for discussion

Readers are encouraged to provide feedback in all areas, although only the following areas have been identi-
fied as specific areas of concern.

a) Terminology. Is classA an OK way to describe the traffic within an RE stream?
Alternatives:
synchronous traffic? isochronous traffic? RE traffic? quasi-synchronous traffic?

TBDs

Further definitions are needed in the following areas:

a) ClassA addressing models: review, select, and revise.

b) Pacing models: review, select, and revise.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 6

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Contents

List of figures... 10

List of tables... 13

1. Overview... 15

1.1 Scope and purpose... 15
1.2 Introduction ... 15

2. References... 19

3. Terms, definitions, and notation ... 20

3.1 Conformance levels ... 20
3.2 Terms and definitions .. 20
3.3 Service definition method and notation... 22
3.4 State machines ... 23
3.5 Arithmetic and logical operators ... 26
3.6 Numerical representation... 26
3.7 Field notations ... 27
3.8 Bit numbering and ordering... 28
3.9 Byte sequential formats ... 29

3.10 Ordering of multibyte fields .. 29
3.11 MAC address formats.. 30
3.12 Informative notes... 31
3.13 Conventions for C code used in state machines .. 31

4. Abbreviations and acronyms .. 32

5. Architecture overview .. 33

5.1 Latency constraints .. 33
5.2 Service classes ... 36
5.3 Architecture overview ... 37
5.4 Subscription... 39
5.5 Synchronized time-of-day clocks .. 48
5.6 Formats .. 52
5.7 Pacing .. 56

6. Frame formats... 59

6.1 ClassA frames.. 59
6.2 clockSync frame format .. 60
6.3 Subscription frame... 63
6.4 Common info field format ... 64
6.5 Unique identifier values .. 65

7. Clock synchronization .. 66

7.1 Clock-synchronization overview... 66
7.2 Terminology and variables .. 75
7.3 Clock synchronization state machines... 76
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 7

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8. Subscription state machines.. 80

8.1 Terminology and variables .. 80
8.2 Subscription state machines .. 81

9. Transmit state machines (proposal 1) ... 92

9.1 Pacing overview .. 92
9.2 Terminology and variables .. 99
9.3 Pacing state machines.. 100

10. Transmit state machines (proposal 2) ... 107

10.1 Rate-based scheduling overview ... 107
10.2 Terminology and variables .. 112
10.3 Pacing state machines.. 113

Annex A (informative) Bibliography .. 121

Annex B (informative) Background material ... 122

Annex C (informative) Encapsulated IEEE 1394 frames ... 127

C.1 Hybrid network topologies .. 127
C.2 1394 isochronous frame formats ... 128
C.3 Frame mappings .. 130
C.4 CIP payload modifications .. 131

Annex D (informative) Review of possible alternatives ... 134

D.1 Clock-synchronization alternatives ... 134
D.2 Pacing alternatives... 135
D.3 IEEE 1394 alternative.. 136

Annex E (informative) Time-of-day format considerations ... 137

E.1 Possible time-of-day formats... 137
E.2 Time format comparisons.. 139

Annex F (informative) Bursting and bunching considerations... 140

F.1 Topology scenarios.. 140
F.2 Bursting considerations ... 142

Annex G (informative) Denigrated alternatives.. 160

G.1 Stream frame formats .. 160
G.2 Subscription... 162

Annex H (informative) Frequently asked questions (FAQs) .. 169

H.1 Unfiltered email sequences.. 169
H.2 Formulated responses .. 170
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 8

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex I (informative) Comment responses... 171

I.1 Recent review-comment resolutions ... 171

Annex J (informative) C-code illustrations.. 175

Index .. 185
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 9

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
List of figures

Figure 1.1—Topology and connectivity .. 17

Figure 3.1—Service definitions ... 22

Figure 3.2—Bit numbering and ordering .. 28

Figure 3.3—Byte sequential field format illustrations .. 29

Figure 3.4—Multibyte field illustrations ... 29

Figure 3.5—Illustration of fairness-frame structure .. 30

Figure 3.6—MAC address format ... 30

Figure 3.7—48-bit MAC address format... 31

Figure 5.1—Interactive audio delay considerations .. 33

Figure 5.2—Home recording session .. 33

Figure 5.3—Garage jam session.. 34

Figure 5.4—Urban recording session .. 35

Figure 5.5—Conflicting data transfers .. 36

Figure 5.6—Hierarchical control ... 37

Figure 5.7—Hierarchical flows ... 38

Figure 5.8—Controller activation.. 40

Figure 5.9—Agents on an established path ... 41

Figure 5.10—Periodic registration messages .. 42

Figure 5.11—Secondary registrations ... 43

Figure 5.12—Side-path deregistration... 44

Figure 5.13—Final-path deregistration.. 44

Figure 5.14—Streaming data over registered paths... 45

Figure 5.15—Insufficient bandwidth conditions ... 45

Figure 5.16—Periodic registration messages .. 47

Figure 5.17—Timer synchronization flows... 49

Figure 5.18—Grand-master precedence flows .. 49

Figure 5.19—Time synchronization principles ... 50

Figure 5.20—Timer snapshot locations... 51

Figure 5.21—Bridge PLL possibilities .. 51

Figure 5.22—Content framing methods .. 52

Figure 5.23—Plug addressing.. 53

Figure 5.24—ClassA frame format and associated data.. 53

Figure 5.25—ClassA frame format and associated data.. 54

Figure 5.26—ClassA frame formats .. 54

Figure 6.1—ClassA frame formats .. 59

Figure 6.2—clockSync frame format .. 60

Figure 6.3—systemTag subfields... 61

Figure 6.4—uniqueID format .. 62

Figure 6.5—Complete seconds timer format... 62

Figure 6.6—Subscription frame format... 63

Figure 6.7—Common info field format ... 64
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 10

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 6.8—protocolType field value.. 65

Figure 7.1—Grand-master precedence .. 66

Figure 7.2—Hierarchical flows ... 67

Figure 7.3—Offset synchronization .. 69

Figure 7.4—Cascaded offsets (a possible scenario) .. 70

Figure 7.5—Rate synchronization ... 71

Figure 7.6—Cascaded rate differences (a possible scenario) .. 72

Figure 7.7—Rate-adjustment effects ... 73

Figure 7.8—flexTimer implementation example ... 74

Figure 7.9—baseTimer implementation example ... 75

Figure 9.1—Topology-dependent pacing delays... 92

Figure 9.2—Paced 1 Gb/s classA flows .. 93

Figure 9.3—Cycle slippage ... 94

Figure 9.4—Paced 100 Mb/s classA flows.. 94

Figure 9.5—Cycle slippage ... 95

Figure 9.6—Transmit-port structure.. 96

Figure 9.7—Pacing at 1 Gb/s... 97

Figure 9.8—Pacing at 100 Mb/s .. 98

Figure 9.9—Credit adjustments over time... 98

Figure 10.1—Rate-based priorities.. 107

Figure 10.2—Reshaped bridge-traffic topology .. 109

Figure 10.3—Reshaped bridge-traffic timing.. 109

Figure 10.4—Transmit-queue structure... 110

Figure 10.5—Credit-based shapers.. 111

Figure 10.6—Pacer credit adjustments over time.. 112

Figure B.1—SerialBus topologies ... 122

Figure B.2—Isochronous data transfer timing .. 123

Figure B.3—RPR rings.. 124

Figure B.4—RPR resilience .. 125

Figure B.5—RPR destination stripping ... 125

Figure B.6—RPR spatial reuse .. 126

Figure B.7—RPR service classes .. 126

Figure C.1—IEEE 1394 leaf domains ... 127

Figure C.2—IEEE 802.3 leaf domains .. 127

Figure C.3—IEEE 1394 isochronous packet format ... 128

Figure C.4—Encapsulated IEEE 1394 frame payload .. 128

Figure C.5—Conversions between IEEE 1394 packets and RE frames.. 130

Figure C.6—Multiframe groups .. 131

Figure C.7—Isochronous 1394 CIP packet format ... 131

Figure C.8—Time-of-day format conversions .. 132

Figure C.9—Grand-master precedence mapping .. 133

Figure 5.1—Complete seconds timer format... 137

Figure E.2—IEEE 1394 timer format.. 137
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 11

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure E.3—IEEE 1588 timer format.. 138

Figure E.4—EPON timer format ... 138

Figure E.5—Compact seconds timer format ... 138

Figure E.6—Nanosecond timer format.. 138

Figure F.1—Bridge design models .. 140

Figure F.2—Three-source topology .. 141

Figure F.3—Six-source topology .. 141

Figure F.4—Three-source bunching timing; input-queue bridges .. 142

Figure F.5—Cumulative coincidental burst latencies.. 143

Figure F.6—Three-source bunching; input-queue bridges.. 144

Figure F.7—Six source bunching timing; input-queue bridges... 145

Figure F.8—Cumulative bunching latencies; input-queue bridge... 146

Figure F.9—Three-source bunching; output-queue bridges.. 147

Figure F.10—Six source bunching; output-queue bridges .. 148

Figure F.11—Cumulative bunching latencies; output-queue bridge... 149

Figure F.12—Three-source bunching; variable-rate output-queue bridges... 150

Figure F.13—Six source bunching; variable-rate output-queue bridges... 151

Figure F.14—Cumulative bunching latencies; variable-rate output-queue bridge...................................... 152

Figure F.15—Three-source bunching; throttled-rate output-queue bridges .. 153

Figure F.16—Six source bunching; throttled-rate output-queue bridges .. 154

Figure F.17—Cumulative bunching latencies; throttled-rate output-queue bridge 155

Figure F.18—Three-source bunching; throttled-rate output-queue bridges .. 156

Figure F.19—Three-source bunching; throttled-rate output-queue bridges .. 157

Figure F.20—Six source bunching; classA throttled-rate output-queue bridges... 158

Figure F.21—Cumulative bunching latencies; classA throttled-rate output-queue bridge 159

Figure G.1—classA frame formats .. 160

Figure G.2—ClassA frame formats ... 161

Figure G.3—Agents on an established path .. 163

Figure G.4—Controller activation ... 164

Figure G.5—Pinging the talker.. 164

Figure G.6—Path creation ... 165

Figure G.7—Side-path extensions ... 165

Figure G.8—Side-path demolition .. 166

Figure G.9—Released path.. 166

Figure G.10—Error responses ... 167

Figure G.11—Side-path demolition .. 168
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 12

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
List of tables

Table 3.1—State table notation example... 24

Table 3.2—Called state table notation example .. 25

Table 3.3—Special symbols and operators.. 26

Table 3.4—Names of fields and sub-fields ... 27

Table 3.5—wrap field values ... 28

Table 5.1 —Service classes and their quality-of-service relationships .. 36

Table 5.2—Tagged priority values .. 55

Table 6.1 —Assigned subType identifiers.. 65

Table 7.1—External clock-synchronization pairs ... 67

Table 7.2—Clock-synchronization intervals ... 68

Table 7.3 —ClockCore state table.. 77

Table 7.4 —ClockPort state table... 79

Table 8.1 —AgentAction state table .. 82

Table 8.2 —AgentTalker state table... 84

Table 8.3 —AgentTimer state table ... 88

Table 8.4 —AgentListener state table .. 91

Table 9.1 —ClockPort state table... 97

Table 9.2 —ReceiveRx state table ... 102

Table 9.3 —TransmitTx state table .. 105

Table 10.1—Tagged priority values .. 108

Table 10.2 —TransmitRx state table.. 115

Table 10.3 —TransmitTx state table .. 118

Table C.1—flag field values .. 129

Table C.2—counts field values.. 129

Table E.1—Time format comparison .. 139

Table F.1—Cumulative bursting latencies .. 143

Table F.2—Cumulative bunching latencies; input-queue bridge .. 146

Table F.3—Cumulative bunching latencies; output-queue bridge .. 149

Table F.4—Cumulative bunching latencies; variable-rate output-queue bridge ... 152

Table F.5—Cumulative bunching latencies; throttled-rate output-queue bridge .. 155

Table F.6—Cumulative bunching latencies; classA throttled-rate output-queue bridge............................. 159
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 13

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Contribution from: dvj@alum.mit.edu.
14 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Residential Ethernet (RE)
(a working paper)
This document and has no official status within IEEE or alternative SDOs.
Feedback to: dvj@alum.mit.edu
(See page 4 for the list of contributors.)

1. Overview

1.1 Scope and purpose

This working paper is intended to supplement Ethernet with real-time capabilities, with the scope and pur-
pose listed below:

Scope: Residential Ethernet provides time-sensitive delivery between plug-and-play stations over
reliable point-to-point full-duplex cable media. Time-sensitive data transmissions use admission control
negotiations to guarantee bandwidth allocations with predictable latency and low-jitter delivery.
Device-clock synchronization is also supported. Ensuring real-time services through routers, data
security, wireless media, and developing new PMDs are beyond the scope of this project.

Purpose: To enable a common network for existing home Ethernet equipment and locally networked
consumer devices with time-sensitive audio, visual and interactive applications and musical equipment.
This integration will enable new applications, reduce overall installation cost/complexity and leverage
the installed base of Ethernet networking products, while preserving Ethernet networking services. An
appropriately enhanced Ethernet is the best candidate for a universal home network platform.

1.2 Introduction

1.2.1 Documentation status

This working paper is intended to identify possible architectures for Residential Ethernet (RE), the title cur-
rently assigned to an IEEE Study Group. Although this Study Group intends to become a formal IEEE 802
Working Group, the first step in this process (approval of a PAR) has not occurred.

This working paper attempts to represent opinions of its contributors (see page 4), although numerous others
contributed to its content. The documented is formatted to minimize the difficulties associated with porting
the text into a yet-to-be-defined standards document, although numerous changes and clause partitioning
would be expected before that occurs.

1.2.2 Background

Ethernet has successfully propagated from the data center to the home, becoming the wired home computer
interconnect of choice. However, insufficient support of real-time services has limited Ethernet’s success as
a consumer audio-video interconnects, where IEEE Std 1394 Serial Bus and Universal Serial Bus (USB)
have dominated the marketplace.

This working paper for Residential Ethernet (RE) supports time-sensitive network traffic (called classA traf-
fic), as well as legacy IEEE 1394 traffic, while associating the interconnect with Ethernet commodity pric-
ing and relatively seamless frame-transport bridging.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 15

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.3 Design objectives

Design objectives for Residential Ethernet (RE) protocols include the following:

a) Scalable. Time-sensitive classA transfers can be supported over multiple speed links:

1) 100 Mb/s. Normal (~1500 bytes, or 120µs) and classA frames coexist on 100 Mb/s links.
2) 1 Gb/s. Jumbo (~8,200 bytes, or 66µs) and classA frames can coexist on 1 Gb/s links.

b) Compatible. Existing devices and protocols are supported, as follows:

1) Interoperable. Communications of existing 802.3 stations are not degraded by classA traffic.
2) Heterogeneous. Existing 1394 A/V devices can be bridged over RE connections.

c) Efficient. Time-sensitive transmissions are efficient as well as robust:

1) Bandwidth is independently managed on non-overlapping paths.
2) ClassA transmissions are limited to the links between talker and listener stations.
3) Up to 75% of the link bandwidth can be allocated for classA transmissions.

d) Applicable. Time-sensitive transmission characteristics are applicable to the marketplace.

1) Precise. A common synchronous clock allows playback times to be precisely synchronized.
2) Low latency. Talker and listener delays are less than human perceptible delays, for interactive

home (see 5.1.2 and 5.1.3) and between-home (telephone or internet based) applications.

e) Predictable. Subject to the (c3) constraint, classA traffic is unaffected by the network topology or
the traffic loads offered by other stations.

1.2.4 Strategies

Strategies for achieving the aforementioned objectives include the following:

a) Subscription. ClassA transmission bandwidths are limited to prenegotiated bandwidths.

b) Pacing. ClassA transmissions are limited to subscription-negotiated per-cycle bandwidths.
(The 125µs cycle is consistent with existing IEEE 1394 A/V and telecommunication systems.)

1) Topology. Bandwidths can be guaranteed over arbitrary non-cyclical topologies.
2) Presence. Subscription protocols can readily detect the presence/absence of talker streams.

c) Simplicity. Simplicity is achieved by utilizing well behaved protocols:

1) Only duplex point-to-point Ethernet links are supported.
2) PLLs. Precise global clock synchronization eliminates the need for PLLs within bridges.
3) Plugs. Self-administered stream identifiers are based on talker-managed plug identifiers.

(This eliminates the need to define/provide/configure stream identifier servers.)
4) RSVP. Subscription is based on a layer-2 simplification of the RSVP protocols, called SRP.

(SRP allows listeners to autonomously/robustly adapt to spanning tree topology changes).
Contribution from: dvj@alum.mit.edu.
16 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.5 Interoperability

RE interoperates with existing Ethernet, but the scope of RE services is limited to the RE cloud, as illus-
trated in Figure 1.1; normal best-effort services are available everywhere else. The scope of the RE cloud is
limited by a non-RE capable bridge or a half-duplex link, neither of which can support RE services.

Separation of RE devices is driven by the requirements of RE bridges to support subscription (bandwidth
allocation), time-of-day clock-synchronization, and (preferably) of pacing of time-sensitive transmissions.

1.2.6 Document structure

The clauses and annexes of this working paper are listed below. The recommended reading order for
first-time readers is Clause 5 (an overview), Clause F (critical considerations), Clause 7/8 (details of design).
Other clauses provide useful background and reference material.

— Clause 1: Overview
— Clause 2: References
— Clause 3: Terms, definitions, and notation
— Clause 4: Abbreviations and acronyms
— Clause 5: Architecture overview
— Clause 6: Frame formats
— Clause 7: Clock synchronization
— Clause 8: Subscription state machines
— Annex A: Bibliography
— Annex B: Background material
— Annex C: Encapsulated IEEE 1394 frames
— Annex D: Review of possible alternatives
— Annex E: Time-of-day format considerations
— Annex G: Denigrated alternatives
— Annex F: Bursting and bunching considerations
— Annex H: Frequently asked questions (FAQs)
— Annex I: Comment responses
— Annex J: C-code illustrations

Figure 1.1—Topology and connectivity

RE
bridge

RE
bridge

RE
device

RE
device

RE
device

RE
device

RE
bridgeEthernet

bridge

Peer device is
not RE capable

Ethernet
hub

device

RE
device

RE
device

Half-duplex link
can’t do REdevice

device

RE “cloud”
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 17

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Contribution from: dvj@alum.mit.edu.
18 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2. References

The following documents contain provisions that, through reference in this working paper, constitute provi-
sions of this working paper. All the standards listed are normative references. Informative references are
given in Annex A. At the time of publication, the editions indicated were valid. All standards are subject to
revision, and parties to agreements based on this working paper are encouraged to investigate the possibility
of applying the most recent editions of the standards indicated below.

ANSI/ISO 9899-1990, Programming Language-C.1,2

IEEE Std 802.1D-2004, IEEE Standard for Local and Metropolitan Area Networks: Media Access Control
(MAC) Bridges.

NOTE—This clause should be skipped on the first reading (continue with Clause 5).
This references list is highly preliminary, references will be added as this working paper evolves.

1Replaces ANSI X3.159-1989
2ISO documents are available from ISO Central Secretariat, 1 Rue de Varembe, Case Postale 56, CH-1211, Geneve 20, Switzer-
land/Suisse; and from the Sales Department, American National Standards Institute, 11 West 42 Street, 13th Floor, New York, NY
10036-8002, USA
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 19

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3. Terms, definitions, and notation

3.1 Conformance levels

Several key words are used to differentiate between different levels of requirements and options, as
described in this subclause.

3.1.1 may: Indicates a course of action permissible within the limits of the standard with no implied
preference (“may” means “is permitted to”).

3.1.2 shall: Indicates mandatory requirements to be strictly followed in order to conform to the standard and
from which no deviation is permitted (“shall” means “is required to”).

3.1.3 should: An indication that among several possibilities, one is recommended as particularly suitable,
without mentioning or excluding others; or that a certain course of action is preferred but not necessarily
required; or that (in the negative form) a certain course of action is deprecated but not prohibited (“should”
means “is recommended to”).

3.2 Terms and definitions

For the purposes of this working paper, the following terms and definitions apply. The Authoritative
Dictionary of IEEE Standards Terms [B2] should be referenced for terms not defined in the clause.

3.2.1 audience: The set of listeners associated with a common streamID.

3.2.2 best-effort: Not associated with an explicit service guarantee.

3.2.3 bridge: A functional unit interconnecting two or more networks at the data link layer of the OSI
reference model.

3.2.4 clock master: A bridge or end station that provides the link clock reference.

3.2.5 clock slave: A bridge or end station that tracks the link clock reference provided by the clock master.

3.2.6 cyclic redundancy check (CRC): A specific type of frame check sequence computed using a
generator polynomial.

3.2.7 destination station: A station to which a frame is addressed.

3.2.8 frame: The MAC sublayer protocol data unit (PDU).

3.2.9 grand clock master: The clock master selected to provide the network time reference.

3.2.10 jitter: The variation in delay associated with the transfer of frames between two points.

3.2.11 latency: The time required to transfer information from one point to another.3

NOTE—This clause should be skipped on the first reading (continue with Clause 5).
This text has been lifted from the P802.17 draft standard, which has a relative comprehensive list.
Terms and definitions are expected to be added, revised, and/or deleted as this working paper evolves.
Contribution from: dvj@alum.mit.edu.
20 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.2.12 link: A unidirectional channel connecting adjacent stations (half of a span).

3.2.13 listener: A sink of a stream, such as a television or acoustic speaker.

3.2.14 local area network (LAN): A communications network designed for a small geographic area,
typically not exceeding a few kilometers in extent, and characterized by moderate to high data transmission
rates, low delay, and low bit error rates.

3.2.15 MAC client: The layer entity that invokes the MAC service interface.

3.2.16 management information base (MIB): A repository of information to describe the operation of a
specific network device.

3.2.17 maximum transfer unit (MTU): The largest frame (comprising payload and all header and trailer
information) that can be transferred across the network.

3.2.18 medium (plural: media): The material on which information signals are carried; e.g., optical fiber,
coaxial cable, and twisted-wire pairs.

3.2.19 medium access control (MAC) sublayer: The portion of the data link layer that controls and
mediates the access to the network medium. In this working paper, the MAC sublayer comprises the MAC
datapath sublayer and the MAC control sublayer.

3.2.20 multicast: Transmission of a frame to stations specified by a group address.

3.2.21 multicast address: A group address that is not a broadcast address, i.e., is not all-ones, and identifies
some subset of stations on the network.

3.2.22 network: A set of communicating stations and the media and equipment providing connectivity
among the stations.

3.2.23 pacer: A credit-based entity that partions residual bandwidths between two classes of frames.

3.2.24 packet: A generic term for a PDU associated with a layer-entity above the MAC sublayer.

3.2.25 path: A logical concatenation of links and bridges over which streams flow from the talker to the
listener.

3.2.26 plug-and-play: The requirement that a station perform classA transfers without operator intervention
(except for any intervention needed for connection to the cable).

3.2.27 protocol implementation conformance statement (PICS): A statement of which capabilities and
options have been implemented for a given Open Systems Interconnection (OSI) protocol.

3.2.28 service discovery: The process used by listeners or controlling stations to identify, control, and
configure talkers.

3.2.29 shaper: A credit-based entity that limits short-term transmission bandwidths to a specified rate.

3.2.30 simple reservation protocol (SRP): The subscription protocol used to allocate and sustain paths for
streaming classA traffic.

3Delay and latency are synonyms for the purpose of this working paper. Delay is the preferred term.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 21

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.2.31 span: A bidirectional channel connecting adjacent stations (two links).

3.2.32 source station: The station that originates a frame.

3.2.33 station: A device attached to a network for the purpose of transmitting and receiving information on
that network.

3.2.34 stream: A sequence of frames passed from the talker to listener(s), which have the same streamID.

3.2.35 subscription: The process of establishing committed paths between the talker and one or more
listeners.

3.2.36 talker: The source of a stream, such as a cable box or microphone.

3.2.37 topology: The arrangement of links and stations forming a network, together with information on
station attributes.

3.2.38 transmit (transmission): The action of a station placing a frame on the medium.

3.2.39 transparent bridging: A bridging mechanism that is transparent to the end stations.

3.2.40 unicast: The act of sending a frame addressed to a single station.

3.3 Service definition method and notation

The service of a layer or sublayer is the set of capabilities that it offers to a user in the next higher (sub)layer.
Abstract services are specified in this working paper by describing the service primitives and parameters
that characterize each service. This definition of service is independent of any particular implementation
(see Figure 3.1).

Specific implementations can also include provisions for interface interactions that have no direct
end-to-end effects. Examples of such local interactions include interface flow control, status requests and
indications, error notifications, and layer management. Specific implementation details are omitted from this
service specification, because they differ from implementation to implementation and also because they do
not impact the peer-to-peer protocols.

3.3.1 Classification of service primitives

Primitives are of two generic types.

Figure 3.1—Service definitions

LAYER N
SERVICE USER

LAYER N-1
SERVICE PROVIDER

LAYER N
SERVICE USER

REQUEST

INDICATION

TIME
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 22

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
a) REQUEST. The request primitive is passed from layer N to layer N-1 to request that a service be
initiated.

b) INDICATION. The indication primitive is passed from layer N-1 to layer N to indicate an internal
layer N-1 event that is significant to layer N. This event can be logically related to a remote service
request, or can be caused by an event internal to layer N-1.

The service primitives are an abstraction of the functional specification and the user-layer interaction. The
abstract definition does not contain local detail of the user/provider interaction. For instance, it does not
indicate the local mechanism that allows a user to indicate that it is awaiting an incoming call. Each
primitive has a set of zero or more parameters, representing data elements that are passed to qualify the
functions invoked by the primitive. Parameters indicate information available in a user/provider interaction.
In any particular interface, some parameters can be explicitly stated (even though not explicitly defined in
the primitive) or implicitly associated with the service access point. Similarly, in any particular protocol
specification, functions corresponding to a service primitive can be explicitly defined or implicitly available.

3.4 State machines

3.4.1 State machine behavior

The operation of a protocol can be described by subdividing the protocol into a number of interrelated
functions. The operation of the functions can be described by state machines. Each state machine represents
the domain of a function and consists of a group of connected, mutually exclusive states. Only one state of a
function is active at any given time. A transition from one state to another is assumed to take place in zero
time (i.e., no time period is associated with the execution of a state), based on some condition of the inputs to
the state machine.

The state machines contain the authoritative statement of the functions they depict. When apparent conflicts
between descriptive text and state machines arise, the order of precedence shall be formal state tables first,
followed by the descriptive text, over any explanatory figures. This does not override, however, any explicit
description in the text that has no parallel in the state tables.

The models presented by state machines are intended as the primary specifications of the functions to be
provided. It is important to distinguish, however, between a model and a real implementation. The models
are optimized for simplicity and clarity of presentation, while any realistic implementation might place
heavier emphasis on efficiency and suitability to a particular implementation technology. It is the functional
behavior of any unit that has to match the standard, not its internal structure. The internal details of the
model are useful only to the extent that they specify the external behavior clearly and precisely.

3.4.2 State table notation

Each row of the table is preferably provided with a brief description of the condition and/or action for that
row. The descriptions are placed after the table itself, and linked back to the rows of the table using numeric
tags.

NOTE—The following state machine notation was used within 802.17, due to the exactness of C-code
conditions and the simplicity of updating table entries (as opposed to 2-dimensional graphics).
Early state table descriptions can be converted (if necessary) into other formats before publication.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 23

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.4.2.1 Parallel-execution state tables

State machines may be represented in tabular form. The table is organized into two columns: a left hand side
representing all of the possible states of the state machine and all of the possible conditions that cause transi-
tions out of each state, and the right hand side giving all of the permissible next states of the state machine as
well as all of the actions to be performed in the various states, as illustrated in Table 3.1. The syntax of the
expressions follows standard C notation (see 3.13). No time period is associated with the transition from one
state to the next.

Row 3.1-1: Do nothing if the size of the queued MAC control frame is larger than the PTQ space.
Row 3.1-2: Do nothing in the absence of MAC control transmission credits.
Row 3.1-3: Otherwise, transmit a MAC control frame.

Row 3.1-4: When the transmission completes, start over from the initial state (i.e., START).
Row 3.1-5: Until the transmission completes, remain in this state.

Each combination of current state, next state, and transition condition linking the two is assigned to a
different row of the table. Each row of the table, read left to right, provides: the name of the current state; a
condition causing a transition out of the current state; an action to perform (if the condition is satisfied); and,
finally, the next state to which the state machine transitions, but only if the condition is satisfied. The symbol
“—” signifies the default condition (i.e., operative when no other condition is active) when placed in the
condition column, and signifies that no action is to be performed when placed in the action column.
Conditions are evaluated in order, top to bottom, and the first condition that evaluates to a result of TRUE is
used to determine the transition to the next state. If no condition evaluates to a result of TRUE, then the state
machine remains in the current state. The starting or initialization state of a state machine is always labeled
“START” in the table (though it need not be the first state in the table). Every state table has such a labeled
state.

Each row of the table is preferably provided with a brief description of the condition and/or action for that
row. The descriptions are placed after the table itself, and linked back to the rows of the table using numeric
tags.

Table 3.1—State table notation example

Current

R
ow

Next

state condition action state

START sizeOfMacControl > spaceInQueue 1 — START

passM == 0 2

— 3 TransmitFromControlQueue(); FINAL

FINAL SelectedTransferCompletes() 4 — START

— 5 — FINAL
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 24

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.4.2.2 Called state tables

A RETURN state is the terminal state of a state machine that is intended to be invoked by another state
machine, as illustrated in Table 3.2. Once the RETURN state is reached, the state machine terminates
execution, effectively ceasing to exist until the next invocation by the caller, at which point it begins
execution again from the START state. State machines that contain a RETURN state are considered to be
only instantiated when they are invoked. They do not have any persistent (static) variables.

Row 3.2-1: The size of the queued MAC control frame is less than the PTQ space.
Row 3.2-2: In the absence of MAC control transmission credits, no action is taken.
Row 3.2-3: MAC control transmissions have precedence over client transmissions.

Row 3.2-4: If the transmission completes with an error, set an error defect indication.
Row 3.2-5: Otherwise, no error defect is indicated.

Table 3.2—Called state table notation example

Current

R
ow

Next

state condition action state

START sizeOfMacControl > spaceInQueue 1 — FINAL

passM == 0 2

— 3 TransmitFromControlQueue(); RETURN

FINAL MacTransmitError(); 4 errorDefect = TRUE RETURN

— 5 —
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 25

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.5 Arithmetic and logical operators

In addition to commonly accepted notation for mathematical operators, Table 3.3 summarizes the symbols
used to represent arithmetic and logical (boolean) operations. Note that the syntax of operators follows
standard C notation (see 3.13).

3.6 Numerical representation

Decimal, hexadecimal, and binary numbers are used within this working paper. For clarity, decimal numbers
are generally used to represent counts, hexadecimal numbers are used to represent addresses, and binary
numbers are used to describe bit patterns within binary fields.

Decimal numbers are represented in their usual 0, 1, 2, … format. Hexadecimal numbers are represented by
a string of one or more hexadecimal (0-9,A-F) digits followed by the subscript 16, except in C-code
contexts, where they are written as 0x123EF2 etc. Binary numbers are represented by a string of one or
more binary (0,1) digits, followed by the subscript 2. Thus the decimal number “26” may also be represented
as “1A16” or “110102”.

MAC addresses and OUI/EUI values are represented as strings of 8-bit hexadecimal numbers separated by
hyphens and without a subscript, as for example “01-80-C2-00-00-15” or “AA-55-11”.

Table 3.3—Special symbols and operators

Printed character Meaning

&& Boolean AND

|| Boolean OR

! Boolean NOT (negation)

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

 = Assignment operator

// Comment delimiter

NOTE—The following notation was taken from 802.17, where it was found to have benefits:
– The subscript notation is consistent with common mathematical/logic equations.
– The subscript notation can be used consistently for all possible radix values.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 26

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.7 Field notations

3.7.1 Use of italics

All field names or variable names (such as level or myMacAddress), and sub-fields within variables (such as
thisState.level) are italicized within text, figures and tables, to avoid confusion between such names and
similarly spelled words without special meanings. A variable or field name that is used in a subclause
heading or a figure or table caption is also italicized. Variable or field names are not italicized within C code,
however, since their special meaning is implied by their context. Names used as nouns (e.g., subclassA0) are
also not italicized.

3.7.2 Field conventions

This working paper describes values that are packetized or MAC-resident, such as those illustrated in
Table 3.2.

Run-together names (e.g., thisState) are used for fields because of their compactness when compared to
equivalent underscore-separated names (e.g., this_state). The use of multiword names with spaces (e.g.,
“This State”) is avoided, to avoid confusion between commonly used capitalized key words and the
capitalized word used at the start of each sentence.

A sub-field of a field is referenced by suffixing the field name with the sub-field name, separated by a
period. For example, thisState.level refers to the sub-field level of the field thisState. This notation can be
continued in order to represent sub-fields of sub-fields (e.g., thisState.level.next is interpreted to mean the
sub-field next of the sub-field level of the field thisState).

Two special field names are defined for use throughout this working paper. The name frame is used to
denote the data structure comprising the complete MAC sublayer PDU. Any valid element of the MAC
sublayer PDU, can be referenced using the notation frame.xx (where xx denotes the specific element); thus,
for instance, frame.serviceDataUnit is used to indicate the serviceDataUnit element of a frame.

Unless specifically specified otherwise, reserved fields are reserved for the purpose of allowing extended
features to be defined in future revisions of this working paper. For devices conforming to this version of
this working paper, nonzero reserved fields are not generated; values within reserved fields (whether zero or
nonzero) are to be ignored.

Table 3.4—Names of fields and sub-fields

Name Description

newCRC Field within a register or frame

thisState.level Sub-field within field thisState

thatState.rateC[n].c Sub-field within array element rateC[n]
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 27

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.7.3 Field value conventions

This working paper describes values of fields. For clarity, names can be associated with each of these
defined values, as illustrated in Table 3.5. A symbolic name, consisting of upper case letters with underscore
separators, allows other portions of this working paper to reference the value by its symbolic name, rather
than a numerical value.

Unless otherwise specified, reserved values allow extended features to be defined in future revisions of this
working paper. Devices conforming to this version of this working paper do not generate nonzero reserved
values, and process reserved fields as though their values were zero.

A field value of TRUE shall always be interpreted as being equivalent to a numeric value of 1 (one), unless
otherwise indicated. A field value of FALSE shall always be interpreted as being equivalent to a numeric
value of 0 (zero), unless otherwise indicated.

3.8 Bit numbering and ordering

Data transfer sequences normally involve one or more cycles, where the number of bytes transmitted in each
cycle depends on the number of byte lanes within the interconnecting link. Data byte sequences are shown in
figures using the conventions illustrated by Figure 3.2, which represents a link with four byte lanes. For
multi-byte objects, the first (left-most) data byte is the most significant, and the last (right-most) data byte is
the least significant.

Figures are drawn such that the counting order of data bytes is from left to right within each cycle, and from
top to bottom between cycles. For consistency, bits and bytes are numbered in the same fashion.

NOTE—The transmission ordering of data bits and data bytes is not necessarily the same as their counting order; the
translation between the counting order and the transmission order is specified by the appropriate reconciliation sublayer.

Table 3.5—wrap field values

Value Name Description

0 STANDARD Standard processing selected

1 SPECIAL Special processing selected

2,3 — Reserved

Figure 3.2—Bit numbering and ordering

data[n+0] data[n+1] data[n+2] data[n+3]

data[n+4] data[n+5] data[n+6] data[n+7]

bit
0

bit
31
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 28

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.9 Byte sequential formats

Figure 3.3 provides an illustrative example of the conventions to be used for drawing frame formats and
other byte sequential representations. These representations are drawn as fields (of arbitrary size) ordered
along a vertical axis, with numbers along the left sides of the fields indicating the field sizes in bytes. Fields
are drawn contiguously such that the transmission order across fields is from top to bottom. The example
shows that field1, field2, and field3 are 1-, 1- and 6-byte fields, respectively, transmitted in order starting
with the field1 field first. As illustrated on the right hand side of Figure 3.3, a multi-byte field represents a
sequence of ordered bytes, where the first through last bytes correspond to the most significant through least
significant portions of the multi-byte field, and the MSB of each byte is drawn to be on the left hand side.

NOTE—Only the left-hand diagram in Figure 3.3 is required for representation of byte-sequential formats. The
right-hand diagram is provided in this description for explanatory purposes only, for illustrating how a multi-byte field
within a byte sequential representation is expected to be ordered. The tag “Transmission order” and the associated
arrows are not required to be replicated in the figures.

3.10 Ordering of multibyte fields

In many cases, bit fields within byte or multibyte objects are expanded in a horizontal fashion, as illustrated
in the right side of Figure 3.4. The fields within these objects are illustrated as follows: left-to-right is the
byte transmission order; the left-through-right bits are the most significant through least significant bits
respectively.

Figure 3.3—Byte sequential field format illustrations

Figure 3.4—Multibyte field illustrations

field1
field2

field3

field4

field5

field6

field7

field8

byte[5]

1
1

6

6

2

2

n

4

byte[3]

byte[4]

byte[1]

byte[2]

byte[0]

Transmission
order

byte[4] byte[5]

byte[0] byte[1] byte[2] byte[3]

byte[0]

byte[1]

byte[2]

byte[3]

byte[4]

byte[5] twoByteField

MSB LSB

fourByteField

LSBMSB

byte representation

field representation

byte representation

field representation
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 29

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The first fourByteField can be illustrated as a single entity or a 4-byte multibyte entity. Similarly, the second
twoByteField can be illustrated as a single entity or a 2-byte multibyte entity.

To minimize potential for confusion, four equivalent methods for illustrating frame contents are illustrated in
Figure 3.5. Binary, hex, and decimal values are always shown with a left-to-right significance order,
regardless of their bit-transmission order.

3.11 MAC address formats

The format of MAC address fields within frames is illustrated in Figure 3.6.

3.11.1 oui: A 24-bit organizationally unique identifier (OUI) field supplied by the IEEE/RAC for the
purpose of identifying the organization supplying the (unique within the organization, for this specific
context) 24-bit dependentID. (For clarity, the locallyAdministered and groupAddress bits are illustrated by
the shaded bit locations.)

NOTE—The following text was taken from 802.17, where it was found to have benefits:
The details should, however, be revised to illustrate fields within an RE frame header serviceDataUnit.

Figure 3.5—Illustration of fairness-frame structure

Figure 3.6—MAC address format

a) Sequential-byte format

1 subType

6 sa

2 protocolType

1 hopcount

6 da

(…)

b) Field names

subType

da_lo

sa_lo

protocolType hopCount

da_hi

sa_hi

c) Hexadecimal values

0116

45 6716

48 76 54 3216

FA CE16 0316

AC DE 48 2316

AC DE16

d) Binary values

0000 00012

0100 0101 0110 01112

0100 1000 0111 0110 0101 0100 0011 00102

1111 1010 1100 11102 0000 00112

1010 1100 1101 1110 0100 1000 0010 00112

1010 1100 1101 11102

MSB LSB

oui

6

dependentID

gl

Legend:
l : locallyAdministered
 (called the ‘U/L address bit’ or ‘universally or locally administered bit in IEEE 802)

g : groupAddress
(called the ‘I/G address bit’ or ‘individual/group bit’ in IEEE 802)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 30

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.11.2 dependentID: An 24-bit field supplied by the oui-specified organization. The concatenation of the oui
and dependentID provide a unique (within this context) identifier.

To reduce the likelihood of error, the mapping of OUI values to the oui/dependentID fields are illustrated in
Figure 3.7. For the purposes of illustration, specific OUI and dependentID example values have been
assumed. The two shaded bits correspond to the locallyAdministered and groupAddress bit positions illus-
trated in Figure 3.6.

3.12 Informative notes

Informative notes are used in this working paper to provide guidance to implementers and also to supply
useful background material. Such notes never contain normative information, and implementers are not
required to adhere to any of their provisions. An example of such a note follows.

NOTE—This is an example of an informative note.

3.13 Conventions for C code used in state machines

Many of the state machines contained in this working paper utilize C code functions, operators, expressions
and structures for the description of their functionality. Conventions for such C code can be found in
Annex J.

Figure 3.7—48-bit MAC address format

MSB LSB

AC166 2316 4516 6716

OUI value: AC-DE-48
Organization assigned extension: 23-45-67

DE16 4816

byte transmission order
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 31

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
4. Abbreviations and acronyms

This working paper contains the following abbreviations and acronyms:

BER bit error ratio
CRC cyclic redundancy check
FCS frame check sequence
FIFO first in first out
GARP Generic Attribute Registration Protocol
HEC header error check
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
ISO International Organization for Standardization
ITU International Telecommunication Union
LAN local area network
LSB least significant bit
MAC medium access control
MAN metropolitan area network
MIB management information base
MSB most significant bit
MTU maximum transfer unit
OAM operations, administration, and maintenance
OSI open systems interconnect
PDU protocol data unit
PHY physical layer
RE Residential Ethernet
RFC request for comment
RPR resilient packet ring
SRP simple reservation protocol
TDM time division multiplexing
VOIP voice over internet protocol

NOTE—This clause should be skipped on the first reading (continue with Clause 5).
This text has been lifted from the P802.17 draft standard, which has a relative comprehensive list.
Abbreviations/acronyms are expected to be added, revised, and/or deleted as this working paper evolves.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 32

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5. Architecture overview

5.1 Latency constraints

5.1.1 Interactive audio delay considerations

The latency constraints of the RE environment are based on the sensitivity of the human ear. To be comfort-
able when playing music, the delay between the instrument and the human ear should not exceed
10-to-15 ms, as illustrated in Figure 5.1. The individual hop delays must be considerably smaller, since
instrument-sourced audio traffic may pass through multiple links and processing devices before reaching the
ear, as illustrated in 5.1.2 and 5.1.3.

5.1.2 Home recording session

To illustrate hop-latency requirements, consider RE usage for a home recording session, as illustrated in Fig-
ure 5.2. The audio inputs (microphone and guitar) are converted, passed through a bridge, mixed within a
laptop computer, converted at the speaker, and return to the performer’s ear through the air.

A fixed time T is assumed for each passage through a link, based on potential buffering and
conflicting-traffic delays. Due to multiple link hops and the latency contributions, the constraints on the
value of T are much less than the constraining 15ms instrument-to-ear latency, as illustrated in Equation 5.1.

Figure 5.1—Interactive audio delay considerations

Figure 5.2—Home recording session

t < 10ms~15ms

t0 = 1 ms
A/D conversion

delay

t1 = T
link delay

t5 = T

t2 = T

t4 = T

t3 = 5 ms
processing

delay

t6 = 1 ms
D/A conversion

delay

t7 = 6ms (air delay for 6’ distance)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 33

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

 t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7 < 15 ms (5.1)
1ms+ T + T +5ms+ T + T +1ms+6ms < 15ms
4 × T + 13ms < 15ms
T < 0.5 ms

To better understand the range of possibilities, consider an extremely aggressive implementation of
end-point stations could reduce the link-latency requirements. For example, more aggressive end-point
processing delays {t0 = 0.25 ms, t3 = 2 ms, t6 = 0.25 ms, t7 = 6 ms} would yield a constraint of T<1.6 ms.

Note that these aggressive processor delays are unlikely to decrease as the MIPs rating of processors
increase, due to the inherent delays associated with finite input response (FIR) filters and efficiencies
achieved through block-processing. For example, 16-sample block processing of a 128-point FIR filter
implies an inherent 80-cycle delay (16 for input block accumulation, 64 for filtering). With a 40 kHz
sampling rate, this corresponds to a theoretical processing-latency limitation of 2 ms.

These numbers are only approximations; actual values (as determined by the marketplace) could vary
substantially. For audiophiles, an overall processing latency of 5 ms may be desired; for discount shoppers,
an overall latency of 15 ms may be tolerable. Larger ad-hoc networks of cascaded 4-port or 8-port bridges
may be present. As with golden speaker cables, purchases may be based on perceptions of quality (the
bridge latency specification), rather than reality (perceivable latencies).

5.1.3 Garage jam session

As another example, consider RE usage for a garage jam session, as illustrated in Figure 5.3. The audio
inputs (microphone and guitar) are converted, passed through a guitar effects processor, two bridges, mixed
within an audio console, return through two bridges, and return to the ear through headphones.

Again, a fixed time T is assumed for each passage through a link, based on potential buffering and
conflicting-traffic delays. Due to multiple hops and the latency contributions, the constraints yield a T value
that is much less than the constraining 15ms instrument-to-ear latency (see Equation 5.2).

Figure 5.3—Garage jam session

t0 = 1 ms
A/D conversion

delay

t1 = T
link delay

t2 = T

t4 = T
t5 = T

t9 = T t6 = T
t8 = T

t7 = 2 ms
processing

delay

t12 = 6 ms
(air delay for
6’ distance)

t3 = 1 ms
processing

delay

t11 = 1 ms
D/A conversion

delay

t10 = T
Contribution from: dvj@alum.mit.edu.
34 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

 t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9 + t10 + t11 + t12 < 15 ms (5.2)
1ms+ T + T +1ms+ T + T + T +2ms+ T + T + T + 1ms+ 6ms < 15ms
8 × T + 11ms < 15ms
T < 0.5 ms

To better understand the range of possible latencies, consider extremely aggressive implementations of
end-point stations. For example, more aggressive end-point processing delays {t0=0.25 ms, t3=0.25 ms,
t7 = 2 ms, t11 = 0.25 ms, t12 = 6 ms} would yield a constraint of T<0.78 ms.

5.1.4 Urban home recording session

Within urban environments, headphones may be preferred to audio speakers, as illustrated in Figure 5.4 (a
small modification of Figure 5.2). The audio inputs (microphone and guitar) are converted, passed through a
bridge, mixed within a laptop computer, converted at the headphones, and near immediately presented to the
performer’s ear.

While the earphones eliminate the air-to-ear hop-count delays, the sensitivity to delays is increased for the
case of a vocal performer due to a comb filter formed by the interaction of headphone sound and sound
conducted through the head. Remaining below the 0.5 to 5 ms range where comb filtering is prevalent is
impractical, since the {t0 = 1 ms, t3 = 5 ms, t6 = 1 ms} values already exceed the 0.5 ms limitation.

Professionals believe that increasing latency to 5 ms or more within such headphone-feedback environments
is preferred over operation in the 0.5 to 5 ms range where comb filtering is prevalent. Again, due to multiple
hops and the latency contributions, the constraints yield a T value that is much less than the constraining
15ms instrument-to-ear latency (see Equation 5.3).

 t0 + t1 + t2 + t3 + t4 + t5 + t6 < 15 ms (5.3)
1ms+ T + T +5ms+ T + T +1ms < 15 ms
4 × T + 7ms < 15 ms
T < 2ms

To better understand the range of possible latencies, consider extremely aggressive implementations of
end-point stations. For example, more aggressive end-point processing delays {t0 = 0.25 ms, t3 = 2 ms,
t6 = 0.25 ms} would yield a T<3.1 ms constraint.

Figure 5.4—Urban recording session

t0 = 1 ms
A/D conversion

delay

t1 = T
link delay

t5 = T

t2 = T

t4 = T

t3 = 5 ms
processing

delay

t6 = 1 ms
D/A conversion

delay
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 35

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.1.5 Conflicting data transfers

Home networks may carry data traffic as well as time-sensitive traffic, as illustrated in Figure 5.3. During
musical performances (or evening A/V screenings), high bandwidth computer-to-server transfers could
occur over the same data-transfer links, as illustrated in Figure 5.5.

With the high data-transfer rates of disks and disk-array systems, the bandwidth capacity of residential
Ethernet links could (if not otherwise limited) easily be reached. Thus, some form of prioritized bridging is
necessary to ensure robust delivery of time-sensitive traffic.

5.2 Service classes

This working paper defines three service classes (A, B, or C) with which the data transfer is associated, as
summarized in Table 5.1. The classA service provides low-jitter transfer of traffic (and therefore lower
worst-case delays) up to its allocated rate. Traffic above the allocated rate is rejected. The classB service
provides bounded delay transfer of traffic. The classC service provides best-effort data-transfer services.

Link capacity required to support the classA and classB service is allocated via provisioning and these
services can be characterized as allocated services. The provisioning activity is expected to ensure that the

Figure 5.5—Conflicting data transfers

Editors’ Notes: To be removed prior to final publication.
The classA and classC service classes have consensus among the contributors to this working paper. The
concept of classB services was included in IEEE Std 802.17-2004 and is being included for consideration
by universal plug and play (UP&P), congestion management (CM), or legacy applications.

Table 5.1 — Service classes and their quality-of-service relationships

class of service qualities of service

class examples of use jitter guaranteed
bandwidth type

A real time low yes allocated

B near real time bounded

unbounded no opportunisticC best effort

writes

reads
Contribution from: dvj@alum.mit.edu.
36 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
aggregate service commitment on each link does not exceed that link’s capacity. The allocation rates
distributed by provisioning regulates access to these guaranteed services.

Link capacity has to be ensured to support classA and classB service guarantees. This is done by allocating
bandwidth through provisioning that prevents over-provisioning the links, using a subscription protocol
(see 5.4).

5.3 Architecture overview

5.3.1 Abstract concepts

From the perspective of end-point stations, RE systems supports classA data-frame traffic, called streams.
Each stream has one talker and one or more listeners, as illustrated in Figure 5.6-a.

The delay between the talker and listener(s) is nominally a fixed number of 125µs cycles, although the num-
ber of cycles may be cable-length and/or bridge topology dependent. Additional delays can be inserted by
the application(s), when synchronization between multiple listeners is required, since the talker’s data can be
time-stamped and all clocks are synchronized.

To reduce costs (and support GPS-inaccessible locations), synchronized clocks are provided by the intercon-
nect. All classA talkers provide clock references, but only one of these stations is nominated to be the clock
master; the others are called clock slaves (see Figure 5.6-b). The selected clock master is called the grand
clock master, oftentimes abbreviated as “grand master”.

Clock synchronization involves synchronizing the clock-slave clocks to the reference provided by the grand
clock master. Tight accuracy is possible with matched-length duplex links, since bidirectional messages can
cancel the cable-delay effects.

Figure 5.6—Hierarchical control

a) Synchronous frame-transfer model

network or subnets

talker listener

fr[n] fr[n-b]

listener

fr[n-a]
…

b) Synchronous clock-sync model

network or subnets

…slave master slave slave slavegrand
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 37

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.3.2 Detailed illustrations

In many cases, abstract illustrations (see Figure 5.6) are insufficient to illustrate expected behaviors. Thus,
more detailed illustrations are oftentimes used to also show bridges and spans within the network cloud, as
illustrated in Figure 5.7.

5.3.3 Architecture components

The architecture of a home RE system involves the following protocols:

a) Discovery (beyond the scope of this working paper).
A controller discovers the proper streamID/bandwidth parameters to allow the listener to subscribe
to the desired talker-sourced stream.

b) Subscription. The controller commands the listener to establish a path from the talker.
Subscription may pass or fail, based on availability of routing-table and link-bandwidth resources.

c) Synchronization. The distributed clocks in talkers and listeners are accurately synchronized.
Synchronized clocks avoid cycle slips and playback-phase distortions.

d) Pacing. The transmitted classA traffic is paced to avoid other classA traffic disruptions.

Figure 5.7—Hierarchical flows

a) Talker-to-listener(s) data flow

Legend:
talker other listener

existing conversation

LT

LT

b) Grand-master synchronization flows

Legend:
grand master other slave

established synchronization flow

SS

SG

G
S

S

Contribution from: dvj@alum.mit.edu.
38 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.4 Subscription

5.4.1 Simple Reservation Protocol (SRP) overview

Subscription involves explicit negotiation for bandwidth resources, performed in a distributed fashion,
flowing over the paths of intended communication. This subscription protocol are called the Simple
Reservation Protocols (SRP). SRP represents an instance of the Generic Attribute Registration Protocol
(GARP), with similar objectives to the layer-3 based Resource Reservation Protocol (RSVP). SRP shares
many of the baseline RSVP and GARP features, including the following:

— SRP is simplex, i.e. reservations apply to unidirectional data flows.
— SRP is receiver-oriented, i.e., the receiver of a stream initiates and maintains the resource reser-

vation used for that stream.
— SRP maintains “soft” state in bridges, providing graceful support for dynamic membership changes

and automatic adaptations to changes in network topology.
— SRP is not a routing protocol, but depends on transparent bridging and STP routing protocols.

SRP simplicity is derived from its restricted layer-2 ambitions, as follows.

— SRP is symmetric, i.e. the listener-to-talker path is the inverse of the talker-to-listener path.
— SRP does not provide for transcoding; any stream is fully characterized by its streamID and

bandwidth.

The viability of SRP is enhanced by basing its protocols on GARP, a protocol defined within IEEE Std
802.1D. Specifically, the RequestJoin and RequestLeave messages correspond to primitives defined within
GARP.

SRP is defined to be a general 1-to-N resource-reservation scheme, although this discussion focuses on
subscription of classA bandwidth resources. The SRP protocols could, however, be used to reserve other
resource-limited resources, such as buffer allocations, latency targets, and frame-loss rates.

NOTE—SRP is thought to be applicable to N-to-N topologies, as well as 1-to-N topologies. However, the detailed
review of N-to-N topologies (which would be necessary to verify the feasibility of such extensions) is beyond the scope
of this working paper.

5.4.2 Soft reservation state

SRP takes a “soft state” approach to managing the reservation state in bridges. SRP soft state is created and
periodically refreshed by listener generated RequestJoin messages; this state is deleted if no matching
RequestJoin messages arrive before the expiration of a “cleanup timeout” interval. Listener’s may also force
state deletions by generating an explicit RequestLeave message.

RequestJoin messages are idempotent. When a route changes, the next RequestJoin message will initialize
the path state to the new route, and future RequestJoin messages will establish state there. The state on the
now-unused segment of the route will be deleted after a timeout interval. Thus, whether a RequestJoin
message is “new” or a “refresh” is determined separately by each station, depending upon the existence of
state at that station.

SRP soft state is also deleted in the continued absence of associated talker-generated ConfirmJoin messages;
the listener’s registration is discarded if no matching ConfirmJoin indication arrives before the expiration of
a “cleanup timeout” interval. Thus, talker stations or agents may implicitly deregister by stopping its
ConfirmJoin confirmations, or explicitly deregister by sending distinct ConfirmGone messages.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 39

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
SRP sends it messages as layer-2 datagrams with no reliability enhancement. Periodic transmissions by
listener/talker stations and agents is expected to handle the occasional loss of an SRP message.

In the steady state, state is refreshed on a hop-by-hop basis to allow merging. Propagation of a change stops
when and if it reaches a point where merging causes no resulting state change. This minimizes the SRP con-
trol traffic and is essential for scaling to large audiences.

5.4.3 Subscription bandwidth constraints

The SRP subscription protocols limit cumulative bandwidth allocations to a fixed percentage less than the
capacity of the link, much like IEEE 1394 limits isochronous traffic to less than the capacity of its bus. This
guarantees that high priority management information can be transmitted across the link. For RE systems,
classA traffic is limited to 75% of the capacity of any RE link. Enforcement of such a limit is done in multi-
ple ways:

a) Subscription. Requests for establishing classA transmission paths are rejected if the cumulative
bandwidths of all paths would consume more than 75% of the link bandwidth.

b) Transmit queue hardware of RE stations (including bridges) discards classA content that (if trans-
mitted) would cause classA traffic to exceed 75% of the transmit link capacity. Details are TBD.

Method (b) is desired to recovery from unexpected transient conditions (typically topology changes) that
result in admission control violations, and is also useful for managing misbehaving devices

5.4.4 Controller entities

Subscription when a relative-intelligent controller discovers the need to establish a classA path between
talker and listener entities. For example, user interactions with a television (called the controller) may cause
streams flowing between the content source (called the talker) and speakers (the listeners), as illustrated in
Figure 5.8.

A controller can potentially simplify the listener by reducing the need to providing user interface and
device-discovery capabilities. However, a controller could also reside within talker and/or listener
components. However, actions between controllers and talker/listener stations are beyond the scope of this
working paper.

Editors’ Notes: To be removed prior to final publication.
Additional discussions may be appropriate to discuss operation of the ConfirmGone messages.

Figure 5.8—Controller activation

Legend:
controller talker listener other communication flowL

T L

C

C T
Contribution from: dvj@alum.mit.edu.
40 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.4.5 Bridge-resident agents

Subscription facilities register classA communication paths from a talker to one or more listeners. Streams
of time-sensitive data can then flow over these established paths, as illustrated by the dark arrow paths in
Figure 5.9-a. Maintaining these established paths involves active participation of agents within the end-point
talker, local listener, local talker, and end-point listener entities, as illustrated in Figure 5.9-b.

The talker stations/agents are responsible for maintaining an account consisting of {streamID, bandwidth}
pairs, one for each of their distinct flows. Requests for additional link bandwidth are checked against these
accounts and denied if the cumulative bandwidth would exceed 75% of the link capacity.

For each of the registered talker agents within a bridge, the listener agent remains active until all but the last
talker agent registration is discarded. Thus, the talker agent in an upstream station receives its deregistration
notice only after the last of the downstream listener stations has been deregistered.

The listener agent uses the same RequestJoin messages to establish and to maintain the path. This reduces
design complexity and (most importantly) automatically re-routes stream flows after topology changes.

Figure 5.9—Agents on an established path

b0

b1

b2

b3

c0 c1 c2 c3

d1 d2

e0

e1

e2

L

L
e3

T

a) Streaming data flows

Legend:
talker listener other
streaming data

T L

b) Agents on the stream’s path

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

Legend:
talker station listener station
talker agent listener agent
internal coupling streaming data
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 41

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.4.6 Registration

Registering a new listener and talker starts with a RequestJoin message sent from the listener f 0 towards the
talker a0, as illustrated by the dark arrow (1a) in Figure 5.10-a. These registration messages are not for-
warded directly, but activate cooperative listener and talker agents with the bridge.

In response to the received RequestJoin message (1a), bridgeE reserves talker-agent and listener-agent
registration table entries in ports e0 and e1 respectively. A cascaded RequestJoin message (2a) is then sent
towards talker station a0.

The cascaded forwarding continues through bridgeC. In response to the received RequestJoin message (2a),
bridge C reserves talker-agent and listener-agent registration table entries in ports c3 and c0 respectively. A
cascaded RequestJoin message (3a) is then sent towards talker station a0.

The cascaded forwarding continues through bridgeB. In response to the received RequestJoin message (3a),
bridge B reserves talker-agent and listener-agent registration table entries in ports b1 and b0 respectively. A
cascaded RequestJoin message (4a) is then sent towards talker station a0.

Referring now to Figure 5.10-b, the talker and talker agents are responsible for providing confirming
ConfirmJoin messages, to confirm their continued presence. In this example, the RequestJoin messages
{1a,2a,3a,4a} of Figure 5.10-a are continually confirmed by the ConfirmJoin messages {1b,2b,3b,4b} of
Figure 5.10-b), respectively. In the continued absence of the expected ConfirmJoin messages, the talker (or
talker-agent) assumes the listener (or listener-agent) is absent or has been deactivated.

Another timeouts is associated with the absence of periodic RequestJoin messages. In the continued absence
of these expected messages, the talker assumes the listener is absent or has been deactivated. Based on this
assumption, the associated talker (station or agent) registration resources are released.

Figure 5.10—Periodic registration messages

a) Phase 1: RequestJoin messages

c0 c1 c2 c3

d1 d2

e0

e1

e2

e3

a2

a3

a0
b0

b1

b2

b3

f0

f3

f2

(1a)

(3a) (2a)

(4a)

Legend:
talker station listener station
talker agent listener agent
internal coupling RequestJoin flow

b) Phase 2: ConfirmJoin messages

Legend:
talker station listener station
talker agent listener agent
internal coupling ConfirmJoin flow

c0 c1 c2 c3

d1 d2

f0

f3

f2

e0

e1

e2

e3

a2

a3

a0
b0

b1

b2

b3

(1b)

(3b) (2b)

(4b)
Contribution from: dvj@alum.mit.edu.
42 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.4.7 Secondary listener registrations

A second listener registers by sending a RequestJoin message towards the talker, as illustrated by the
dark-arrow path in Figure 5.11-a. When an established registration is discovered, the bridge (not the talker)
processes the message. Thus, the registration is expanded to include a new-listener side path, as illustrated in
Figure 5.11-b.

Each talker and listener agent maintains separate registration state, so that only active paths are registered.
Maintaining distinct registrations also allows the bridge to detect when the last listener disconnects, so that
its previously shared upstream span can be deregistered appropriately.

Each path is uniquely identified by its associated streamID. The streamID consists of a {talkerId, plugID}
information that uniquely identifies the associated talker resource), as illustrated by the rectangle inserts
within Figure 5.11-a. The talkerID represents the MAC address of the talker and the plugID distinguishes
between possible streaming sources within the talker.

The multicast address used to route the classA multicast frames, as well as the allocated classA bandwidth,
are returned to the listeners within ResponseForm messages.

Figure 5.11—Secondary registrations

a) Phase 1: RequestJoin messages

c0 c1 c2 c3

d1 d2

e0

a2

a3

a0

(1a)

Legend:
talker station listener station
talker agent listener agent
internal coupling registered path
RequestJoin flow

e1

e2

e3

b0

b1

b2

b3

f0

(2)
f2

f3
talkerID
plugID

streamID

b) Phase 2: Extended registered paths

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

Legend:
talker station listener station
talker agent listener agent
internal coupling registered paths
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 43

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.4.8 Secondary listener deregistration

A retiring secondary listener normally leaves an established registration by sending a RequestLeave
message towards the talker. That RequestLeave message (1a) propagates to the nearest merging bridge con-
nection, as illustrated in Figure 5.12-a. When an established/merged registration is discovered, the bridge
(not the talker) deregisters the listener, as illustrated by the disappearance of external path e0-to-f0 and
internal path e1-to-e0 within Figure 5.12-b.

5.4.9 Final deregistration

The final retiring listener also sends a RequestLeave message (1a) towards the talker. In this case, variants of
that message {2a,3a,4a} eventually propagate to the talker, as illustrated in Figure 5.13-a. No listeners
remain registered after this cascaded propagation of RequestLeave messages, as illustrated in Figure 5.13-b.

Figure 5.12—Side-path deregistration

Figure 5.13—Final-path deregistration

a) Phase 1: RequestLeave messages

c0 c1 c2 c3

d1 d2

e0

a2

a3

a0
(1a)

Legend:
talker station listener station
talker agent listener agent
internal coupling registered path
RequestLeave flow

e1

e2

b0

b1

b2

b3

f0
(2)

f2

f3
e3

b) Phase 2: Contracted registered paths

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

Legend:
talker station listener station
talker agent listener agent
internal coupling registered paths

a) Phase 1: RequestLeave messages

c0 c1 c2 c3

d1 d2

e0

e1

e2

e3

a2

a3

b0

b1

b2

b3

f0

f3

f2

(1a)

(3a) (2a)

(4a)

Legend:
talker station listener station
talker agent listener agent
internal coupling registered path
RequestLeave flow

a0

c0 c1 c2 c3

d1 d2

e0

e1

e2

e3

a2

a3

a0
b0

b1

b2

b3

f0

f3

f2

(1a)(4a)

Legend:
talker station listener station
talker agent listener agent

b) Phase2: Released registration
Contribution from: dvj@alum.mit.edu.
44 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.4.10 Stream transmissions

Once listeners are registered (see Figure 5.14-a), a talker communicates critical parameters within the
ConfirmPath message (instead of the initial ConfirmJoin messages) and starts its stream transmissions over
the registered paths, as illustrated by the arrows in Figure 5.14-b.

The ConfirmPath message could be a variant of the ConfirmJoin message with a distinct command-code
value. Like the baseline ConfirmJoin message, the ConfirmPath message is also sufficient to sustain the
talker’s registration. This simplifies the talkers (and talker agents) by eliminating the need to concurrently
transmit two distinct periodic registration-sustaining messages.

5.4.11 Insufficient bandwidth conditions

The available link bandwidths can sometimes be insufficient when the talker starts its stream transmissions.
For example, bandwidths may be sufficient to sustain listener f 0 but not listener f 3, as illustrated by the
e0-to-f 0 and e3-to-f 3 paths in Figure 5.15-a, respectively.

Figure 5.14—Streaming data over registered paths

Figure 5.15—Insufficient bandwidth conditions

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

Legend:
talker station listener station
talker agent listener agent
internal coupling registered paths

a) Established registrations

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

Legend:
talker station listener station
talker agent listener agent
internal coupling ConfirmPath flows

b) Streaming classA traffic

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

a) Established registrations

Legend:
talker station listener station
talker agent listener agent
internal coupling sufficient bandwidth
insufficient bandwidth

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

b) ConfirmPath messaging

Legend:
talker station listener station
talker agent listener agent
internal coupling ConfirmPath good
ConfirmPath bad
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 45

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
In this case, listener f 3 does not receive the talker’s streaming classA traffic. However, listener f 3 continues
to receive its ConfirmJoin messages, each of which contains an error indication code. Listener f 3 is thus
informed of the insufficient-bandwidth error condition, allowing corrective/reporting actions to be initiated
by higher level protocols.

5.4.12 Errors conditions

Errors may be associated with a variety of failure conditions, including (but not limited to) those listed
below.

a) Resources. Insufficient resources are available within the bridge.
(These insufficient-resource errors are handled by GARP specified mechanisms, see TBD.)

1) Insufficient registration-table storage is available in the bridge’s downstream talker agent.
2) Insufficient registration-table storage is available in the bridge’s upstream listener agent.

b) Bandwidth. Insufficient bandwidths are available within the bridge.
(These insufficient-bandwidth errors are handled by ConfirmJoin error codes, see 5.4.11.)

1) Insufficient bandwidth is available on the link from the talker agent to its adjacent listener.
2) Insufficient link or memory bandwidth is available with the bridge.

5.4.13 Heartbeat timeouts

Talker agents/stations are responsible for periodically polling locally registered listener agents/stations, to
demonstrate their continued presence. In the absence of these polling updates, the listeners assume the talker
is absent and deregister the inactive path (or inactive branch from the path). These talker-absent timeouts are
performed independently on each span.

Listener agents/stations are responsible for periodically reregistering with locally registered talker
agents/stations, to confirm their continued presence. In the absence of these reregistration updates, the
talkers assume the listener is absent and deregister the inactive path (or inactive branch from the path).
These listener-absent timeouts are performed independently on each span.

These periodic heartbeat-based timeouts handle a variety of error conditions, including the following:

a) A RequestJoin, RequestLeave, ConfirmJoin, or ConfirmPath is (corrupted and) not delivered.

b) The physical topology is changed, causing changes in the paths of streaming classA traffic.

c) A talker or listener is decommissioned and thus is no longer functionally present.

d) A flooded RequestJoin message reaches a non-talker end station or subnet.

e) After the talker’s port is learned, a bridge discontinues flooding extraneous RequestJoin messages.
Contribution from: dvj@alum.mit.edu.
46 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.4.14 Untended flooding

Registering a new listener normally involves cascaded RequestJoin message sent from the listener f 0
towards the talker a0, as illustrated in Figure 5.10-a. In some cases, the talker’s address may be unlearned
and flooding may be necessary. Thus, BridgeB could sometimes be forced to flood the RequestJoin to
stations {a0,a2,a3}, when an unlearned address can’t be directed to station a0, as illustrated in
Figure 5.10-b.

In this example, talker a0 is present and its ConfirmJoin messages will soon propagate back to bridgeB,
where the address of talker station a0 is learned. When this occurs, the flooding to stations {a2,a3} stops.

As noted previously (see 5.4.13), the talker agent is responsible for providing confirming ResponseJoin
messages, so that the absence of a talker station can be readily detected. Allocated registration-table entries
within bridges can be released after the talker-station absence is detected. Thus, flooding causes no harm.

5.4.15 GARP primitives

This subclause was intended to clarify the higher level SRP functionality. Thus, names of primitives were
chosen form clarity, rather than consistency with the expected GARP messages. For the benefit of experi-
enced GARP users, a sketch of the intended mappings of primitives is provided within this subclause.

The RequestJoin and RequestLeave messages correspond to like-names primitives within GARP. The
ConfirmJoin and ConfirmPath messages correspond to variants of the leave-all messages within GARP.

Figure 5.16—Periodic registration messages

Editors’ Notes: To be removed prior to final publication.
Additional discussions may be appropriate to discuss what happened when the talker address is absent,
as simply summarized below.

a) Directed RequestJoin messages

c0 c1 c2 c3

d1 d2

e0

e1

e2

e3

a2

a3

a0
b0

b1

b2

b3

f0

f3

f2

(1a)

(3a) (2a)

(4a)

Legend:
talker station listener station
talker agent listener agent
internal coupling RequestJoin flow

a) Flooded RequestJoin messages

c0 c1 c2 c3

d1 d2

e0

e1

e2

e3

a2

a3

a0
b0

b1

f0

f3

f2

(1a)

(3a) (2a)

(4a)

Legend:
talker station listener station
talker agent listener agent
internal coupling RequestJoin flow

b2

b3

(4c)

(4d)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 47

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.5 Synchronized time-of-day clocks

5.5.1 Assumptions

This working paper specifies a protocol to synchronize independent timers running on separate stations of a
distributed networked system, based on concepts specified within IEEE Std 1588-2002. Although a high
degree of accuracy and precision is specified, the technology is applicable to low-cost consumer devices.
The protocols are based on the following design assumptions:

a) Each end station and intermediate bridges provide independent clocks.

b) All clocks are accurate, typically to within ±100PPM.

c) Point-to-point transmit/receive duplex connections are provided.

d) Transmit/receive propagation delays within duplex cables are well matched.

5.5.2 Objectives

With these assumptions in mind, the time synchronization objectives include the following:

a) Precise. Multiple timers can be synchronized to within 10’s of nanoseconds.

b) Inexpensive. For consumer A/V devices, the costs of synchronized timers are minimal.
(GPS, atomic clocks, or 1PPM clock accuracies would be inconsistent with this criteria.)

c) Scalable. The protocol is independent of the networking technology. In particular:

1) Cyclical physical topologies are supported.
2) Long distance links (up to 2 kM) are allowed.

d) Plug-and-play. The system topology is self-configuring; no system administrator is required.

5.5.3 Strategies

Strategies used to meet these objectives include the following:

a) Precision is achieved by calibrating and adjusting timeOfDay clocks.

1) Offsets. Offset value adjustments eliminate immediate clock-value errors.
2) Rates. Rate value adjustments reduce long-term clock-drift errors.

b) Simplicity is achieved by the following:

1) Concurrence. Most configuration and adjustment operations are performed concurrently.
2) Feed-forward. PLLs are unnecessary within bridges, but possible within applications.
3) Symmetric. Clock-master/clock-slave computations are similar (only slave results are saved).
4) Periodic. Messages are sent periodically, rather than in timely response to other requests.
5) Frequent. Frequent (typically 1 kHz) interchanges reduces needs for precise clocks.

c) Balanced functionality.

1) Low-rate. Complex computations are infrequent and can be readily implemented in firmware.
2) High-rate. Frequent computations are simple and can be readily implemented in hardware.
Contribution from: dvj@alum.mit.edu.
48 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.5.4 Grand-master selection

5.5.4.1 Grand-master selection

Clock synchronization involves streaming of clock-synchronization information from a grand-master timer
to one or more slave timers. Although primarily intended for non-cyclical physical topologies
(see Figure 5.17a), the synchronization protocols also function correctly on cyclical physical topologies
(see Figure 5.17b), by activating only a non-cyclical subset of the physical topology.

In concept, the clock-synchronization protocol starts with the selection of the reference-timer station, called
a grand-master station (oftentimes abbreviated as grand-master). Each station is associated with a distinct
preference value; the grand-master is the station with the “best” preference values.

Stations forward the best of their observed preference values to neighbor stations, allowing the overall
best-preference value to be ultimately selected and known by all. The station whose preference value
matches the overall best-preference value ultimately becomes the grand-master.

5.5.4.2 Communicated preference values

The grand-master station observes that its precedence is better than values received from its neighbors, as
illustrated in Figure 5.18a. A slave stations observes its precedence to be worse than one of its neighbors and
forwards the best-neighbor precedence value to adjacent stations, as illustrated in Figure 5.18b. To avoid
cyclical behaviors, a hopsCount value is associated with preference values and is incremented before the
best-precedence value is communicated to others.

Figure 5.17—Timer synchronization flows

Figure 5.18—Grand-master precedence flows

a) Non-cyclical grand-master topologies

Legend:
grand master other slave

established synchronization flow

SS

SG

G
S

a) Cyclical grand-master topologies

Legend:
grand master other slave

established synchronization flow

SS

SG

G
S

a) Grand-master station flows

MinimumValue

thisPrecedence hopsCount +=1

b) Clock-slave station flows

MinimumValue

thisPrecedence hopsCount +=1
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 49

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The grand-master selection precedence includes multiple components, listed and described below
(see 7.1.2). The portTag value is only needed within a bridge and is therefore not transmitted between
stations.

a) systemTag. A changeable value that is associated with each grand-master capable station.
This value is can specify grand-master preferences (e.g., a home gateway may be preferred).

b) uniqueID. A unique value associated with each station, typically based on its MAC address.
This value is used as a tie breaker, when two contenders have identical systemTag values.

c) hopsCount. A value that is incremented when passing through stations.
This is the tie breaker, when two ports receive identical systemTag:uniqueID values.

d) portTag. A changeable value that is associated with each port on a grand-master capable station.
This is the tie breaker, when two ports receive identical systemTag:uniqueID:hopsCount values.

5.5.5 Synchronization principles

Timer synchronization is based on the concept of free-running local times (localD, localE, and localF) with
compensating offset values (offsetD, offsetE, and offsetF), as illustrated in Figure 5.19. Updates involve
changes to the offset values, not the free-running local timer values. In this example, we assume that:
StationE is synchronized to its adjacent StationD; StationF is synchronized to its adjacent StationE. As a
result, StationF is indirectly synchronized to StationD (through StationE).

The formulation of the offsetE value begins the assumption that the globalE and globalD times are identical.
Addition of (localE– localE) and regrouping of terms leads to the formulation of the desired offsetE value,
based on offsetD and (localE– localD) time difference values, as illustrated in Figure 5.19-a. Synchroniza-
tion is thus possible using periodic transfers of offsetD values and computations of (localE– localD) timer

The formulation of the offsetF value begins the assumption that the globalF and globalE times are the
identical. Addition of (localF– localF) and regrouping of terms leads to the formulation of the desired
offsetF value, based on offsetE and (localF– localE) time difference values, as illustrated in Figure 5.19-b.
Synchronization is thus possible using periodic transfers of offsetE values and computations of (localF–
 localE) timer differences.

In concept, the offsetE value is adjusted first; its adjusted value is then used to compute the desired offsetF
value. In actuality, the periodic computations of offsetE and offsetF values are performed concurrently.

Figure 5.19—Time synchronization principles

StationE

localE offsetE

add
globalE

StationF

localF offsetF

add
globalF

a) StationE synchronizes to StationD

StationD

localD offsetD

add
globalD

globalE = globalD
 = localD + offsetD
 = localD − (localE − localE) + offsetD
 = (localD − localE) + localE + offsetD
 = localE + offsetE
Where:
 offsetE = offsetD − (localE − localD)

StationE

localE offsetE

add
globalE

StationF

localF offsetF

add
globalF

b) StationF synchronizes to StationE

StationD

localD offsetD

add
globalD

globalF = globalE
 = localE + offsetE
 = localE − (localF − localF) + offsetE
 = (localE − localF) + localF + offsetE
 = localF + offsetF
Where:
 offsetF = offsetE – (localF – localE)
Contribution from: dvj@alum.mit.edu.
50 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.5.6 Timer snapshot locations

Mandatory jitter-error accuracies are sufficiently loose to allow transmit/receive snapshot circuits to be
located with the MAC, as illustrated in Figure 5.20a. Vendors may elect to further reduce timing jitter by
latching the receive/transmit times within the PHY, where the uncertain FIFO latencies can be best avoided.

5.5.7 Bridge PLL possibilities

In addition to other valuable properties, the precise low-latency time-of-day synchronization protocols
reduce jitter sufficiently to eliminate the needs for PLLs within bridges, as illustrated in Figure 5.21a.
Elimination of such PLLs (illustrated in Figure 5.21b) simplifies the bridge design, while allowing each
end-point application to independently optimize the effective capture-time and jitter-magnitude
requirements of its PLL.

Figure 5.20—Timer snapshot locations

Figure 5.21—Bridge PLL possibilities

a) Simple clockSync snapshots

FIFO

transmitter

FIFO

receiver

txStrobe

PHY

rxStrobe

MAC

convert

globalTime
client

global local
offset

b) Precise clockSync snapshots

FIFO

transmitter

FIFO

receiver

txStrobe

PHY

rxStrobe

MAC

convert

globalTime
client

global local
offset

a) Simple bridge (without PLL)

master
gate

(…)

slave
gate

slave
gate

b) Sophisticated bridge (with PLL)

master
gate

PLL

(…)

slave
gate

slave
gate
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 51

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.6 Formats

5.6.1 Content framing

ClassA content is the client supplied per-cycle classA information, transferred from a talker to one or more
listeners. The content within each cycle can be small or large; stereo audio stream transfers involve only
approximately 20 bytes per cycle. Uncompressed 32-bits/pixel frame buffers (2 megapixels, 30Hz) would
transmit 30 kilobytes per cycle. Framing of this content must be efficient for small sizes and sufficient for
large sizes, as illustrated in Figure 5.22.

For low bandwidth transmissions, each frame transports distinct classA content, as illustrated in
Figure 5.22-a. For high bandwidth transmissions, the content can span multiple frames, as illustrated in
Figure 5.22-b (see also C.3.2).

As an alternative improved-efficiency alternative, low bandwidth content could be encapsulated into blocks,
where multiple blocks are included within each frame transmission, as illustrated in Figure 5.22-c. This
allows the per-frame overhead (the inter-packet gap, header, and trailer fields) to be amortized over multiple
blocks. For example, the eight inputs from a guitar may be packed together into the same frame. However,
the packing of multichannel content is beyond the scope of this working paper.

Another approach would be to reduce the need for concatenated frames by using the (defacto standard)
jumbo-frame sizes, which are approximately 9,000 bytes in size. However, support of the jumbo frame size
is not ensured, and (when supported) is considerably less than 216-byte maximum size of an IEEE 1394
isochronous frame, or the 118 kilobyte size implied by 75% utilization of a 10Gb/s link.

Figure 5.22—Content framing methods

a) Isolated frame

co
nt

en
t

frame

b) Concatenated frames

fr
am

e[
0]

fr
am

e[
1]

fr
am

e[
2]

fr
am

e[
3]

block

c) Groups of blocks

bl
oc

k[
0]

bl
oc

k[
1]

bl
oc

k[
2]

bl
oc

k[
3]

frame
Contribution from: dvj@alum.mit.edu.
52 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.6.2 Station plug addressing

Stream addressing is based on the concept of plugs, as illustrated in Figure 5.23. Streams are identified by
their 48-bit talker-station identifier concatenated with that talker’s 16-bit plugId. Each talker station may
have up to 216 streams, via logical plugs, in addition to the station’s hardwired connections Stations are
expected to provide higher level commands for connecting/mixing/amplifying/converting/etc. data between
combinations of hardwired and logical plugs. However, the details of such commands are beyond the scope
of this working paper.

5.6.3 Stream frame formats (alternative 1)

Streaming classA frames are no different than other multicast Ethernet frames. The distinction is that each of
these multicast addresses is assumed to have associated streamID and bandwidth information saved within
each forwarding bridge, as illustrated in Figure 5.24.

The streamID consists of two components: sourceID and plugID. The 48-bit sourceID identifies the source
and usually equals the sa value; the plugID identifies the resource within that source. A distinct maxBw
(maximum bandwidth) field identifies the negotiated maximum for classA bandwidth.

Figure 5.23—Plug addressing

Figure 5.24—ClassA frame format and associated data

EUI-48
…

pl
ug

[0
]

pl
ug

[1
]

pl
ug

[2
]

pl
ug

[3
]

pl
ug

[4
]

pl
ug

[5
]

pl
ug

[6
]

pl
ug

[7
]

pl
ug

[8
]

pl
ug

[9
]

pl
ug

[1
0]

pl
ug

[1
1]

pl
ug

[1
2]

pl
ug

[6
55

28
]

pl
ug

[6
55

29
]

pl
ug

[6
55

30
]

pl
ug

[6
55

31
]

pl
ug

[6
55

32
]

pl
ug

[6
55

33
]

pl
ug

[6
55

34
]

pl
ug

[6
55

35
]

(…)

pl
ug

[1
3]

g
6 da

6 sa

2 protocolType

m data[n]

4 fcs

multicastStream

maxBw

sourceID plugID

streamID

(this bit is 1)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 53

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.6.4 Stream frame formats (alternative 2)

Streaming classA frames are no different than other Ethernet frames. The distinction is that each of these
frames supplies a nonzero user_priority field, as illustrated in Figure 5.25.

The streamID consists of two components: sourceID and plugID. The 48-bit sourceID identifies the source
and usually equals the sa value; the plugID identifies the resource within that source. A distinct maxBw
(maximum bandwidth) field identifies the negotiated maximum for classA bandwidth.

5.6.5 Stream frame formats (alternative 3)

Frames within a stream are no different than other Ethernet frames, with the exception of their distinct da
(destination address) field, as illustrated in Figure 5.26. The most significant 32-bit portion of the da
classifies the frame as an classA frame. The less significant 16-bit portion specifies the plugID portion of the
streamID associated with the frame.

Figure 5.25—ClassA frame format and associated data

Figure 5.26—ClassA frame formats

g
6 da

6 sa

2 protocolType=VLAN_TAG

m data[n]

4 fcs

multicastStream

maxBw

sourceID plugID

streamID

(this bit is 1)

2 vlan

2 protocolType

pri cf
i

6 da

6 sa

2 protocolType

m data[n]

4 fcs

STREAM_TYPE

—

sourceID

plug

plugID

streamID
Contribution from: dvj@alum.mit.edu.
54 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.6.6 Stream frame format alternatives comparison

Quality of service is thus specified by the user_priority field parameter within VLAN-tagged frames, as
listed in Table 5.2.

The DA-multicast header is the compact, its forwarding mechanism are similar to those now supported, but
a multicast server is required to provide unique multicast-stream addresses.

The VLAN-priority header is the 4 bytes larger, its forwarding mechanism is nearly identical to those now
supported, but a multicast server is required to provide unique multicast-stream addresses.

The SA-multicast header is the compact, its forwarding mechanism is quite different than those now
supported by bridges, but has the advantage that no multicast server is not required.

Table 5.2—Tagged priority values

Alternative Compact Similar Multicast
server

1: DA-multicast good good poor

2: VLAN-priority poor best poor

3: SA-multicast good poor good
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 55

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.7 Pacing

5.7.1 Assumptions

This working paper specifies a protocols for pacing classA traffic streams as they pass through multiple
bridges. Although a high degree of scalability is implied, the technology is applicable to inexpensive
consumer devices. The protocols are based on the following design assumptions:

a) Sizes. The maximum frame size is assumed to be 2 kB, for consistency with established 802.3
frame-extension working group directions.

b) Speeds. Only full-duplex 100 Mb/s, 1 Gb/s, and 100 Gb/s 100-meter links must be supported.

c) Limits. The classA traffic transmissions are limited to 75% of the available link bandwidth.

5.7.2 Objectives

With these assumptions in mind, the time synchronization objectives include the following:

a) Reliable. The worst-case delay between talker and listener stations is small, deterministic, and not
effected by operating conditions, including the following:

1) Loading. Arbitrary talker-station and listener-station traffic patterns can be supported.
2) Scaling. Any 802.1 supported spanning tree topologies can be supported.

b) Plug-and-play. Manual provisioning of the system is not required.

c) Compatible. The pacing of high-class frames cannot disrupt legacy or lower-class transmissions.

d) Friendly. Some higher-class traffic that cannot be reliably paced, due to legacy sources or bridges;
retains precedence over lower-class traffic.

e) Robust. Higher-class traffic never starves the forwarding of lower-class control traffic.

f) Efficient. Unused higher-class bandwidth can be readily reclaimed lower-class traffic.

5.7.3 Strategies

Strategies used to meet these objectives include the following:

a) Buckets. Higher-class traffic is grouped into buckets; buckets are forwarded every 125 µs cycle.

b) Limits. The levels of higher-class traffic are limited to 75% of the link bandwidths.

1) Excess classA traffic above this 75% limit is discarded.
2) Excess classB traffic above this 75% limit is temporarily processed as classC traffic.

c) Reuse. Unused higher-precedence bandwidths are reused if not consumed as intended.

1) Unused classA traffic within the 75% limit is available for classB traffic.
2) Unused classA/classB traffic within this 75% limit is available for classC traffic.

d) Downgrade. When passing through unsupportive bridges, classA traffic is downgraded to classB.
The classB traffic is no longer paced, but retains its precedence over classC traffic.
Contribution from: dvj@alum.mit.edu.
56 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5.7.4 Service classes

Pacing is intended to ensure timely delivery of pre-subscribed classA traffic, in the presence of arbitrary
classB and classC loading conditions. Interactions between these three service classes is summarized below:

a) ClassA. A pre-subscribed paced time-sensitive service with guaranteed latency.
The classA traffic is paced and (at its scheduled transmit time) has priority over classB traffic.

b) ClassB. A pre-subscribed time-sensitive service with guaranteed bandwidth. The classB traffic is
shaped and has priority over classC traffic. Two type of classB traffic are expected, as follows:

1) Legacy. Time-sensitive multicast traffic sourced by non-supportive talker stations.
2) Hybrid. ClassA traffic that has passed through a nonsupportive bridge.

Such previously-classA traffic can no longer be paced and therefore is downgraded to classB.

c) ClassC. A best-effort service that utilizes bandwidths not consumed by classA or classB traffic.
The classA and classB subscription/shaping restrictions ensure a minimum 25% of link bandwidths
are available for classC transmissions.

5.7.5 Fine-grained pacing

Pacing involves the throttling of classA streams so that their average bandwidth can be guaranteed over
small averaging intervals. Such fine-grained pacing has the following advantages:

a) Latency. Talker-to-listener delays are small, deterministic, and link-utilization independent.

b) Jitter. Delay variations between a talker and listeners are bounded and topology independent.

c) Intervals. Short intervals simplify the detection/enforcement of maximum classA bandwidths.
(A goal is to limit classA bandwidths to no more than 75% of the link capacity, see 1.2.3.)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 57

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Contribution from: dvj@alum.mit.edu.
58 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6. Frame formats

6.1 ClassA frames

6.1.1 ClassA frame fields

A classA frame differs from other frames in the format of its multicast da (destination address), as illustrated
in Figure 6.1.

6.1.1.1 da: A 6-byte (destination address) field that specifies a multicast address associated with the stream.

6.1.1.2 sa: A 48-bit (source address) field that specifies the local station sending the frame. The sa field
contains an individual 48-bit MAC address (see 3.11) as specified in 9.2 of IEEE Std 802-2001.

6.1.1.3 protocolType: A 16-bit field contained within the payload. When the value of protocolType is greater
than or equal to 1536 (60016) the protocolType field indicates the nature of the MAC client protocol (type
interpretation), selecting from values designated by the IEEE Type Field Register. When less than 1536
(016 – 5FF16), the protocolType is interpreted as the length of the frame (length interpretation). The length
and type interpretations of this field are mutually exclusive.

6.1.1.4 serviceDataUnit: An m-byte field the contains the service data unit provided by the client.

6.1.1.5 pad: If the sum of the other field lengths is less than 64 bytes, then the number of zero-valued pad
bytes are sufficient to make a 64-byte frame. Otherwise, the pad field is not present.

6.1.1.6 fcs: A 4-byte (frame check sequence) field whose 32-bit CRC covers the frame’s content.

Figure 6.1—ClassA frame formats

6 da

6 sa

2 protocolType

m serviceDataUnit

4 fcs

— Identifies data[n] format and function

— Transmitted information

— Frame check sequence

— Destination MAC address

— Source MAC address

n pad — Pad to the avoid overly small frames
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 59

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6.2 clockSync frame format

6.2.1 clockSync fields

Clock synchronization (clockSync) frames facilitate the synchronization of neighboring clock span-master
and clock span-slave stations. The frame, which is normally sent once each isochronous cycle, includes
time-snapshot information and the identity of the network’s clock master, as illustrated in 6.2. The gray
boxes represent physical layer encapsulation fields that are common across all Ethernet frames.

6.2.1.1 da: A 48-bit (destination address) field that specifies the station(s) for which the frame is intended.
The da field contains either an individual or a group 48-bit MAC address (see 3.11), as specified in 9.2 of
IEEE Std 802-2001.

6.2.1.2 sa: A 48-bit (source address) field that specifies the local station sending the frame. The sa field
contains an individual 48-bit MAC address (see 3.11), as specified in 9.2 of IEEE Std 802-2001.

6.2.1.3 protocolType: A 16-bit field contained within the payload that identifies the format and function of
the following fields (see 6.5.1).

6.2.1.4 subType: A 16-bit field that identifies the format and function of the following fields (see 6.5.2).

6.2.1.5 hopsCount: An 8-bit field that identifies the maximum number of hops between the talker and
associated listeners.

6.2.1.6 syncCount: An 8-bit field that is incremented on each clockSync frame transmission.

Figure 6.2—clockSync frame format

6 da

6 sa

2 protocolType

4 fcs

8 uniqueID — Less-significant grand-master election precedence

8 offsetTime — Offset time within the neighbor

8 lastFlexTime — Incoming link’s frame transmssion time (1 cycle delayed)

8 deltaTime — Outgoing link’s frame propagation time

— Frame check sequence

— More-significant grand-master election precedence

— Destination MAC address

— Source MAC address

1 subType

— Distinguishes RE frames from others (see 6.5.1)

— Distinguishes clockSync from other RE frames (see 6.5.2)

— Incoming link’s frame transmssion time (1 cycle delayed)4 lastBaseTime

— Cumulative rates from the grand-master4 diffRate

2 systemTag

1 hopsCount — Hop count from the grand master

1 syncCount — Sequence number for clockSync frames

1 cycleCount — Cycle count for pacing
Contribution from: dvj@alum.mit.edu.
60 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6.2.1.7 cycleCount: A 7-bit field that equals (cycle%125), where cycle represents units of 125 µs within the
transmitting station’s timeOfDay value.

6.2.1.8 systemTag: A 16-bit field that has highest precedence in the grand-master selection protocols.

6.2.1.9 uniqueID: A 64-bit field that specifies the precedence of the grand clock master, specified in 6.2.3.

6.2.1.10 lastFlexTime: A 64-bit field that specifies the time within the source station when the previous
clockSync frame was transmitted. The format of this field is specified in 6.2.4.

6.2.1.11 deltaTime: A 64-bit field that specifies the differences between clockSync receive and transmit
times, as measured on the opposing link. The format of this field is specified in 6.2.4.

6.2.1.12 offsetTime: A 64-bit field that specifies the offset time within the source station. The format of this
field is specified in 6.2.4.

6.2.1.13 diffRate: A 32-bit field that specifies the diffRate value within the source station.

6.2.1.14 lastBaseTime: A 32-bit field that specifies the timer1 value within the source station when the
previous clockSync frame was transmitted.

6.2.1.15 fcs: A 32-bit (frame check sequence) field that is a cyclic redundancy check (CRC) of the frame.

6.2.2 systemTag subfields

The format of the 16-bit systemTag field is based on the format of the spanning tree protocol precedence
value, as illustrated in Figure 6.3.

6.2.2.1 systemLevel: A 4-bit field that comprise a settable priority component that permits the relative
priority of bridges to be managed.

6.2.2.2 systemNumber: A 12-bit field that comprise a locally assigned system identifier extension.
(The term systemID is equivalent to ‘system ID’, as specified within IEEE Std 802.1D-2004.)

Figure 6.3—systemTag subfields

MSB LSB
systemLevel systemNumber
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 61

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6.2.3 uniqueID fields

The format of the 64-bit uniqueID field is a unique identifier. For stations that have a uniquely assigned
48-bit macAddress, the 64-bit uniqueID field is derived from the 48-bit MAC address, as illustrated in
Figure 6.4.

6.2.3.1 oui: A 24-bit field assigned by the IEEE/RAC (see xx).

6.2.3.2 extension: A 16-bit field assigned to encapsulated EUI-48 values.

6.2.3.3 ouiDependent: A 24-bit field assigned by the owner of the oui field (see xx).

6.2.4 Time field formats

Time-of-day values within a frame are specified by 64-bit values, consistent with IETF specified NTP[B8]
and SNTP[B9] protocols. These 64-bit values consist of two components: a 32-bit seconds and 32-bit
fraction fields, as illustrated in Figure 6.5.

6.2.4.1 seconds: A 32-bit field that specifies time in seconds.

6.2.4.2 fraction: A 32-bit field that specified time offset within the second, in units of 2-32 second.

The concatenation of 32-bit seconds and 32-bit fraction field specifies a 64-bit time value, as specified by
Equation 6.1.

time = seconds + (fraction / 232) (6.1)
Where:

seconds is the most significant component of the time value (see Figure 6.5).
fraction is the less significant component of the time value (see Figure 6.5).

Figure 6.4—uniqueID format

Figure 6.5—Complete seconds timer format

MSB LSBmacAddress

FFFE16

oui ouiDependent

oui ouiDependentextension

seconds fraction

32 bits32 bits

MSB LSB
Contribution from: dvj@alum.mit.edu.
62 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6.3 Subscription frame

6.3.1 Subscription frame fields

Subscription frames contain channel-acquisition information, as illustrated in Figure 6.6.

6.3.1.1 da: A 6-byte (destination address) field that normally specifies the destination address for the frame
transmission, with unicast and multicast forms.

6.3.1.2 sa: A 6-byte (source address) field that normally specifies the source address for the frame
transmission. If a bridge is present between the frame and its associated listener, the sa value identifies the
bridge.

6.3.1.3 protocolType: A 2-byte field that normally specifies the frame length, or the format and function of
the following fields (excluding the 4-byte fcs field). This RE assigned value distinguishes its frame formats
from others (see 6.5.1).

6.3.1.4 subType: A 1-byte field that distinguishes the ResponseError frame from other frames defined
within this working paper.

6.3.1.5 count: A 1-byte field that specifies the number of elements within the following info-block array.

6.3.1.6 info: A 24-byte array element that provides listener subscription information (see 6.4).

6.3.1.7 pad: If the sum of the other field lengths is less than 64 bytes, then the number of zero-valued pad
bytes are sufficient to make a 64-byte frame. Otherwise, the pad field is not present.

6.3.1.8 fcs: The 4-byte (frame check sequence) field whose 32-bit CRC covers the frame’s content. For RE
content frames, the standard definition applies.

Figure 6.6—Subscription frame format

6

6

da

sa

— The station(s) receiving the frame (48-bit destination address)

— The station sending the frame (48-bit source station address)

protocolType2

fcs4

subType1

— The 32-bit CRC for preceding fields

n pad — Pad to the avoid overly small frames

24 info[0]

24 info[1]

24 info[count–1]

24 (…)

count1

– Stream information blocks (see 6.4)

— Distinguishes RE frames from others (see 6.5.1)

— Distinguishes RequestRefresh from other RE frames (see 6.5.2)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 63

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6.4 Common info field format

Many frame transports an array of one or more info[] fields, whose content is illustrated in Figure 6.7.

6.4.1 command: A 2-byte field that differentiates between database-update actions.

6.4.2 talkerID: A 6-byte field that identifies the stream’s talker.

6.4.3 plugID: A 16-bit field that specifies the plug identifier within the talker.

The concatenation of the 48-bit talkerID and 16-bit plugID fields forms a 64-bit streamID that uniquely
identifies the classA multicast stream.

6.4.4 mcastID: A 6-byte (multicast identifier) field that routes frames betwee the talker and audience.

6.4.5 maxCycles: A 2-byte field that is updated by bridges, as the RequestRefresh flows from the talker to
the listener, allowing the maximum number of delay cycles between the talker and listener stations to be
known to the talker.

6.4.6 maxBw: A 4-byte field that specifies the level of negotiated classA bandwidth, measured in bytes of
per-cycle content.

6.4.7 reserved: A 2-byte zero-valued field that is ignored.

Figure 6.7—Common info field format

maxCycles2 — Delay from the talker

maxBw4 — Maximum required bandwidth

reserved2 — Reserved

6 mcastID — Multicast destination label

6 talkerID — Multicast talker identifier

plugID2 — Resource within the talker

command2 — Database action command
Contribution from: dvj@alum.mit.edu.
64 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6.5 Unique identifier values

6.5.1 protocolType identifier

The clockSync (see 6.2) and subscription (see 6.3) frames are distinguished from other frames by their
16-bit distinct protocolType value, as illustrated in Figure 6.8. The following 1-byte subType field further
distinguishes between these uses (see 6.5.2).

6.5.2 subType identifier

Distinct subType identifiers distinguish between RE frame types, as specified by Table 6.1.

NOTE—The following protocolType-assignment text will ultimately be updated with assigned values.

Figure 6.8—protocolType field value

Table 6.1 — Assigned subType identifiers

Value Name

R
ow See Description

TBD CLOCK_SYNC 1 6.2 Demarcates boundaries between isochronous cycles.

192-255 E1394 2 C.2.2 Encapsulated IEEE 1394 packet (or portion of 1394 packet)

6 da

6 sa

2 protocolType

4 fcs

— Identifies content format

n serviceDataUnit — protocolType dependent

— Frame check sequence

— Destination MAC address

— Source MAC address

Assigned protocolType value:
QR-ST

subType
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 65

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7. Clock synchronization

7.1 Clock-synchronization overview

7.1.1 Clock synchronization services

Clock synchronization involves the transmission and reception of clockSync frames interchanged between
adjacent-span stations, using the state machines defined within this clause. When considered as a whole,
these provide the following services:

a) Election. The grand clock master is elected from among the grand-clock-master capable stations.

b) Isolation. Timeouts identify the boundaries, beyond which RE services are not supported.

c) Clock-sync. Clock-slave stations are synchronized to the grand master station’s time reference.

7.1.2 Grand-master precedence

Grand-master precedence is based on the concatenation of multiple fields, as illustrated in Figure 7.1. The
portTag value is used within bridges, but is not transmitted between stations.

Figure 7.1—Grand-master precedence

MSB
systemTag uniqueID hops portTag

LSB

sLevel systemNumber pLevel portNumber

Legend:
sLevel: systemLevel hops: hopsCount pLevel: portLevel
Contribution from: dvj@alum.mit.edu.
66 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.1.3 Clock-synchronization agents

Clock-synchronization information conceptually flows from a grand-master station to clock-slave stations,
as illustrated in Figure 7.2a. A more detailed illustration shows pairs of synchronized clock-master and
clock-slave components, as illustrated in Figure 7.2b.

7.1.4 Clock-synchronized pairs

Each bridge port provides clock-master and clock-slave agents, although both are never simultaneously
active. External communications (see 7.2b) synchronize clock-slaves to clock-masters, as listed in Table 7.1.

Figure 7.2—Hierarchical flows

Table 7.1—External clock-synchronization pairs

Grand master Clock master
agent

Clock slave
agent Clock slave Type of

synchronization

d1 – c1 – Station-to-bridge

– c0 b1 – Bridge-to-bridge

– c3 e1 –

– b0 – a0 Bridge-to-station

– b2 – a2

– b3 – a3

– c2 – d2

– e0 – f0

– e2 – f2

– e3 – f3

b0

b1

c0 c1 c2 c3

e0

e1

e2

S

S
e3

S

a) Clock synchronization flow

Legend:
grand-master clock slave
streaming data

G

G S

b2

b3

SS

S

S

b) Agents along the synchronization path

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b3 e3

e0

e1

e2

Legend:
grand master slave station
master agent slave agent
internal coupling clock-synch flow

b2
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 67

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Internal communications distribute synchronized time from clock-slave agents b1, c1, and e1 to the other
clock-master agents on bridgeB, bridgeC, and bridgeE respectively. However, bridge-internal port-to-port
synchronization protocols are implementation-dependent and beyond the scope of this working paper.

Within a clock-slave, precise time synchronization involves adjustments of timer offset and rate values. The
adjustments of the timer’s offset is called offset synchronization (see 7.1.6); the adjustments of the timer’s
rate is called rate synchronization (see 7.1.8). Both involve calibration of local clock-master/clock-slave dif-
ferences and the propagation of cumulative differences in the clock-slave direction, as described by the C
code of Annex J.

Time synchronization yields distributed but closely-matched timeOfDay values within stations and bridges.
No attempt is made to eliminate intermediate jitter with bridge-resident jitter-reducing phase-lock loops
(PLLs,) but application-level phase locked loops (not illustrated) are expected to filter high-frequency jitter
from the supplied timeOfDay values

7.1.5 Clock-synchronization intervals

Clock synchronization involves the processing of periodic events. Three distinct time periods are involved,
as listed in Table 7.2. The clock-period events trigger the update of free-running timer values; the period
affects the timer-synchronization accuracy and is therefore constrained to be small.

The send-period events trigger the interchange of clockSync frames between adjacent stations. While a
smaller period (1 ms or 100 µs) could improve accuracies, the larger value is intended to reduce costs by
allowing computations to be executed by inexpensive (but possibly slow) bridge-resident firmware.

The slow-period events trigger the computation of timer-rate differences. The timer-rate differences are
computed over two slow-period intervals, but recomputed every slow-period interval. The larger 100 ms (as
opposed to 10 ms) computation interval is intended to reduce errors associated with sampling of
clock-period-quantized slow-period-sized time intervals.

Table 7.2—Clock-synchronization intervals

Name Time Description

clock-period < 20 ns Time between timer-register value updates

send-period 10 ms Time between sending of periodic clockSync frames between adjacent stations

slow-period 100 ms Time between computation of clock-master/clock-slave rate differences
Contribution from: dvj@alum.mit.edu.
68 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.1.6 Offset synchronization

Offset synchronization involves a subset of the time-synchronization components, as illustrated by
white-colored boxes in Figure 7.5. Each clock consists of a progressing timeOfDay value, whose offset and
rate are periodically adjusted. The free-running flexTimer timer is never reset; synchronization of stationE
(with respect to stationD) is accomplished by adjustments to the flexOffset and flexRate values within
stationE.

The offset-synchronization protocols interchange parameters periodically, possibly every 10 ms. The
lastFlexTime, deltaTime, and offsetTime values are sent periodically from the clock-master to the
clock-slave. The lastFlexTime is sent periodically from the clock-slave to the clock-master, providing
information necessary for the clock-master to produce a deltaTime value for the clock-slave.

The offset-compensation protocols for stationE adjust its myOffset value so that the instantaneous values of
stationE.timeOfDay and stationD.timerOfDay are the same. Computations are performed on clockStrobe
reception and clockStrobe transmission.

As an option, an additional linkOffset value is available to manually compensate for mismatched
transmit-link/receive-link duplex-cable delays on the clock-master side. The linkOffset value is expected be
manually set when the cable mismatch is known through other mechanisms, such as specialized cable-char-
acterization equipment.

The station’s offsetTime value is constructed by adding the received clockStrobe.offsetTime, local myOffset,
and local linkOffset values. This revised clockStrobe.offsetTime value is used within each station and is
passed to the downstream neighbor (when such a neighbor is present).

Figure 7.3—Offset synchronization

flexTimer

flexAdd

offsetAdd

timeOfDay

stationD

lastFlexTime
deltaTime
offsetTime

lastFlexTime

flexRate

myOffset

addition2coffsetTime

rateAdd

diffAdd
baseRate

Legend:
clock-period offset-synchronization entity send-period active-synchronization entity
clock-period rate-synchronization entity send-period passive-synchronization entity
clock-period communication path send-period communication path

myDiffRate

diffRate

multiply

clock-master clock-slave stationE

flexTimer

flexAdd

offsetAdd

timeOfDay

flexRate

addition2coffsetTime

rateAdd

diffAdd
baseRate

myDiffRate

diffRate

linkOffset myOffset linkOffset

flexOffsetflexOffset

multiply

baseTimer

baseAdd

baseTimer

baseAdd
clock clock
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 69

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.1.7 Cascaded offsets

The concept of cascaded offset values can be better understood by considering a simple 3-bridge example, as
illustrated in Figure 7.4. The slave-agent in bridgeB is synchronized to its neighbor grand-master via
clockSync frames sent on the connecting bidirectional span. Within bridgeB, the clock-slave agent passes
the time directly to the clock-master agent. The slave-agent in bridgeC is synchronized to its neighbor
clock-master via clockSync frames sent on the connecting bidirectional span. Other ports are similarly syn-
chronized, thus synchronizing the right-most clock-slave station to the left-most grand-master station.

To simplify this illustration, consider only the seconds portion of the flexTimer value within each station or
bridge. These values may differ dramatically, based (perhaps) on the power-cycling or topology formation
sequence. Thus, the grand-master could have a flexTimer value of 100 while its bridgeB neighbor has a
flexTimer value of 500.

The myOffset value within bridgeB will converges to the value of −400, representing the differences
between grand-master and bridgeB flexTimer values. The flexOffset value received from the grand-master is
added to this myOffset value, so that bridgeB’s flexOffset becomes −390. The flexTimer and flexOffset values
are added, to yield a resultant bridgeB timeOfDay value of 110, properly synchronized to the identical
grand-master’s value.

Similarly, bridgeC is synchronized to bridgeB, bridgeD to bridgeC, and the clock-slave to bridgeD.

Parameter

name grand-master bridgeB bridgeC bridgeD clock-slave

number 1 2 3 4 5

flexTimer 100 500 -300 200 400

myOffset 10 -400 800 -500 -200

flexOffset 10 -390 410 -90 -290

timeOfDay 110

Representing:
 myOffset[k+1] = flexTimer[k]−flexTimer[k+1];
 flexOffset[k+1] = flexOffset[k]+myOffset[k+1];
 timeOfDay[k] = flexTimer[k] + flexOffset[k];

Figure 7.4—Cascaded offsets (a possible scenario)
Contribution from: dvj@alum.mit.edu.
70 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.1.8 Rate synchronization

Rate synchronization involves a subset of the time-synchronization components, as illustrated by
white-colored boxes in Figure 7.5. The free-running baseTimer timer facilitate the determination of rate
differences between the clock-master and clock-slave stations.

The rate-synchronization protocols interchange parameters periodically, but less frequently than the
offset-synchronization protocols, possibly every 100 ms. The lastBaseTime value is sent periodically from
the clock-master to the clock-slave. Nothing is returned from the clock-slave station.

The rate-compensation protocols for stationE adjust its myDiffRate value to accommodate for differences
between the stationD.baseTimer and stationE.baseTimer rates. Computations are performed on clockStrobe
reception and clockStrobe transmission.

The station’s diffRate value is constructed by adding the received clockStrobe.diffRate and local myDiffRate
values. This revised clockStrobe.diffRate value is used within each station and is passed to the clock-slave
side neighboring station (if present).

Figure 7.5—Rate synchronization

Legend:
clock-period offset-synchronization entity send-period active-synchronization entity
clock-period rate-synchronization entity send-period passive-synchronization entity
clock-period communication path send-period communication path

flexTimer

flexAdd

offsetAdd

timeOfDay

flexOffset

baseTimer

baseAdd

stationD

lastBaseTime

flexRate

addition2coffsetTime

rateAdd

diffAdd
baseRate

myDiffRate

diffRate

clock-master clock-slave stationE

flexTimer

flexAdd

offsetAdd

timeOfDay

flexRate

addition2coffsetTime

rateAdd

addition2c

myDiffRate

diffRate

myOffset linkOffset myOffset linkOffset

baseRate

flexOffset

multiplymultiply

baseTimer

baseAdd
clockclock
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 71

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.1.9 Cascaded rate differences

The concept of cascaded rate values can be better understood by considering a simple 3-bridge example, as
illustrated in Figure 7.6. Within this figure, the myDiffRateN and diffRateN represent parts-per-million
(PPM) normalized values of myDiffRate and diffRate respectively.

The slave-agent in bridgeB is synchronized to its neighbor grand-master via clockSync frames sent on the
connecting bidirectional span. Within bridgeB, the clock-slave agent passes the time directly to the
clock-master agent. The slave-agent in bridgeC is synchronized to its neighbor clock-master via clockSync
frames sent on the connecting bidirectional span. Other ports are similarly synchronized, thus synchronizing
the right-most clock-slave station to the left-most grand-master station.

To simplify this illustration, consider only the parts-per-million (PPM) normalized rate values within each
station or bridge. These values may differ significant, based (perhaps) on the nominal value or ambient tem-
perature. Thus, the grand-master could have a crystal deviation of +10 while its bridgeB neighbor has a
crystal deviation of +100.

The myDiffRate value within bridgeB will converges to the value of −90 PPM, representing the differences
between grand-master and bridgeB crystal accuracies. The diffRate value received from the grand-master is
added to the myDiffRate value, so that bridgeB’s diffRate becomes −90 PPM. The diffRate and crystal devia-
tion values are additive, yielding a resultant bridgeB flexTimer deviation of 10 PPM, properly synchronized
to the identical grand-master’s value.

Similarly, the rate of bridgeC is synchronized to bridgeB, bridgeD to bridgeC, and the clock-slave to
bridgeD.

Parameter

name grand-master bridgeB bridgeC bridgeD clock-slave

number 1 2 3 4 5

crystal deviation +10 PPM +100 PPM −100 PPM −75 PPM +75 PPM

myDiffRateN 0 PPM −90 PPM 200 PPM −25 PPM −150 PPM

diffRateN 0 PPM −90 PPM 110 PPM +85 PPM −65 PPM

flexTimer
deviation

10 PPM

Representing:
 myDiffRateN[k+1] = flexRate[k]−flexRate[k+1];
 diffRate[k+1] = diffRate[k]+myDiffRate[k+1];
 flexTimerDeviation[k] = crystalDeviation[k] + diffRate[k];

Figure 7.6—Cascaded rate differences (a possible scenario)
Contribution from: dvj@alum.mit.edu.
72 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.1.10 Rate-difference effects

If the absence of rate adjustments, significant timeOfDay errors can accumulate between send-period
updates, as illustrated on the left side of Figure 7.7. The 2 ms deviation is due to the cumulative effect of
clock drift, over the 10 ms send-period interval, assuming clock-master and clock-slave crystal deviations of
−100 PPM and +100 PPM respectively.

While this regular sawtooth is illustrated as a highly regular (and thus perhaps easily filtered) function,
irregularities could be introduced by changes in the relative ordering of clock-master and clock-slave trans-
missions, or transmission delays invoked by asynchronous frame transmissions. Tracking peaks/valleys or
filtering such irregular functions are thought unlikely to yield similar timeOfDay deviation reductions.

The differences in rates could easily be reduced to less than 1 PPM, assuming a 200 ms measurement inter-
val (based on a 100 ms slow-period interval) and a 100 ns arrival/departure sampling error. A clock-rate
adjustment at time 100 ms could thus reduce the clock-drift related errors to less than 5 ns. At this point, the
timer-offset measurement errors (not clock-drift induced errors) dominate the clock-synchronization error
contributions.

Figure 7.7—Rate-adjustment effects

timeOfDay
deviation

time

2 µs

5 ns

70 ms 80 ms 90 ms 100 ms 110 ms 120 ms 130 ms60 ms
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 73

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.1.11 flexTimer implementation example

The selection of the best time-of-day format is oftentimes complicated by the desire to equate the clock for-
mat granularity with the granularity of the implementation’s ‘natural’ clock frequency. Unfortunately, the
‘natural’ frequency within a multimodal {1394, 802-100Mb/s, 802.3 1Gb/s} implementation is uncertain,
and may vary based on vendors and/or implementation technologies.

The difficulties of selecting a ‘natural’ clock-frequency can be avoided by realizing that any clock with suf-
ficiently fine resolution is acceptable. Flexibility involves using the most-convenient clock-tick value, but
adjusting the timer advance rate associated with each clock-tick occurrence.

The same mechanism easily supports both near-arbitrary clocking rates and fine-grained rate-adjustments,
needed to support timer-synchronization protocols, as illustrated in Figure 7.8. Within this figure, the shaded
bytes represent values that can safely be hardwired to zero with insignificant loss of accuracy.

This illustration is not intended to constrain implementations, but to illustrate how the system’s clock and
timer formats can be optimized independently. This allows the timeOfDay timer format to be based on
arithmetic convenience, timing precision, and years-before-overflow characteristics (see Annex E).

Figure 7.8—flexTimer implementation example

128-bit addition

superSeconds seconds

64-bit addition

flexAdd

flexTimer

offsetAdd

myOffsetseconds fraction

timeOfDay

fraction subFraction

fraction subFraction flexRate
0000 0000 0000 0000 16
Contribution from: dvj@alum.mit.edu.
74 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.1.12 An alternative baseTimer implementation

An alternative implementation could implement the baseTimer-related circuitry in hardware. For such
implementations, the associated firmware can be simplified, since the multiplies are eliminated from the
most frequently executed loop (see Annex J).

A possible baseTimer hardware implementation is much simpler than the fully adjustable timer implementa-
tion, due to the absence of offset-compensation, rate-compensation, and seconds-accumulation hardware, as
illustrated in Figure 7.9. Within this figure, the shaded bytes represent values that can safely be hardwired to
zero with insignificant loss of accuracy.

7.2 Terminology and variables

7.2.1 Common state machine definitions

The following state machine inputs are used multiple times within this clause.

CYCLES
The number of isochronous cycles within each second; defined to be 8,000.

NULL
Indicates the absence of a value and (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared queue structures.

Q_CRX_SYNC—The identifier associated with the received clockSync frames.
Q_CTX_SYNC—The identifier associated with the transmitted clockSync frames.
Q_ARX_REQ*—The identifier associated with the received subscription request frames.
Q_ATX_REQ*—The identifier associated with the transmitted subscription request frames.
Q_ATX_RES*—The identifier associated with the transmitted ResponseError frames.
Q_ARX_STR*—The identifier associated with the talker agent’s streaming input.
Q_ATX_STR*—The identifier associated with the talker agent’s streaming output.

NOTE—Those queue identifiers with an ‘*’ are used in other clauses, but are described above. This allows all queue
identification values in one location, rather than interleaving their definitions throughout this working paper.

Figure 7.9—baseTimer implementation example

64-bit addition baseAdd

baseTimerfraction subFraction

fraction subFraction baseRate
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 75

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.2.2 Common state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.

currentTime
A value representing the current time.

7.2.3 Common state machine routines

ClockSyncArrived(stationInfoPtr, portInfoPtr)
Snapshots the clockSync frame arrival time, on specified station and port (see Annex J).

ClockSyncDeparted(stationInfoPtr, portInfoPtr)
Snapshots the clockSync frame departure time, on specified station and port (see Annex J).

ClockSyncTransmit(stationInfoPtr, portInfoPtr, clockSyncPtr)
Forms a clockSync frame for transmission (see Annex J).

ClockSyncReceive(stationInfoPtr, portInfoPtr, clockSyncPtr, rateAdjust)
Processes a clockSync frame after reception (see Annex J).

Dequeue(queue)
Returns the next available frame from the specified queue.

frame—The next available frame.
NULL—No frame available.

Enqueue(queue, frame)
Places the frame at the tail of the specified queue.

Min(value1, value2)
Returns the numerically smaller of two values.

QueueEmpty(queue)
Indicates when the queue has emptied.

TRUE—The queue has emptied.
FALSE—(Otherwise.)

TimerTick(stationInfoPtr)
Updates flexTimer (and baseTimer) entities on each clock tick (see Annex J).

7.2.4 Variables and literals defined in other clauses

This clause references the following parameters, literals, and variables defined in Clause TBD:

TBDs

7.3 Clock synchronization state machines

7.3.1 ClockCore state machine

7.3.1.1 ClockCore state machine definitions

The following state machine inputs are used multiple times within this clause:

None.

7.3.1.2 ClockCore state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.
Contribution from: dvj@alum.mit.edu.
76 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
clockPeriod
The duration of a synchronized timer update interval.

clockPeriod < 20 ns
currentTime

See 7.2.2.
clockDeviation

The deviation from nominal frequency of the station-local crystal-stabilized clock.
msCount

A count that is incremented at the end of each 1 millisecond interval.
msTime

The start time of the current 1 millisecond timing interval.
nominalFrequency

The nominal frequency of the station-local crystal-stabilized clock.
tickTime

A time snapshot taken at the start of each clockPeriod interval.

7.3.1.3 ClockCore state machine routines

TimerTick(stationInfoPtr)
See 7.2.3.

7.3.1.4 ClockCore state table

The ClockAgent state machine calls other C-code routines, as specified in Table 7.3. A purpose of the
ClockAgent state machine is to ensure correctness of the other routines, by ensuring their indivisible
executions. The notation used in the state table is described in 3.4.

Row 7.3-1: Compute the clockPeriod, based on the nominal frequency and deviation.

Row 7.3-2: Update the flexTimer and baseTimer once every clockPeriod interval.
Row 7.3-3: Update the millisecond counter once every millisecond.
Row 7.3-4: Otherwise, no operations are performed.

Table 7.3 — ClockCore state table

Current

R
ow

Next

state condition action state

START — 1 clockPeriod =
 1.0 / (nominalFrequency *
 (1.0 + (deviation / 1000000.)))

START

FIRST (currentTime − tickTime) >= clockPeriod 2 TimerTick(siPtr);
tickTime = currentTime;

FIRST

(currentTime − msTime) >= .001 3 msTime = currentTime;
msCount += 1;

— 4 —
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 77

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.3.2 ClockPort state machine

7.3.2.1 ClockPort state machine definitions

The following state machine inputs are used multiple times within this clause.

None.

7.3.2.2 ClockPort state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.

frame
The contents of a clockSync frame.

lastInterval
A saved value of rateInterval, when the last rate-interval update was scheduled to occur.

rateInterval
A counter that increments on transitions of 100 ms rate-update intervals.

rateCount
A milliseconds-snapshot taken during the clockSync receive processing.
The rateCount value paces the relatively infrequent rate-update computations.

rxClockLast
The previously observed value of rxClockSync, used to detect changes in this toggling value.

rxClockSync
An indication whose value is toggled on the PHY-sensed arrival of each clockSync frame.
This value is toggled before a frame can be dequeued from the Q_CRX_SYNC queue.

rxCount
A milliseconds-snapshot taken during clockSync receive processing.
The rxCount value paces the detection of clockSync-silence timeouts.

sendCount
A milliseconds-snapshot taken during the clockSync transmission processing.
The sendCount value paces the normal clockSync frame transmissions.

selectCount
A value that tracks siPtr−>selectCount, to facilitate detection of station-precedence changes.

sinkCount
A milliseconds-snapshot taken during the clockSync reception and timeout processing.
The sinkCount value paces the infrequent clockSync-reception timeout processing.

txClockSync
An indication whose value is toggled on the PHY-sensed departure of each clockSync frame.
This value is toggled shortly after a frame has departed from the Q_CTX_SYNC queue.

txClockLast
The previously observed value of txClockSync, used to detect changes in this toggling value.

7.3.2.3 ClockPort state machine routines

ClockSyncArrived(stationInfoPtr, portInfoPtr)
ClockSyncDeparted(stationInfoPtr, portInfoPtr)
ClockSyncTransmit(stationInfoPtr, portInfoPtr, clockSyncPtr)
ClockSyncReceive(stationInfoPtr, portInfoPtr, clockSyncPtr, rateAdjust)
ClockSyncTransmit(stationInfoPtr, portInfoPtr, clockSyncPtr)

See 7.2.3.
Dequeue(queue)
Enqueue(queue, frame)

See 7.2.3.
Contribution from: dvj@alum.mit.edu.
78 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7.3.2.4 ClockPort state table

The ClockPort state machine calls other C-code routines, as specified in Table 7.4. A purpose of the
ClockPort state machine is to ensure correctness of the other routines, by ensuring their timely and
indivisible executions. The notation used in the state table is described in 3.4.

Row 7.3-1: When a clock-sync frame arrives, mark its arrival time and process.
Row 7.3-2: Process the PHY-generated signal to determine when the clockSync frame arrived.
Row 7.3-3: Process the PHY-generated signal to determine when the clockSync frame departed.
Row 7.3-4: Transmit quickly when the grand-master selection is changing.
Row 7.3-5: Transmit routinely when the grand-master selection has stabilized.
Row 7.3-6: Trigger the rate adjustments on approximate 100 ms intervals.
Row 7.3-7: A port timeout occurs in the continued absence of clockSync frame arrivals.
Row 7.3-8: Otherwise, wait for the next event to occur.

Row 7.3-9: Restart the rate interval condition after the last rate-measurement completion.
Row 7.3-10: Otherwise, process the received clockSync frame without rate-interval measurements.

Row 7.3-11: Restart the receive-timeout counter after processing each clockSync frame.

Table 7.4 — ClockPort state table

Current

R
ow

Next

state condition action state

START (frame = Dequeue(Q_CRX_SYNC))
!= NULL

1 rxCount = sendCount; NEAR

rxClockSync != rxClockLast 2 ClockSyncArrived(siPtr, piPtr);
rxClockLast = rxClockSync

START

txClockSync != txClockLast 3 ClockSyncDeparted(siPtr, piPtr);
txClockLast = txClockSync

selectCount != siPtr−>selectCount
&& (msCount − sendCount) >= 1

4 selectCount = siPtr−>selectCount;
sendCount = siPtr−>msCount;
ClockSyncTransmit(siPtr, piPtr, &frame);
Enqueue(Q_CTX_SYNC, frame);(siPtr−>msCount − sendCount) >= 10 5

(siPtr−>msCount − rateCount) >= 100 6 rateInterval + = 1;

(siPtr−>msCount − sinkCount) >= 50 7 ClockSyncReceive(siPtr, piPtr,NULL, 0);
sinkCount = siPtr−>msCount;

— 8 —

NEAR lastInterval != rateInterval 9 ClockSyncReceive(siPtr, piPtr, &frame, 1);
lastInterval = rateInterval;

FINAL

— 10 ClockSyncReceive(siPtr, piPtr, &frame, 0);

FINAL — 11 rxCount = sinkCount = siPtr−>msCount; START
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 79

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8. Subscription state machines

Subscription state machines are responsible for performing talker-agent and listener-agent duties.

8.1 Terminology and variables

8.1.1 Common state machine definitions

The following state machine definitions are used multiple times within this clause.

NULL
Indicates the absence of a value and (by design) cannot be confused with a valid value.

subtype specifiers
ST_ERROR—A control response that provides an SRP refresh-operation error indication.
ST_FRESH—A control request that provides blocks of SRP refresh parameters.
ST_LEAVE—A control request that provides a block of SRP leave parameters.

8.1.2 Common state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.

localTimer
A 64-bit timer representing the current 64-bit internal free-running time-of-day value.

myMacAddress
MAC address of the bridge.

refreshFlag
A variable that is toggled periodically; each change activates refresh interval activities.

srpState
The information associated with an element of talker-agent state. This includes:

maxBw—The maximum bandwidth of the associated stream.
maxCycles—The maximum cycles to the attached listener.
refreshTime—The time of the last observed RequestRefresh frame.
srcPortID—The port identifier of the assumed source.
srcMac—The address of the downstream bridge.
state—The connectivity state, one of the following:

IS_JOINING—Stream communications are now using this path.
IS_LEAVING—Stream communication are no longer using this path.
IS_FAILED—Stream communications have failed; message must be sent.
IS_ACTIVE—Stream communications remain active.
IS_PASSIVE—The SRP state is queued for deletion, behaving as though nonexistent.

streamTime—The time of the last observed stream flow.
streamID—The streamID of the associated stream.
subCode—The error subcode associated with the IS_FAILED state.

NOTE—This clause should be skipped on the first reading (continue with Annex B).
The following state machines were previously highly preliminary and subject to change.
They have not yet been updated to track on recent changes to the SRP, so they are also obsolete.
Thus, the structure and formatting is useful but the details should be ignored.
Contribution from: dvj@alum.mit.edu.
80 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8.1.3 Common state machine routines

StateSearch(streamID)
Returns the talker-state information associated with the specified stream value.

srpState—matching talker-agent state
NULL—no matching state found

8.1.4 Variables and literals defined in other clauses

This clause references the following parameters, literals, and variables defined in Clause 7

Dequeue(queue)
Enqueue(queue, frame)
localTimer
Q_ARX_REQ
Q_ATX_REQ
Q_ARX_STR
Q_ATX_STR
Q_ATX_RES

8.2 Subscription state machines

8.2.1 AgentAction state machine

The AgentAction state machine controls the sequencing of AgentTalker, AgentTimer, and AgentListener
state machines. There are multiple instances of these state machine, one per bridge port, each of which is
invoked. A refresh flag is also complemented at a regular interval.

The following subclauses describe parameters used within the context of this state machine.

8.2.1.1 AgentAction state machine definitions

–none–

8.2.1.2 AgentAction state machine variables

localTimer
refreshFlag

See 8.1.2.
refreshTime

The time when the last refresh was performed.
refreshTimeout

The time interval between successive refresh operations.

8.2.1.3 AgentAction state machine routines

AgentListeners()
A routine that calls all of the AgentListener state machines (one for each bridge port).

AgentTalkers()
A routine that calls all of the AgentTalker state machines (one for each bridge port).

AgentTimers()
A routine that calls all of the AgentTimer state machines (one for each bridge port).
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 81

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8.2.1.4 AgentAction state table

The AgentAction state machine is specified in Table 8.1.

Row 8.1-1: Execute each of the AgentTalker, AgentTimer, and AgentListener state machines.

Row 8.1-2: Complement the refresh flag at the end of each refresh interval.
Row 8.1-3: Otherwise, wait until the arrival of the next refresh interval.

8.2.2 AgentTalker state machine

The AgentTalker state machine monitors received RequestRefresh and RequestLeave frames. There are
multiple AgentTalker state machines per bridge, one for each of the bridge ports.

The following subclauses describe parameters used within the context of this state machine.

8.2.2.1 AgentTalker state machine definitions

IS_FAILED
IS_JOINING
IS_LEAVING

See 8.1.2.
NULL

Indicates the absence of a value and (by design) cannot be confused with a valid value.
Q_ARX_REQ
Q_ARX_STR
Q_ATX_STR

See 8.1.4.
ST_REFRESH
ST_LEAVE

See 8.1.1.
subCode field values

SC_DA_LOST—No route to the specified destination is present.
SC_DA_MINE—The route to the specified destination loops back.
SC_BAD_HERE—This port’s SRP state has different parameters than the refresh request.
SC_BW_LIMIT—The requested stream bandwidth would exceed 75% of the link capacity.
SC_BAD_THERE—Another port’s SRP state has different parameters than the refresh request.
SC_UP_FULL—The associated listener port has insufficient space to support the refresh request.

Table 8.1 — AgentAction state table

Current

R
ow

Next

state condition action state

START — 1 AgentTalkers();
AgentTimers();
AgentListeners();

LOOP

TIMER (localTimer – refreshTime)
 >= refreshTimeout

2 refreshTime = localTimer;
refreshFlag ^= 1;

FINAL

— 3 —
Contribution from: dvj@alum.mit.edu.
82 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8.2.2.2 AgentTalker state machine variables

block
A data structure representing the contents of a RequestRefresh info block.

frame
The received RequestRefresh/RequestLeave control frame (see 6.3).

linkCapacity
A variable representing the operational bandwidth of the link.
(This can be affected by autonegotiation protocols and capabilities of the span partners.)

localTimer
See 8.1.4.

matching
A variable representing the presence of matching SRP state within another talker-agent port.

myMacAddress
See 8.1.2.

oldState
The information associated with a closely matching element of another talker-agent state.

refreshTime
A variable representing the arrival time of the preceding RequestRefresh message.

srpState
See 8.1.2.

tstState
The information associated with a closely matching element of this talker-agent state.

stream
A variable representing a stream identifier.

8.2.2.3 AgentTalker state machine routines

Dequeue(queue)
See 8.1.4.

FullSearch(srpState, info)
Searches through other talker agents searching for an entry with matching info parameters.
The search starts at the srpState-specified entry and returns each matching entry at most once.
The search ignores the srpState entries with a phase of IS_FAILED or IS_PASSIVE.

tstState—Another talker agent has the same streamID and matching state.
NONE—Another talker agent has the same streamID, but different state.
NULL—No more other-talker agents have the same streamID.

InfoSelect(frame, i)
Returns the streamID-specified information block within the RequestRefresh frame.

info—selected frame parameters
NULL—no matching parameters found

LinkBandwidth()
Returns the cumulative link bandwidth associated with the talker agent.
(This excludes bandwidths associated with entries in the IS_FAILED phase.)

ListenerListing(srpState)
Publishes the srpState information in the associated listener agent registry.

srpState—Completes sucessfully.
NULL—(Otherwise).

SrcRoute(da)
Returns the port identifier passed through when routed to the da-specified MAC.

positive—matching portID value
negative—no matching port found

StateSearch(streamID)
See 8.1.3.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 83

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
StateForm(streamID, bandwidth)
Allocates and initializes the talker-state information associated with the argument values.

srpState—matching talker-agent state
NULL—no state-space available

8.2.2.4 AgentTalker state table

The AgentTalker state machine is responsible for establishing and demolishing paths, as specified in
Table 8.2. In the case of any ambiguity between the text and the state machine, the state machine shall take
precedence. The notation used in the state table is described in 3.4.

Table 8.2 — AgentTalker state table

Current

R
ow

Next

state condition action state

START (frame = Dequeue(Q_ARX_REQ))
 != NULL

1 — PARSE

— 2 — RETURN

PARSE frame.subtype = = ST_FRESH 3 info = NULL; LOOP

frame.subtype = = ST_LEAVE 4 tstState = StateSearch(
 (info.talkerID<<16) | info.portID);

LEAVE

— 5 — RETURN

LOOP (info = InfoSelect(frame, info))
 != NULL

6 tstState = StateSearch(
 (info.talkerID<<16) | info.portID);

TEST

— 7 — RETURN

TEST tstState = = NULL 8 — FORM

tstState.phase = = IS_FAILED 9 — LOOP

tstState.mcastID ! = block.mcastID 10 — FORM

tstState.maxCycles ! = block.maxCycles 11

tstState.maxBw ! = block.maxBw 12

tstState.phase = = IS_LEAVING 13 tstState.phase = IS_ACTIVE POKE

— 14 —

POKE — 15 tstState.refreshTime = localTimer; LOOP

FORM (srpState = StateForm()) != NULL 16 srpState.mcastID = info. mcastID;
srpState.talkerID = info.talkerID;
srpState.plugID = info.plugID;
srpState.maxCycle = info.maxCycles;
srpState.maxBw = info.maxBw;
oldState = FullSearch(NULL, info);

CHECK

— 17 — LOOP
Contribution from: dvj@alum.mit.edu.
84 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Row 8.2-1: Dequeue a received subscription-request message, if available.
Row 8.2-2: Otherwise, wait for the next subscription-request message.

Row 8.2-3: Process received RequestRefresh messages.
Row 8.2-4: Process received RequestLeave messages.
Row 8.2-5: Discard unrecognized refresh messages.

Row 8.2-6: Find state associated with the selected blocks within the RequestRefresh messages.
Row 8.2-7: Stop processing after the last RequestRefresh block has been processed.

Row 8.2-8: If a matching entry cannot be found, a new one must be formed.
Row 8.2-9: The refresh is ignored while the matching entry is dedicated to error reporting.
Row 8.2-10: If the matching entry has a distinct multicast identifier, the refresh is erroneous.
Row 8.2-11: If the matching entry has a distinct maxCycles count, the refresh is erroneous.
Row 8.2-12: If the matching entry has a distinct maximum bandwidth, the refresh is erroneous
Row 8.2-13: If the state was leaving, it changes to active.
Row 8.2-14: Otherwise, the state (joining or active) remains unchanged.

CHECK tstState != NULL 18 srpState.subCode = SC_BAD_HERE; NACK

port < 0 19 srpState.subCode = SC_DA_NONE;

port = = myPortID 20 srpState.subCode = SC_DA_MINE;

LinkBandwidth() > 0.75 * linkCapacity 21 srpState.subCode = SC_BW_LIMIT;

oldState = = DIFF 22 srpState.subCode = SC_BAD_THERE

— 23 srpState.refreshTime = localTimer;
srpState.streamTime = localTimer;

PEEK

NACK — 24 srpState.phase = IS_FAILED LOOP

PEEK oldState ! = NULL 25 srpState.phase = IS_ACTIVE; TOSS

ListenerListing(srpState) == NULL 26 srpState.subCode = SC_UP_FULL; NACK

— 27 srpState.phase = IS_JOINING; LOOP

TOSS oldState.phase = = IS_LEAVING 28 oldState.phase = IS_PASSIVE; LAST

— 29 —

LAST (oldState = FullSearch(oldState, info))
 != NULL

30 — TOSS

— 31 — LOOP

LEAVE tstState = = NULL 32 — RETURN

tstState.phase = = IS_FAILED 33

FullSearch(NULL, info) = = NULL 34 tstState.phase = IS_LEAVING;

— 35 Release(tstState);

Table 8.2 — AgentTalker state table

Current

R
ow

Next

state condition action state
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 85

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Row 8.2-15: Update the refresh timeout when a matching entry is observed.

Row 8.2-16: If storage is available, update the new state based on the supplied info field parameters.
Row 8.2-17: If no storage is available, nothing can be done and the info state is discarded.
(A timeout is necessary to detect this discard, since no storage state is available for error reporting purposes.)

Row 8.2-18: With a matching/inconsistent same-port state, the appropriate error-status code is returned.
Row 8.2-19: If no upstream port can be found, the appropriate error-status code is returned.
Row 8.2-20: If the upstream port is one’s self, the appropriate error-status code is returned.
Row 8.2-21: If the cumulative bandwidth limit is exceeded, the appropriate error-status code is returned.
Row 8.2-22: With a matching/inconsistent other-port state, the appropriate error-status code is returned.
Row 8.2-23: Otherwise, the timeouts are reset before the refresh is accepted.

Row 8.2-24: The SRP state is marked to communicate the failure condition.

Row 8.2-25: If matching state is found on another talker agent, this port’s state is set to active.
Row 8.2-26: Otherwise, this port’s state is set to joining.
(This triggers the near-immediate transmission of a limited refresh message, to first establish the stream.)

Row 8.2-28: If an existing entry is marked as leaving, its state is changed to passive to ensure removal.
(This talker agent is joining, so the connection remains and there is no need to announce another’s leaving.)
Row 8.2-29: Otherwise, the existing entry is ignored.

Row 8.2-30: Check to confirm the presence an another existing entry.
Row 8.2-31: Or, terminate the search in the absence of another existing entry.

Row 8.2-32: If no matching to the leaving request is found, the leave request is ignored.
Row 8.2-33: If a matching error response is found, the leave request is ignored.
Row 8.2-34: If no other port has an active request, the leave request is accepted.
Row 8.2-35: If another port has an active request, this leave request can be safely ignored.

8.2.3 AgentTimer state machine

The AgentTimer state machine monitors received RequestRefresh and RequestLeave frames. There are
multiple AgentTimer state machines per bridge, one for each of the bridge ports.

The following subclauses describe parameters used within the context of this state machine.

8.2.3.1 AgentTimer state machine definitions

IS_ACTIVE
IS_FAILED

See 8.1.2.
NULL

Indicates the absence of a value and (by design) cannot be confused with a valid value.
Q_ATX_RES
Q_ARX_STR
Q_ATX_STR

See 8.1.4.
ST_ERROR

See 8.1.1.
A subtype specifier that distinguishes the ResponseError frame from other RE frames.
Contribution from: dvj@alum.mit.edu.
86 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8.2.3.2 AgentTimer state machine variables

frame
The received streaming classA frame or generated SRP ResponseError frame (see 6.1).

info
A data structure representing the contents of a RequestRefresh/RequestLeave info block.

localTimer
See 8.1.4.

myMacAddress
See 8.1.2.

refreshTime
A variable representing the arrival time of the preceding RequestRefresh message.

refreshTimeout
A variable representing a timeout interval for RequestRefresh messages.

srpState
See 8.1.2.

stream
A variable representing a stream identifier.

8.2.3.3 AgentTimer state machine routines

CastSearch(mcastID)
Returns the talker-state information associated with the specified multicast identifier.

srpState—matching talker-agent state
NULL—no matching state found

Dequeue(queue)
Enqueue(queue, frame)

See 8.1.4.
QueueHasSpace(index)

Indicates whether space is available for frame transmissions.
TRUE—Space is available.
FALSE—(Otherwise.)

StateSearch(streamID)
See 8.1.3.

StateSelect(index)
Returns the talker-agent state associated with the specified index.

info—matching talker-agent state
NULL—no state-space available

StateToss(index)
Discards talker-state information associated with the argument value.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 87

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8.2.3.4 AgentTimer state table

The AgentTimer state machine is responsible for reporting timeout and upstream-communicated errors, as
specified in Table 8.3. In the case of any ambiguity between the text and the state machine, the state machine
shall take precedence. The notation used in the state table is described in 3.4.

Table 8.3 — AgentTimer state table

Current

R
ow

Next

state condition action state

START (frame = Dequeue(Q_ARX_STR))
 != NULL

1 srpState = CastSearch(frame.da); FLOW

(frame = Dequeue(Q_ARX_RES))
 != NULL

2 info = frame.info;
tstState = StateSearch(
 (info.talkerID<<16) | info.portID);

SERVE

— 3 srpState = NULL LOOP

FLOW srpState == NULL 4 — START

— 5 Enqueue(Q_ATX_STR, frame);
srpState.streamTime = localTimer;

SERVE tstState ! = NULL 6 tstState.phase = IS_FAILED;
tstState.subCode = frame.subCode;

START

— 7 —

LOOP (srpState = StateSelect(srpState))
 != NULL

8 — TIMES

— 9 — RETURN

TIMES srpState.phase = = IS_FAILED 10 — NEAR

srpState.phase = = IS_JOINING 11 — LOOP

srpState.phase = = IS_LEAVING 12

srpState.phase = = IS_PASSIVE 13 StateToss(srpState);

(localTimer – srpState.refreshTime) >=
 refreshTimeout

14

(localTimer – srpState.streamTime) >=
 dataTimeout

15

— 16 —

NEAR QueueHasSpace(Q_ATX_RES) 17 frame.da = srpState.srcMac;
frame.sa = myMacAddress;
frame.subType = ST_ERROR;
frame.subCode = srpState.subCode;
frame.streamId = srpState.streamID;
frame.maxBw = srpState.maxBw;
frame.cycles = srpState.maxCycles;
Enqueue(Q_ATX_RES, frame);
StateToss(srpState);

LOOP

— 18 —
Contribution from: dvj@alum.mit.edu.
88 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Row 8.3-1: Monitor the received stream flow, as frames pass through.
Row 8.3-2: Process received error messages, when they become available.
Row 8.3-3: Otherwise, aging timeouts are invoked.

Row 8.3-4: Stream flows are not forwarded in the absence of matching state.
Row 8.3-5: Otherwise, stream flows are monitored and flow downstream.

Row 8.3-6: In the presence of matching talker-agent state, the stream passes through.
Row 8.3-7: In the absence of matching talker-agent state, the stream passes through.

Row 8.3-8: Select each talker-state element associated with the port.
Row 8.3-9: Stop when all talker-state elements have been processed.

Row 8.3-10: A failed entry is processed distinctively.
Row 8.3-11: The joining phase indications has no timeout.
Row 8.3-12: The leaving phase indications has no timeout.
Row 8.3-13: The passive phase indication has been effectively discarded, so discard it immediately.
Row 8.3-14: In the absence of sustained refresh messages, the active SRP state is discarded.
Row 8.3-15: In the absence of sustained stream flows, the active SRP state is discarded.
Row 8.3-16: Otherwise, no timeout actions are required.

Row 8.3-17: In the presence of a failed phase indication, a ResponseError is sent downstream.
Row 8.3-18: Otherwise, no action is taken.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 89

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8.2.4 AgentListener state machine

The AgentListener state machine generates RequestRefresh and RequestLeave control frames. There are
multiple AgentListener state machines on each bridge, one is associated with each of the bridge ports.

The following subclauses describe parameters used within the context of this state machine.

8.2.4.1 AgentListener state machine definitions

Q_ATX_REQ
See 8.1.4.

IS_PASSIVE
See 8.1.2.

NULL
Indicates the absence of a value and (by design) cannot be confused with a valid value.

8.2.4.2 AgentListener state machine variables

frame
An SRP control frame.

localTimer
See 8.1.4.

myMacAddress
See 8.1.2.

refreshTime
A variable representing the transmission time of the preceding RequestRefresh message.

refreshTimeout
A variable representing a timeout interval for RequestRefresh messages.

refreshList
A list of srpState entries prepared for upstream transmission.

srpState
See 8.1.2.

8.2.4.3 AgentListener state machine routines

Enqueue(queue, frame)
See 8.1.4.

EnqueueList(queue, list)
Transfers content from the rpState lists into one or more frames.
Each of these frames is then placed into the specified queue.

JoiningList()
Forms a list of the joining-phase entries from the listener agent’s state array.

JoiningToActive(list)
Within all listed entries, each phase value of IS_JOINING is changed to IS_ACTIVE.

QueueHasSpace(index)
Indicates whether space is available for frame transmissions.

TRUE—Space is available.
FALSE—(Otherwise.)

RefreshList()
Forms a list of the joining-phase and active-phase entries from the listener agent’s state array.

ReviseListenerList()
Revises the listener list entries to ensure consistency with distributed AgentTalker state content.
Contribution from: dvj@alum.mit.edu.
90 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
8.2.4.4 AgentListener state table

The AgentListener state machine is responsible for generating upstream RequestRefresh and RequestLeave
frames, as specified in Table 8.4. In the case of any ambiguity between the text and the state machine, the
state machine shall take precedence. The notation used in the state table is described in 3.4.

Row 8.4-1: Refresh the listener list, ensuring consistency with distributed AgentTalker state content.
Row 8.4-2: In the presence of transmission-queue storage, transmissions are enabled.
Row 8.4-3: Otherwise, transmissions are inhibited.

Row 8.4-4: When periodically enabled, the list of joining and active states is sent.
Row 8.4-5: Leave requests are checked; distinct ones cause a RequestListen frame to be sent.
Row 8.4-6: When entries are found, the list of joining states is sent.
Row 8.4-7: Otherwise, no talker-agent refresh/leave messages are transmitted.

Row 8.4-8: Enqueue the refresh-list entries for eventual transmission.
Afterwards, change the phase from joining to active, to inhibit unnecessary future transmissions.

Table 8.4 — AgentListener state table

Current

R
ow

Next

state condition action state

START — 1 ReviseListenerList(); FIRST

FIRST QueueHasSpace(Q_ARX_REQ) 2 — TIMER

— 3 — RETURN

CHECK localTimer >=
 (refreshTime + refreshTimeout) &&
((refreshList= RefreshList()) != NULL)

4 refreshTime = localTimer; FRESH

srpState = QueueHasLeave() 5 frame.da = upstreamAddress;
frame.sa = myMacAddress;
frame.info = srpState.info;
EnqueueFrame(Q_ATX_REQ, frame);
srpState.phase = IS_PASSIVE;

START

(refreshList = JoiningList()) != NULL 6 — FRESH

— 7 — RETURN

FRESH — 8 EnqueueList(Q_ATX_REQ, refreshList);
JoinToActive(refreshList);

START
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 91

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
9. Transmit state machines (proposal 1)

9.1 Pacing overview

9.1.1 Delays

The preferred topologies consists entirely of paced bridges, as illustrated in Figure 9.1a. Within such
topologies, a frame transmitted by station a0 in cycle[n] incurs fixed nominal delays while passing through
bridges. Thus, this frame nominally departs bridgeB in cycle[n+2], bridge C in cycle[n+4], and bridgeE in
cycle[n+6].

Within Figure 9.1a, the actual transmission times can vary from their nominal targets, due to contention with
other traffic. Each bridge compensates for early and late arrivals, so that the extent of deviations from nomi-
nal on link b1-to-c0 are the same as those on link e0-to-f 0.

Within Figure 9.1b, an intermediate basic bridge is assumed. Output from bridgeC is therefore downgraded
from classA to classB, to avoid degradation of well-paced traffic. Thus, the fully-paced properties of
bridgeE still apply to possible f3-to-f 0 traffic (not illustrated).

The uncertainty of cycle p and q cycle delays in Figure 9.1b are due to passing through the non-paced
bridgeC. Although much of this traffic would arrive earlier, some of the traffic could be delayed up to the
nominal delays of Figure 9.1a. In more complex topologies, such delays could exceed the nominal delays
through paced bridges, due to bunching effects (see Annex F).

To support such topology, this working paper mandates that compliant end stations provide larger elasticity
buffers (see TBD) than required within fully paced topologies. However, defining topology restrictions to
ensure elasticity-buffer sufficiency is beyond the scope of this working paper.

NOTE—Multiple bunch-avoiding pacing protocols are presented for consideration:
a) Clause 9 (this clause) presents a pseudo-synchronous transmission model.
b) Clause 10 presents a cross-flow shaper transmission model.

Figure 9.1—Topology-dependent pacing delays

a) Full pacing topology

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

Legend:
internal coupling classA stream

paced bridge

n+0

1 Gb/s

100 Mb/s1 Gb/s

100 Mb/sn+1 n+2

n+4

b) Partial pacing topology

c0 c1 c2 c3

d1 d2

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

Legend:
internal coupling classA stream
classB stream

paced bridge basic bridge

n+0

1 Gb/s

100 Mb/s1 Gb/s

100 Mb/sn+2 n+p

n+q

f0
Contribution from: dvj@alum.mit.edu.
92 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
9.1.2 Paced 1 Gb/s classA flows

Pacing involves sending accumulated classA traffic once every isochronous cycle, rather than allowing
larger (typically an MTU) frames to be accumulated. After each cycle’s classA traffic has been sent, the
remaining time is available for sending classB/classC traffic. This provides low-jitter bandwidth guarantees,
as does time division multiplexing (TDM), while allowing unused classA bandwidths to be utilized by
classB/classC traffic.

A pacing bridge maintains this pacing behavior, thus avoiding problems normally associated with bunching
(see Annex F). For a bridge between 1 Gb/s link1 and 1 Gb/s link2 (see Figure 9.2a), paced frames can be
forwarded with a nominal 1-cycle delay (see Figure 9.2b). The 1-cycle delay is necessary to account for
offset migration and store-and-forward processing delays.

Offset migration refers to changes in a classA frame’s within-cycle placement on (for example) link1 and
link2. Depending on the timing of unrelated events, the offset of the classA-data frame within the cycle can
migrate over time, as other conversations are started, ended, advanced, delayed, joined, or routed elsewhere.

A possible implementation could utilize double output buffers, processed as follows:
cycle[n+2×k +0]: classA traffic is saved in buffer[A] and transmitted from buffer[B].
cycle[n+2×k +1]: classA traffic is saved in buffer[B] and transmitted from buffer[A].

The boundaries between cycles are marked by a distinct set of cycleSync markers (not illustrated), rather
than relying on precise time-synchronization and deadbands to imply their temporal placement.

The classA transmissions within each cycle are shaped, to allow for unrelated asynchronous frame transmis-
sions. The shaper allows a higher-than 75% transmission rate, to ensure transmission completion well before
before the next cycle begins, even in the presence of conflicting non-classA transmissions.

Figure 9.2—Paced 1 Gb/s classA flows

a) Talker-to-listener(s) data flow

Legend:
talker other listener

existing conversation
LT

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

1 Gb/s

100 Mb/s1 Gb/s

100 Mb/s

b) Data transfer timing

buffer

Legend:
specific classA stream other classA frames

B B BA AAA

n–1 n n+1 n+2 n+3 n+4 n+5

rx on
port b0

tx on
port b1
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 93

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
To better understand the minimal buffer requirements, consider frame transfers that are momentarily dis-
rupted by an MTU-sized classC transmission, started near the end of link1’s classA transmissions. For the
receive-side slippage scenario of 9.3a, data[n] arrives in cycle[n] and fills buffer[A]. Since buffer A is not
destined for transmission until cycle[n+1], conflicts are avoided.

For the transmit-side slippage scenario of Figure 9.3b, buffer[B] is fully emptied in cycle[n]. Since buffer[B]
is not destined for filling until cycle n+1, conflicts are avoided.

9.1.3 Paced 100 Mb/s flows

A 100 Mb/s pacing bridge also maintains this pacing behavior, thus avoiding problems normally associated
with bunching (see Annex F). For a bridge between 100 Mb/s link3 and 100 Mb/s link4 (see Figure 9.4a),
paced frames can be forwarded with a nominal 2-cycle delay (see Figure 9.4b).

Figure 9.3—Cycle slippage

Editors’ Notes: To be removed prior to final publication.
A two-cycle delay is illustrated, although the protocols can be simplified by assuming a three cycle delay.
The tradeoff between protocol simplicity and a passthrough latency has not been carefully reviewed.

Figure 9.4—Paced 100 Mb/s classA flows

rx on

buffer
B B BA AAA

n–1 n n+1 n+2 n+3 n+4 n+5

a) Receive cycle slippage

Legend:
asynchronous frame cycleSync frame
specific classA stream other classA streams

slippage
port b0

tx on
port b1

buffer
B B BA AAA

n–1 n n+1 n+2 n+3 n+4 n+5

b) Transmit cycle slippage

Legend:
asynchronous frame cycleSync frame
specific classA stream other classA streams

slippage

rx on
port b0

tx on
port b1

a) Talker-to-listener(s) data flow

Legend:
talker other listener

existing conversation
LT

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b2

b3 e3

e0

e1

e2

1 Gb/s

100 Mb/s1 Gb/s

100 Mb/s

b) Data transfer timing

rx on

buffer

Legend:
specific classA stream other classA streams

C A CB DBD

n–1 n n+1 n+2 n+3 n+4 n+5

port e1

tx on
port e0
Contribution from: dvj@alum.mit.edu.
94 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
A possible implementation would involved six output buffers, processed as follows:
cycle[n+4×k +0]: classA traffic is saved in buffer[A] and transmitted from buffer[C].
cycle[n+4×k +1]: classA traffic is saved in buffer[B] and transmitted from buffer[D].
cycle[n+4×k +2]: classA traffic is saved in buffer[C] and transmitted from buffer[A].
cycle[n+4×k +3]: classA traffic is saved in buffer[D] and transmitted from buffer[B].

To better understand the minimal buffer requirements, consider frame transfers that are momentarily dis-
rupted by an MTU-sized classC transmission, started near the end of link3 classA transmissions. For the
receive-side slippage scenario of Figure 9.5a, data[n] arrives in cycle[n+1] and fills buffer[A]. Since buffer
A is not destined for transmission until cycle[n+2], conflicts are avoided.

For the transmit-side slippage scenario of Figure 9.5b, buffer[D] is fully emptied in cycle[n+1] and in
cycle[n+2]. Since buffer[D] is not destined for filling until cycle n+3, conflicts are avoided.

To achieve a robust 2-cycle latency objective, restrictions are placed on non-classA transmissions. These
restrictions are as follows:

a) An MTU (or sequence of frames not exceeding an MTU) may be appended to the last classA frame
within any cycle whose cycleSync frame transmission was not delayed.

b) Within any cycle, any non-classA frame may be transmitted after the last classA frame, but only if
this frame transmission would not delay the transmission of the next cycleSync frame.

Condition (a) is sufficient to ensure that all transmissions occur within the intended or following cycle,
assuming a 100 Mb/s span, 2000 byte MTU, 125 µs cycle, and 75% classA loading. With these assumptions,
the worst-case delay from the start of the intended cycle, as specified by Equation 9.1, is well within the
2-cycle 250 µs constraint.

delay ≥ (MTU − 0.25 × cycle) + 0.75 × cycle (9.1)
delay ≥ 2 000 × ((8 bits/byte) × (1 second)/(100 Mb/s)) + 0.50 × (125 µs)

delay ≥ (160 µs) + (62.5 µs)

delay ≥ 222.5 µs

Figure 9.5—Cycle slippage

a) Receive cycle slippage

rx on

buffer
C A CB DBD

n–1 n n+1 n+2 n+3 n+4 n+5

n+
1

n+
2

n+3 n+4 n+5nn–1…

Legend:
asynchronous frame cycleSync frame
specific classA stream other classA streams

port e1

tx on
port e0

b) Transmit cycle slippage

buffer

Legend:
asynchronous frame cycleSync frame
specific classA stream other classA streams

C A CB DBD

n–1 n n+1 n+2 n+3 n+4 n+5

n–1… n n+4 n+5

n+
1

n+
2

n+
3

rx on
port e1

tx on
port e0
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 95

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
9.1.4 Transmit port structure

An end station and bridge have functionally distinct transmit queues for classA, classB, and classC traffic,
allowing each to be managed separately, as illustrated in Figure 9.6. The transmit port is responsible for pac-
ing classA/classB traffic and shaping classB/classC traffic, so as to limit the high-class traffic to 75% of the
link bandwidth. The transmit-port structure is slightly different for 100 Mb/s and 1 Gb/s transmit ports, due
to the distinct times associated with an MTU transmission.

Although classA frames have the highest priority, the classA frames are gated to prevent their early
departure. Gating involves blocking classA frames that arrived with sourceCycle = n, until the start of cycle
n + p. After the start of cycle n + p, the transmitter waits for the completion of preceding non-classA frames
(or residual cycle n + p –1 classA frames), then transmits these arrived-in-cycle-n frames with
sourceCycle = n + p. As noted previously, p is a design-dependent integer constant, preferably no more than 4
cycles (see 5.1.2 and 5.1.3).

A bridge has to cope with frame-reception uncertainties (due to preceding frame-transmission uncertainties),
in addition to its own frame-transmission uncertainties. As such, the values of p are expected to be slightly
larger in bridges than in talker-station or listener-station designs.

Within bridges, the distinction between service classes is based on the multicast addresses within frames.
These multicast addresses are checked against the multicast database, which supplies class information in
addition to the normal multicast routing (forward or not-forward) information. This class information
controls the demultiplexer, which routes to the appropriate classA, classB, or classC output queues.

The cycle slippage on a 100 Mb/s link mandates the use of four 3/4-cycle output buffers, which incur a
2-cycle pass-through delay. The classA traffic is gated to avoid wrong-cycle transmissions and excessive
consumption, but is not otherwise not shaped. The overlapping shB shaper of Figure 9.6a is intended to
illustrate the use of classA transmission counts and the classB shaper, not the shaping of classA traffic.

On such 1 Gb/s transmitter ports, the classA traffic is shaped to reduce lower-class blockage, as well as
gated to avoid wrong-cycle transmissions and excessive consumption. The adjacency of shA/shB shapers in
Figure 9.6b is intended to illustrate distinct classA/classB shaping functions, but sharing of classA
transmission counts between shapers.

Figure 9.6—Transmit-port structure

a) 100 Mb/s bridge-port pacing

hi

cl
as

sB

low

cl
as

sC

multicast
database

demultiplexer

checker
class

mux

shB
gate

cl
as

sA

b) 1 Gb/s bridge-port pacing

hi

cl
as

sB

low

cl
as

sC

multicast
database

checker
class

mux

sB
gate

sA

cl
as

sA

demultiplexer
Contribution from: dvj@alum.mit.edu.
96 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Achievable delays through a bridge depend only on the speed of the input-link speed, as summarized in
Table 9.1. These numbers are slightly misleading, since transmissions on a 100 Mb/s link have implied
additional delays incurred when passing through its adjacent 100 Mb/s receiver.

9.1.5 Pacing at 1 Gb/s

Pacing at 1 Gb/s, as illustrated in Figure 9.7. For ontime cycles, a residual amount of classB/classC traffic is
allowed throughout the cycle, as illustrated in Figure 9.7a. For slipped cycles, a residual amount of
classB/classC traffic becomes available after the delay effects have been overcome, as illustrated in
Figure 9.7b.

Table 9.1 — ClockPort state table

Link type Delay

Input Output Cycles Time

100 Mb/s — 2 250 µs

1 Gb/s — 1 125 µs

Figure 9.7—Pacing at 1 Gb/s

t=n×c

a) Ontime cycle transmissions

Legend:
classA classB classC

t=n×c+1

100%
low-class deadline

t=n×c

b) Delayed cycle transmissions

t=n×c+1

100%

Legend:
classA classB classC

low-class deadline
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 97

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
9.1.6 Pacing at 100 Mb/s

Pacing at 100 Mb/s, as illustrated in Figure 9.8. For ontime cycles, a residual amount of classB/classC traffic
is allowed throughout the cycle, as illustrated in Figure 9.8a. For delayed cycles, a residual amount of
classB/classC traffic becomes available after the delay effects have been overcome, as illustrated in
Figure 9.8b.

9.1.7 Shaper behavior

Although multiple shaper are specified within this working paper, the behavior of most shapers can be
characterized by a common algorithm and instance-specific parameters (as done within RPR[B5]). The
shapers’ credits are adjusted down or up, as illustrated in Figure 9.9. The decrement and increment values
typically represent sizes of a transmitted frame and of credit increments in each update interval, respectively.

Crossing below the zero threshold generates a rate-limiting indication (the removal of a send indication), so
that offered traffic can stop. By design, the credit value never goes below the – loLimit extreme. To bound
the burst traffic after inactivity intervals, when no frames are ready for transmission, credits are reduced to
zero (if currently higher than zero) and can accumulate to no more than the zero-value limit.

The hiLimit threshold limits the positive credits, to avoid overflow. When frames are ready for transmission
(and are being blocked by transit traffic), credits can accumulate to no more than this hiLimit value.

Figure 9.8—Pacing at 100 Mb/s

Figure 9.9—Credit adjustments over time

t=n×c

a) Ontime cycle transmissions

Legend:
classA classB classC

t=n×c+2

100%
ontime-cycle deadline

t=n×c+1 t=n×c

b) Delayed cycle transmissions

Legend:
classA classB classC

t=n×c+1

100%
slipped-cycle deadline

0
increasing time

hiLimit

-loLimit

cr
ed

its

credit limit when
frames are waiting

credits withdrawn
when no credit
frames are waiting* debits withdrawn

when no debit
frames are waiting

send indication withdrawn when
credits reduced below low limit

Legend: decSize : decrement size incSize : increment size

de
cS

iz
e

in
cS

iz
e

Contribution from: dvj@alum.mit.edu.
98 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
In concept, the shapers consist of a token bucket. The credits in the token bucket are incremented by the size
of each debit-frame when it is being transmitted. The number of credits in a token bucket is decremented by
the size of each credit-frame when it is being transmitted. When a credit-frame is waiting, it is transmitted
only if the number of credits in the token bucket is positive; When a debit-frame is waiting, it is transmitted
only if the number of credits in the token bucket is negative.

9.2 Terminology and variables

9.2.1 Common state machine definitions

The following state machine inputs are used multiple times within this clause.

queue values
Enumerated values used to specify shared queue structures.

QP_TX_PUSH—The input port’s receive-from-ports queue.
QP_TX_CA—The first of the output port’s classA buffers.
QP_TX_CB—The output port’s classB queue.
QP_TX_CC—The output port’s classC queue.
QP_TX_LINK—The output port’s transmit-PHY queue.
QP_TX_SYNC—The port’s queue that provides clockSync frames.

9.2.2 Common state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.

currentTime
A value representing the current time.

mtuSize
The size of the maximum transfer unit (MTU).

Value: 2000 bytes

NOTE—The specified mtuSize is larger than currently supported by IEEE Std 802.3, but consistent with expected
near-term frame-extension revisions of this standard.

speedIs100Mbs
A value that communicates the operating speed of the link.

TRUE—The port is operating at a speed of 100 Mb/s.
FALSE—The port is operating at speeds of 1 Gb/s or above.

thisCycle
A cycle counter derived from thisTime, as defined by Equation 9.2.

Floor(thisTime * 8000); (9.2)
thisTime

A normalized time-of-day counter derived from timeOfDay, as defined by Equation 9.3.
(timeOfDay / (4.0 * (1<<30))) (9.3)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 99

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
9.2.3 Common state machine routines

–none–

9.2.4 Routines defined in other clauses

This clause references the following routines defined in Clause 7:

Dequeue(queue)
Enqueue(queue, frame)
Min(value1, value2)

See 7.2.3.

9.3 Pacing state machines

9.3.1 ReceiveRx state machine

The ReceiveRx state machine is responsible for receiving pacing classA traffic, shaped classB traffic, and
best-effort classC traffic. An intent is to transfer each to the appropriate output queue.

The following subclauses describe parameters used within the context of this state machine.

9.3.1.1 ReceiveRx state machine definitions

CYCLE_SYNC
An assigned subType value that distinguishes a clockSync from other Residential Ethernet frames.

GROUP_BIT
A constant value derived from IEEE Std 802-2001 and specified by Equation 9.4.
((macAddress & GROUP_BIT) != 0) (9.4)

queue values
Enumerated values used to specify shared queue structures.

QP_TX_CA, QP_TX_CB, QP_TX_CC
QP_TX_PUSH

See 9.2.2.
RES_ETHER

The protocolType code value assigned to Residential Ethernet.

9.3.1.2 ReceiveRx state machine variables

class
A value that represents the results of a forwarding database search.

delta
A value that represents the difference between frame-signaled and computed cycle values.

frame
The contents of a received frame.

myCycle
The two least-significant bits of the thisCycle value.

queueA
The selected classA queue identifier, based on delta-selected locations.

speedIs100Mbs
thisCycle
Contribution from: dvj@alum.mit.edu.
100 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
thisTime
See 9.2.2.

9.3.1.3 ReceiveRx state machine routines

DataBaseClass(macAddress, port)
Provides a forwarding database indication of how the macAddress is routed to the specified port.

CLASS_A—The associated multicast frame is forwarded as classA traffic.
CLASS_B—The associated multicast frame is forwarded as classB traffic.
CLASS_C—The associated multicast frame is forwarded as classC traffic.
BLOCKED—The associated multicast frame is not forwarded.

Dequeue(queue)
See 9.2.4.

EnqueuePort(port, queue, frame)
Places the frame at the tail of the specified queue within the specified port.

ForwardUnicast(frame)
Forwards a unicast frame to the selected output port, if any.
This routine mimics existing standards, which remain unaffected by this working paper.

Multicast(macAddress)
Indicates whether the supplied address is a multicast (or broadcast) address, as specified by
Equation 9.5.

TRUE—The address is a multicast (or broadcast) address.
FALSE—(Otherwise.)

((macAddress & GROUP_BIT) != 0) (9.5)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 101

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
9.3.1.4 ReceiveRx state table

The ReceiveRx state machine is specified in Table 9.2. In the case of any ambiguity between the text and the
state machine, the state machine shall take precedence. The notation used in the state table is described in
3.4.

Row 9.2-1: If a frame has arrived, process that frame.
Row 9.2-2: Otherwise, compute the cycle offset for later classA queue placement.

Row 9.2-3: Frames that arrive early are processed as though they arrived within this cycle.
Row 9.2-4: Otherwise, the difference between labeled and actual cycles determines the frame’s placement.

Row 9.2-5: Frames arriving from a 100 Mb/s link are placed 2-cycles ahead, to allow for cycle slips.
Row 9.2-6: Frames arriving from a 1 Gb/s link are placed 1-cycle ahead, since cycle slips are avoided.

Row 9.2-7: The cycleSync frames identify the cycle number, despite cycle-slip possibilities.
Row 9.2-8: Multicast frames are sent to all enabled ports.
Row 9.2-9: Unicast frames are processed normally.

Row 9.2-10: Multicast classA frames are forwarded to the appropriate cycle-sensitive classA queue.
Row 9.2-11: Multicast classB frames are forwarded to the classB queue.
Row 9.2-12: Multicast classC frames are forwarded to the classC queue.
Row 9.2-13: If no class is specified, multicast frames are not routed through this port.

Table 9.2 — ReceiveRx state table

Current

R
ow

Next

state condition action state

START (frame = Dequeue(QP_TX_PUSH)) !=
NULL

1 — FIRST

— 2 myCycle = (thisCycle % 4);
delta = (4 + myCycle – rxCycle) % 4;

PLACE

PLACE delta = = 3 3 delta = 0; PLUS

— 4 —

PLUS speedIs100Mbs 5 queueA = QP_TX_CA + (4 + 2 – delta) % 4; START

— 6 queueA = QP_TX_CA + (4 + 1 – delta) % 4;

FIRST frame.protocolType= =RES_ETHER
&& frame.subType = = CYCLE_SYNC

7 rxCycle = (frame.cycleCount % 4); START

Multicast(frame.da) 8 class = DataBaseClass(frame.da, port); CAST

— 9 ForwardUnicast(frame) START

PUSH class = = CLASS_A 10 EnqueuePort(port, queueA, frame); START

class = = CLASS_B 11 EnqueuePort(port, QP_TX_CB, frame);

class = = CLASS_C 12 EnqueuePort(port, QP_TX_CC, frame);

— 13 —
Contribution from: dvj@alum.mit.edu.
102 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
9.3.2 TransmitTx state machine

The TransmitTx state machine is responsible for pacing/shaping classA traffic and shaping classB traffic
destined for 1 Gb/s links. An intent is to support projected MTU-sized transfers and interleaved lower-class
traffic, without exceeding the 1-cycle delay inherent with cycle-synchronous bridge-forwarding protocols.

The following subclauses describe parameters used within the context of this state machine.

9.3.2.1 TransmitTx state machine definitions

BPS
Represents a bound on the number of transmitted bytes per second, as defined by Equation 9.6.

(speedIs100Mbs ? 12500000 : 125000000) (9.6)
CAP

Represents a bound on the number of transmitted bytes, as defined by Equation 9.7.
((speedIs100Mbs && phase != MORE) ? (9.7)
 ((cycle + 1) * 8000. - thisTime) * BPS : MTU)

queue values
Enumerated values used to specify shared queue structures.

QP_TX_CA
QP_TX_CB
QP_TX_CC
QP_TX_LINK
QP_TX_SYNC

See 9.2.2.

9.3.2.2 TransmitTx state machine variables

creditA
A shaper credit whose positive value enables classA/classB primary transmissions.

creditB
A shaper credit whose positive/negative values enable secondary classB/classC transmissions.

cycle
The cycle whose classA data is being transmitted.

cycleSize
The number of bytes included within a 125 µs cycle.

Value:
1562.5—for 100 Mb/s links
15625—for 1 Gb/s links

frame
The contents of a to-be-transmitted frame.

hiLimitB
A value that limits the cumulative creditB credits.

Value: MTU.
limit

A value that limits the amount of transmitted primary classA/classB bandwidth.
loLimitB

A value that limits the cumulative creditB debits.
Value: MTU.

phase
An indication of what remains to be transferred within the cycle.

HEAD—The cycleSync frame are to be sent.
MORE—Other classA/classB frames are to be sent.
DONE—All classA frames have been sent.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 103

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
queue
A variable that identifies the appropriate classA queue for this cycle’s transmissions.

speedIs100Mbs
See 9.2.2.

thisCycle
thisTime

See 9.2.2.

9.3.2.3 TransmitTx state machine routines

Cap(speedIs100Mbs, phase, creditA, cycle, thisTime)
Provides a cap on the lengths of classB and classC transmissions.

if (speedIs100Mbs) { (9.8)
 if (phase == MORE)
 return(0);
 near = (cycle + 1.0) * 8000;
 safe = (cycle + 0.8) * 8000;
 return(thisTime <= safe ? MTU : near * BPS);
} else {
 if (phase == MORE)
 return(–creditsA/16);
 near = (cycle + 1.05) * 8000;
 return((near - thisTime) * BPS);
}

Dequeue(queue)
See 9.2.4.

DequeueSize(queue, size)
Returns the next available frame from the specified queue, from frames no larger than size.

Enqueue(queue, frame)
See 9.2.4.

QueueEmpty(queue)
Returns the an indication of whether the queue is empty.

0—The specified queue is not empty.
1—The specified queue is empty.

Size(frame)
Returns the size of the specified frame.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 104

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
9.3.2.4 TransmitTx state table

The TransmitTx state machine is specified in Table 9.3. The link-speed independent rows are white; the
link-speed dependent rows are shaded. In the case of any ambiguity between the text and the state machine,
the state machine shall take precedence. The notation used in the state table is described in 3.4.

Table 9.3 — TransmitTx state table

Current

R
ow

Next

state condition action state

START cycle > (thisCycle + 1) 1 cycle = thisCycle;
phase = HEAD;

PREP

cycle < (thisCycle – 1) 2

cycle < thisCycle && phase = = DONE 3 cycle += 1;
phase = HEAD;

!QueueEmpty(QP_TX_LINK) 4 — START

phase = = HEAD 5 queue = QP_TX_CA + (cycle % 4);
frame = Dequeue(QP_TX_SYNC);
limit = 0.75 * cycleSize;
creditA=
 16 * BPS * (thisTime – cycle*8000.);
phase = MORE;

POST

— 6 cap = Cap(speedIs100Mbs,
 phase, creditA, cycle, thisTime);

PLUS

PLUS creditB >= 0 && (frame =
 DequeueSize(QP_TX_CB), cap) != NULL

7 creditB =
 Max(loLimitB, creditB – Size(frame));
creditA += 16 * Size(frame);

FINAL

creditB <= 0 && (frame =
 DequeueSize(QP_TX_CC, cap)) != NULL

8 creditB =
 Min(hiLimitB, creditB +Size(frame));
creditA += 16 * Size(frame);

(frame =
 DequeueSize(QP_TX_CB, cap)) != NULL

9 creditA += 16 * Size(frame);

(frame =
 DequeueSize(QP_TX_CC, cap)) != NULL

10

phase != MORE 11 — START

(frame =
 DequeueSize(queue, limit)) != NULL

12 — POST

(frame = Dequeue(queue)) != NULL 13 — START

(frame =
 DequeueSize(QP_TX_CB, limit)) != NULL

14 limit – = Size(frame); FINAL

— 15 phase = DONE;
creditB= Min(hiLimitB, limit+creditB);

START

POST — 16 limit – = Size(frame);
creditA – = Size(frame);

FINAL

FINAL — 17 Enqueue(QP_TX_LINK, frame); START
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 105

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Row 9.3-1: If cycle has advanced two-beyond thisCycle, something is in error.
(The cycle value can advance one-beyond thisCycle, due to small timeOfDay update discontinuities.)
Row 9.3-2: If cycle has dropped two-behind thisCycle, something is in error.
(Large timeOfDay update discontinuities can cause cycle to advance or retreat beyond normal bounds.)

Row 9.3-3: The phase is initialized to HEAD at the start of each cycle.
Row 9.3-4: Wait for the queue to be emptied, so something can be transmitted.
Row 9.3-5: When the next cycle starts, a clockSync frame is transmitted.
The limit value is set to limit classA transmissions to no more than 75% of the link bandwidth.
The creditA value initialized to account for cycleSync frame slippage (for 1 Gb/s ports only).
Row 9.3-6: Set caps on the maximum transmission size of classB/classC transmissions.

Row 9.3-7: If enabled and available, a classB frame is transmitted.
The creditB values is decremented by the transmitted frame size, to effect a classB shaper.
Row 9.3-8: If enabled and available, a classC frame is transmitted.
The creditB values is incremented by the transmitted frame size, to effect a classB shaper.
Row 9.3-9: If available, a classB frame is transmitted.
Row 9.3-10: If available, a classC frame is transmitted.
Row 9.3-11: Otherwise, no frame is transmitted.

Row 9.3-12: An enabled, available, and properly sized classA frame is readied for transmission.
Row 9.3-13: An enabled, available, and improperly sized classA frame is discarded.
Row 9.3-14: An enabled, available, and properly sized classB frame is readied for transmission.
Row 9.3-15: If enabled but unavailable, this cycle’s primary frame transmissions have completed.

Row 9.3-16: The shaper’s creditA value is decremented to lightly throttle primary transmissions.
The limit value is also decremented, to enforce the 75% cycle classA/classB transmission limitation.

Row 9.3-17: Transmission is affected by placing the frame in the port’s transmit queue.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 106

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
10. Transmit state machines (proposal 2)

10.1 Rate-based scheduling overview

The clause describes a rate-based scheduling technique. The rate-based scheduling concepts are similar to
those within rate monotonic scheduling protocols, commonly used within real-time systems. Objectives
associated with time-sensitive forwarding alternatives include the following:

a) Multiple time-sensitive transmission rates are supported, including:

1) High rate 8 kHz traffic, such as the traffic generated by simple bridges between RE and
existing IEEE 1394[B6] A/V devices.

2) Higher -rate 64 kHz traffic, such as the traffic generated by highly interactive latency-sensitive
video game video and/or sensors.

3) Lower rate traffic, such as voice over internet protocol (VOIP) traffic, without forcing this
traffic to be reblocked into smaller (and therefore less efficient) frame sizes.

b) Frame forwarding should not be dependent on successful time-of-day synchronization between the
bridge and adjacent stations. Frame forwarding should succeed before the grand clock-master
station has been selected, or when the selected grand-master clock station changes.

c) Frame-forwarding protocols should leverage existing bridge queue and service models, although
specification of abstract rate shaper details is expected.

Rate-based scheduling involves associating a priority with frame transmissions, where the priority is a
monotonic function of the frame transmission frequency, as illustrated in Figure 10.1. Assuming the cumula-
tive traffic is limited to less than the link capacity, the latency of each traffic class is guaranteed (the latency
guarantee is approximately an MTU more than an inter-arrival period).

NOTE—Multiple bunch-avoiding pacing protocols are presented for consideration:
a) Clause 9 presents a pseudo-synchronous transmission model.
b) Clause 10 (this clause) presents cross-flow shaper transmission model.

Figure 10.1—Rate-based priorities

time

us
e

a) Fastest rate, highest priority

31.25 µs

us
e

b) Faster rate, higher priority
time

125 µs

us
e

b) Fast rate, high priority
time

500 µs

us
e

b) Slow rate, low priority
time

2 ms

time

us
e

c) Slower rate, lower priority

8 ms

time

us
e

d) Slowest rate, lowest priority

32 ms
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 107

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
10.1.1 Rate-based priorities

Quality of service is based on the availability of user_priority field parameter associated within transmitted
time-sensitive frames, as listed in Table 10.1.

Table 10.1—Tagged priority values

Code Interval (ms) Name Description

0 n/a CLASS_C Best effort, with minimal guaranteed BW

1 n/a CLASS_B Preferred, with minimal guaranteed BW

2 32 CLASS_A5 Guaranteed BW over longest interval

3 8 CLASS_A4 Guaranteed BW over longer interval

4 2 CLASS_A3 Guaranteed BW over long interval

5 0.5 CLASS_A2 Guaranteed BW over short interval

6 0.125 CLASS_A1 Guaranteed BW over shorter interval

7 0.03125 CLASS_A0 Guaranteed BW over shortest interval
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 108

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
10.1.2 Port-to-port reshaping

The concept of rate-based scheduling assumes shaped talkers and reshaped talker agents within bridges, as
illustrated in Figure 10.2 (only the components associated with specific flows are illustrated). In this
illustration, classA0 traffic flows between points (a, b, c, d, e), exhibits bunched and reshaped behaviors, as
illustrated in Figure 10.3.

The (a) through (e) time lines represent the flow of frames from within one talker-or-bridge into another
bridge-or-listener, described as follows:

a) A properly shaped source stream is originally generated within a talker, or a port-to-port flow
(consisting of multiple streams) within a bridge.

b) Forwarding of multiple sources to a shared transmission link can produce jitter, due to slight differ-
ences in frame-to-frame spacings.

c) Forwarding of multiple sources to a shared transmission link can produce additional jitter, when
higher-class traffic waits for the completion of previously initiated lower-class transmissions.

d) Bunching becomes apparent in the port-to-port flow, representing the portion of the received (c)
traffic that is forwarded to a specific transmitter port.

e) A shaper delays the forwarding of bunched frames, so that the port-to-port flow is properly shaped.
Delays can be invoked by time stamping frames with an in-the-future transmission time.

The reshaped flow (e) retains the properly shaped properties of the preceding flow (a), while incurring a
maximum delay d through the bridge. These properties ensure a linear maximum delay of n × d, for streams
that flow through N bridges.

Figure 10.2—Reshaped bridge-traffic topology

Figure 10.3—Reshaped bridge-traffic timing

sh
ap

e0
sh

ap
e1

sh
ap

e2

lo
w

er
C

la
ss

sh
ap

e0
sh

ap
e1

sh
ap

e2

lo
w

er
C

la
ss

(a)

(b)

(c)

(d) (e)

c) Lo-class conflict

b) Hi-class conflicts
Legend:

asynchronous frame

interfering flow1

passthrough flow

d) Port-to-port flow

e) Reshaped flow

a) Shaped source
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 109

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
10.1.3 Transmit ports

10.1.3.1 Transmit port structure

The transmit port is responsible for shaping classA traffic (to avoid bunching) and pacing classB/classC
traffic (to avoid classC traffic starvation). Pacing and shaping algorithms assume functionally distinct
queues within each transmit port, as illustrated in Figure 10.4.

The intent of per-class shapers is to avoid priority inversions, wherein higher-class frames are delayed by the
presence of concurrent lower-class traffic. Independent per-class shapers and queues allow enqueued
higher-class and lower-class frames to be forwarded independently, thus avoiding priority inversions within
queues.

The intent of per-source shapers is to avoid increasingly large cumulative bunching delays. The per-source
reshaping eliminates bunches before merging, so that the pass-through bunching severity for 1-bridge and
n-bridge flows are the same.

10.1.3.2 Enqueue reshaping contexts

The desired per-class latencies could not be guaranteed in the presence of classA traffic bunching. To avoid
bunching, frames are shaped before being placed into classified transmit queues.

A shaper is responsible for attaching a time-stamp label to frames. One time-stamp shaper is logically asso-
ciated with each source port and each classA traffic subclass (classA0, classA1, classA2, classA3, classA4,
classA5). E.g, a four-port switch (which has three possible source ports) would have 18 time-stamp shapers.

The purpose of a time-stamp shaper is to associate a time-stamp label with each queued frame. The
time-stamp label represents a time in the future; the frame’s transmission is deferred until the current time
reaches the frame’s time-stamp value. This facilitates the delayed forwarding of successive frames within
each bunch, thus suppressing the bunching effects found on receive-link transmission.

The context for each time-stamp shaper is based on the frame’s receive port and traffic class. While the con-
text is considerably larger than that associated with strict per-port shapers, only one shaper (within each
port) is ever active. Thus, context-switching per-port shaper instances represent a viable implementation
technology

Figure 10.4—Transmit-queue structure

hi
cl

as
sB

low
cl

as
sC

contexts
stampAndPlace

class

mux

shaperA

demultiplexer

cl
as

sA
3

cl
as

sA
2

cl
as

sA
1

cl
as

sA
0

B
mid

cl
as

sA
5

cl
as

sA
4

src0 src1 src2
classA0

classA1

classA2

classA3

classA4

classA5

enqueue-shaper
contexts

forwarding
database

forwardOrDiscard
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 110

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
10.1.3.3 Dequeue shaping and pacing

Transmit ports utilize a shaper and pacer, as illustrated as shaperA and B components within Figure 10.4.
The purpose of these is to ensure forward progress of best-effort control traffic. In concept, this involves a
two-step bandwidth partitioning mechanism:

a) The shaperA limits the cumulative classA and primary classB traffic to 75% of the link bandwidth.
The intent is to ensure that 25% residual bandwidth remains available for lower-class traffic.

b) Pacer B partitions the residual 25% traffic equally between classB and classC traffic.
This ensures that classB traffic is never starved, in the presence of 75% classA traffic.
This ensures that classC traffic is not starved, in the presence of excess classB traffic.

10.1.4 Credit-based shapers and pacers

10.1.4.1 Credit-based shapers

Although multiple shapers are specified within this working paper, the behavior of most shapers can be
characterized by a common algorithm and instance-specific parameters (as done within RPR[B5]). The
shaper’s credits are adjusted down or up, as illustrated in Figure 10.5. The decrement and increment values
typically represent sizes of a transmitted frame and of credit increments in each update interval, respectively.

Crossing below the zero threshold generates a rate-limiting indication, so that offered traffic can stop. By
design, the credit value never goes below the – loLimit extreme. To bound the burst traffic after inactivity
intervals, when no frames are ready for transmission, credits are reduced to zero (if currently higher than
zero) and can accumulate to no more than the zero-value limit.

The hiLimit threshold limits the positive credits, to avoid overflow. When frames are ready for transmission
(and are being blocked by transit traffic), credits can accumulate to no more than this hiLimit value.

In concept, the shaper consist of a token bucket. The number of credits in a token bucket is decremented by
the size of each transmitted frame. The credits in the token bucket are incremented at the end of every credit
update interval. A frame is only transmitted when the credits are positive.

Figure 10.5—Credit-based shapers

0
increasing time

hiLimit

-loLimit

cr
ed

its

incSize
TICK

credit limit when
frames are waiting

credits withdrawn
when no frames
are waiting* credit limit

when no frames
are waiting

send indication withdrawn when
credits reduced below low limit

Legend: decSize : decrement size incSize : increment size TICK : credit update time interval

de
cS

iz
e

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 111

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
10.1.4.2 Credit-based pacers

Although multiple pacers are specified within this working paper, the behavior of most pacers can be
characterized by a common algorithm and instance-specific parameters (as done within RPR[B5]). The
pacer’s credits are adjusted down or up, as illustrated in Figure 10.6. The decrement and increment values
typically represent sizes of debit and credit frames in each update interval, respectively.

Crossing below the zero threshold generates a rate-limiting indication, so that offered traffic can stop. By
design, the credit value never goes below the – loLimit extreme. To bound the burst traffic after inactivity
intervals, when no frames are ready for transmission, credits are reduced to zero (if currently higher than
zero) and can accumulate to no more than the zero-value limit.

The hiLimit threshold limits the positive credits, to avoid overflow. When frames are ready for transmission
(and are being blocked by transit traffic), credits can accumulate to no more than this hiLimit value.

In concept, the pacer consists of a token bucket. The credits in the token bucket are incremented by the size
of each transmitted debit-frame. The number of credits in a token bucket is decremented by the size of each
transmitted credit-frame. A credit-frame is only transmitted when the credits are positive; a debit-frame is
only transmitted when the credits are negative.

10.2 Terminology and variables

10.2.1 Common state machine definitions

The following state machine inputs are used multiple times within this clause.

Figure 10.6—Pacer credit adjustments over time

0
increasing time

hiLimit

-loLimit

cr
ed

its

credit limit when
frames are waiting

credits withdrawn
when no credit
frames are waiting* debits withdrawn

when no debit
frames are waiting

send indication withdrawn when
credits reduced below low limit

Legend: decSize : decrement size incSize : increment size

de
cS

iz
e

in
cS

iz
e

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 112

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
queue values
Enumerated values used to specify shared queue structures.

QP_TX_PUSH—The transmit port’s internal queue, where received frames are placed.
QP_TX_A0—The first of the output port’s classA buffers.
QP_TX_A1—The second of the output port’s classA buffers.
QP_TX_A2—The third of the output port’s classA buffers.
QP_TX_A3—The fourth of the output port’s classA buffers.
QP_TX_A4—The second of the output port’s classA buffers.
QP_TX_A5—The third of the output port’s classA buffers.
QP_TX_BP—The output port’s classB queue.
QP_TX_CP—The output port’s classC queue.
QP_TX_LINK—The output port’s transmit-PHY queue.

10.2.2 Common state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.

currentTime
A value representing the current time.

framed
The contents of a received frame, with supplemental information, as follows:

frame—The contents of a frame.
sourcePort—The source port that received the frame.
txTime—A time-stamp value representing the intended (bunching delayed) transmission time.

10.2.3 Common state machine routines

Max(value1, value2)
Returns the numerically larger of two values.

10.2.4 Variables and routines defined in other clauses

This clause references the following variables and routines defined in Clause 7:

currentTime
See 7.2.2.

Dequeue(queue)
Enqueue(queue, frame)
Min(value1, value2)

See 7.2.3.

10.3 Pacing state machines

10.3.1 TransmitRx state machine

The TransmitRx state machine is responsible for enqueuing traffic (received on other ports and broadcast to
all possible transmitter ports) for possible forwarding. An intent is to transfer each to the appropriate output
queue.

The following subclauses describe parameters used within the context of this state machine.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 113

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
10.3.1.1 TransmitRx state machine definitions

queue values
Enumerated values used to specify shared queue structures.

QP_TX_A0, QP_TX_A1, QP_TX_A2, QP_TX_A3, QP_TX_A4, QP_TX_A5
QP_TX_BP, QP_TX_CP
QP_TX_PUSH

See 10.2.1.

10.3.1.2 TransmitRx state machine variables

class
A value that represents the frame’s priority class.

count
A value that represents the current credits, while miminum and maximum limits are being applied.

currentTime
See 10.2.4.

delay
A value that represents the time delay assigned by the frame’s shaper.

framed
See 10.2.2.

sPtr
Represents a pointer to shaper values.

10.3.1.3 TransmitRx state machine routines

ContextCheck(sourcePort, class)
Returns a pointer to the associated pacer context, with the following fields:

credit—The cumulative credit from past pacer activities.
lastTime—The last time the pacer was invoked.
loLimit—The low limit for shaper credits.
rate—The highest allowed rate of the paced traffic, in bytes-per-second.

Dequeue(queue)
See 10.2.4.

Enqueue(queue, frame)
Places the frame at the tail of the specified queue within the assumed port.

ForwardClass(framed)
The forwarding database is checked. If forwarding is enabled, the priority class is returned.
Otherwise, a NULL class value is returned. The following enumerated values are returned:

CLASS_A0—The associated multicast frame is forwarded as classA traffic.
CLASS_A1—The associated multicast frame is forwarded as classA traffic.
CLASS_A2—The associated multicast frame is forwarded as classA traffic.
CLASS_A3—The associated multicast frame is forwarded as classA traffic.
CLASS_A4—The associated multicast frame is forwarded as classA traffic.
CLASS_A5—The associated multicast frame is forwarded as classA traffic.
CLASS_B—The associated multicast frame is forwarded as classB traffic.
CLASS_C—The associated multicast frame is forwarded as classC traffic.

Max(value1, value2)
See 10.2.3.

Min(value1, value2)
See 10.2.4.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 114

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
10.3.1.4 TransmitRx state table

The TransmitRx state machine is specified in Table 9.2. In the case of any ambiguity between the text and
the state machine, the state machine shall take precedence. The notation used in the state table is described in
3.4.

Row 10.2-1: If a frame has arrived, process that frame.
Row 10.2-2: Otherwise, wait for the next frame to arrive.

Row 10.2-3: When forwarded frames, the shaper context is based on the source port and class.
Row 10.2-4: The non-forwarded frames are discarded.

Row 10.2-5: The classA0 frames are forwarded to the appropriate time-sensitive classA0 queue.
Row 10.2-6: The classA1 frames are forwarded to the appropriate time-sensitive classA1 queue.
Row 10.2-7: The classA2 frames are forwarded to the appropriate time-sensitive classA2 queue.
Row 10.2-8: The classA3 frames are forwarded to the appropriate time-sensitive classA3 queue.
Row 10.2-9: The classA4 frames are forwarded to the appropriate time-sensitive classA4 queue.
Row 10.2-10: The classA5 frames are forwarded to the appropriate time-sensitive classA5 queue.

Table 10.2 — TransmitRx state table

Current

R
ow

Next

state condition action state

START (framed =
Dequeue(QP_TX_PUSH))!=NULL

1 — FIRST

— 2 — START

FIRST (class =
ForwardClass(framed)) != NULL

3 sPtr = ContextCheck(framed.sourcePort, class); NEXT

— 4 — START

NEXT class = = CLASS_A0 5 queue = QP_TX_A0; PACE

class = = CLASS_A1 6 queue = QP_TX_A1;

class = = CLASS_A2 7 queue = QP_TX_A2;

class = = CLASS_A3 8 queue = QP_TX_A3;

class = = CLASS_A4 9 queue = QP_TX_A4;

class = = CLASS_A5 10 queue = QP_TX_A5;

class = = CLASS_B 11 queue = QP_TX_BP; FINAL

— 12 queue = QP_TX_CP;

PACE — 13 count = sPtr–>credit + sPtr–>rate *
 (currentTime – sPtr–>lastTime) – Size(frame);
count = Max(0, Min(sPtr–>loLimit, count));
sPtr–>credit = count;
sPtr–>lastTime = currentTime;
delay = Max(0, – count / sptr–>rate);
framed.txTime = currentTime + delay;

FINAL

FINAL — 14 Enqueue(queue, frame); START
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 115

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Row 10.2-11: The classB frames are forwarded to the appropriate time-sensitive classB queue.
Row 10.2-12: The classC frames are forwarded to the appropriate time-sensitive classC queue.

Row 10.2-13: ClassA frames are time stamped by shapers.
Shaper pacer parameters for each distinct {class, source} pair constrains bunching within each class.
Shaper parameters are updated as in 10.1.4.1: decremented on transmissions and incremented over time.
High and low limits are applied to the updated credits and the last-updated time is updated.
Negative credits correspond to transmission-delay values, which are attached to output-port queued frames.

Row 10.2-12: The received frames are placed into the appropriate queue.

10.3.2 TransmitTx state machine

The TransmitTx state machine is responsible for pacing/shaping classA traffic and shaping classB traffic
destined for 1 Gb/s links. An intent is to support projected MTU-sized transfers and interleaved lower-class
traffic, without exceeding the 1-cycle delay inherent with cycle-synchronous bridge-forwarding protocols.

The following subclauses describe parameters used within the context of this state machine.

10.3.2.1 TransmitTx state machine definitions

BPS
The nominal link transmission rate, in bytes per second.

MTU
The maximum frame size, in bytes.

queue values
Enumerated values used to specify shared queue structures.

QP_TX_A0, QP_TX_A1, QP_TX_A2, QP_TX_A3
QP_TX_BP, QP_TX_CP
QP_TX_LINK

See 10.2.1.
TICK

The amount of time between shaper updates.
Range: [1 bytes transmit time, 16-bit transmit time]
Default: 1 byte transmit time

10.3.2.2 TransmitTx state machine variables

best
A value that represents the weight and identify of the next-best classA queue.

goodness—The smallest weight×wait value associated with alternate classA transmissions.
queue—The queue associated with the best futuristic encapsulated frame.

countA
A speculative value of creditA, used only when the frame is qualitified for transmission.

countB
A speculative value of creditB, used only when the frame is qualitified for transmission.

creditA
A shaper credit whose positive value enables classA/classB primary transmissions.

creditB
A shaper credit value whose positive and negative values enable secondary classB and classC
transmissions respectively.

currentTime
See 10.2.4.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 116

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
frame
The contents of a to-be-transmitted frame.

framed
See 10.2.2.

hiLimitA
A value that limits the cumulative creditA credits.

Value: MTU.
hiLimitB

A value that limits the cumulative creditB credits.
Value: MTU.

limit
A value that limits the amount of transmitted primary classA/classB bandwidth.

loLimitA
A value that limits the cumulative creditA debits.

Value: MTU.
loLimitB

A value that limits the cumulative creditB debits.
Value: MTU.

tickTime
A value that defines when the time-tick interval ends.

10.3.2.3 TransmitTx state machine routines

Dequeue(queue)
See 10.2.4.

Unqueue(queue, weight, &best, currentTime)
Dequeues and returns the most overdue frame from the specified queue, excluding those frames
whose scheduled transmission time is after the specified currentTime value.

framed—The oldest of the overdue frame.
NULL—No frame available.

In the presence of only futuristic frames, a test= weight ×(txTime-currentTime) value is computed.
If best.queue is NULL or test < best.goodness, the best.queue and best.goodness components are
updated to reflect the best alternate classA transmission queue.

Enqueue(queue, frame)
See 10.2.4.

Size(frame)
Returns the size of the specified frame.

StaleFrame(frame, queue)
Indicates whether the specified frame is stale and discardable, as specified by Equation 10.1.

0—The specified frame is not stale.
1—(Otherwise.)

// The value of "internal" depends on the class, as specified in Table 10.1. (10.1)
(index = (QP_TX_A0 - queue),
(currentTime - framed.txTime) > (2 * (MTU + interval[index] * BPS)))

10.3.2.4 TransmitTx state table

The TransmitTx state machine is specified in Table 9.3. In the case of any ambiguity between the text and
the state machine, the state machine shall take precedence. The notation used in the state table is described in
3.4.

Row 10.3-1: Update the classA credits after each tick interval.
Row 10.3-2: Wait for the queue to be emptied, so that something can be transmitted.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 117

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Row 10.3-3: In the absence of classA credits, fairly transmit enqueued classB and classC frames.
Row 10.3-4: Fairly service classB/classC when the classA/classB transmissions are disallowed.

Table 10.3 — TransmitTx state table

Current

R
ow

Next

state condition action state

START (currentTime – tickTime) >= TICK; 1 creditA = Min(hiLimitA,
 creditA + 0.75 * TICK * BPS);
tickTime = currentTime ;

START

!QueueEmpty(QP_TX_LINK) 2 —

creditA < 0 3 — FAIR

— 4 best.queue = NULL; BEST

BEST (framed = Unqueue(queue= QP_TX_A0,
 32, &best, currentTime)) != NULL

5 countA = Min(loLimitA,
 creditA – Size(framed));

NEAR

(framed = Unqueue(queue= QP_TX_A1,
 16, &best, currentTime)) != NULL

6

(framed = Unqueue(queue= QP_TX_A2,
 8, &best, currentTime)) != NULL

7

(framed = Unqueue(queue= QP_TX_A3,
 4, &best, currentTime)) != NULL

8

(framed = Unqueue(queue= QP_TX_A4,
 2, &best, currentTime)) != NULL

9

(framed = Unqueue(queue= QP_TX_A5,
 1, &best, currentTime)) != NULL

10

best.queue != NULL && (framed =
Dequeue(queue= best.queue)) != NULL

11

(framed = Dequeue(QP_TX_BP)) != NULL 12 creditA = Min(loLimitA,
 creditA – Size(framed));

FINAL

— 13 creditA = 0; START

FAIR creditB >= 0 &&
(framed = Dequeue(QP_TX_BP)) != NULL

14 creditB = creditB – Size(framed); FINAL

creditB <= 0 &&
(framed = Dequeue(QP_TX_CP)) != NULL

15 creditB = creditB + Size(framed);

(framed = Dequeue(QP_TX_BP)) != NULL 16 creditB = 0;

(framed = Dequeue(QP_TX_CP)) != NULL 17

— 18 creditB = 0; START

NEAR StaleFrame(framed, queue) 19 — START

— 20 creditA = countA; FINAL

FINAL — 21 Enqueue(
 QP_TX_LINK, framed.frame);

START
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 118

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Row 10.3-5: If enabled and available, a classA0 frame is transmitted.
Row 10.3-6: If enabled and available, a classA1frame is transmitted.
Row 10.3-7: If enabled and available, a classA2 frame is transmitted.
Row 10.3-8: If enabled and available, a classA3 frame is transmitted.
Row 10.3-9: If enabled and available, a classA4 frame is transmitted.
Row 10.3-10: If enabled and available, a classA5 frame is transmitted.
Row 10.3-11: If available, a scheduled-for-the-future classA frame is transmitted.
Row 10.3-12: If enabled and available, a classB frame is transmitted.
Row 10.3-13: Since nothing is ready to be sent, the classA credits are cleared.

Row 10.3-14: If enabled and available, a classB frame is transmitted.
The creditB values is decremented by the transmitted frame size, to avoid classC starvation.
Row 10.3-15: If enabled and available, a classC frame is transmitted.
The creditB values is incremented by the transmitted frame size, to avoid classB starvation.
Row 10.3-16: If available, a classB frame is transmitted.
Row 10.3-17: If available, a classC frame is transmitted.
Row 10.3-18: Otherwise, no frame is transmitted.

Row 10.3-19: Stale frames, whose delivery times cannot be guaranteed, are discarded.
Row 10.3-20: Non-stale frames are not discarded.

Row 10.3-21: The next frame is transmitted and credits are updated accordingly.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 119

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 120

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annexes

Annex A

(informative)

Bibliography

[B1] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.1

[B2] IEEE Std 802-2002, IEEE Standards for Local and Metropolitan Area Networks: Overview and
Architecture.

[B3] IEEE Std 801-2001, IEEE Standard for Local and Metropolitan Area Networks: Overview and
Architecture.

[B4] IEEE Std 802.1D-2004, IEEE Standard for Local and Metropolitan Area Networks: Media Access
Control (MAC) Bridges.

[B5] IEEE Std 802.17-2004, IEEE Standard for Local and Metropolitan Area Networks: Resilient packet
ring (RPR) access method and physical layer specifications.

[B6] IEEE Std 1394-1995, High performance serial bus.

[B7] IEEE Std 1588-2002, IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems.

[B8] IETF RFC 1305: Network Time Protocol (Version 3) Specification, Implementation and Analysis,
David L. Mills, March 19922

[B9] IETF RFC 2030: Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI, D. Mills,
October 1996.

[B10] IETF RFC 2205: Resource Reservation Protocol (RSVP), R. Braden, L. Zhang, S. Berson, and
S. Herzog, S. Jamin, October 1996.

NOTE—This clause should be skipped on the first reading (continue with Annex B).
Although not finalized, this bibliography provides useful material for understanding this working paper.

1IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331, USA (http://standards.ieee.org/).

2IETF publications are available via the World Wide Web at http://www.ietf.org.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 121

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex B

(informative)

Background material

B.1 Related standards

B.1.1 IEEE 1394 Serial Bus

As background, real-time features of an existing (and widely adopted on PCs) serial interface standard are
summarized in this subclause: IEEE 1394-1995 High Performance Serial Bus. To avoid confusion with other
serial buses (serial ATA, etc.), the term “SerialBus” is used within this annex to refer to this specific IEEE
standard.

B.1.1.1 SerialBus topologies

Since its conception, SerialBus evolved from being a shared bus (like Ethernet) to a collection of
point-to-point duplex links, as illustrated in Figure B.1. Arbitrary hierarchical topologies can be supported,
but dotted-line redundant looping connections are only allowed in recent upgrades of the standard.

This physical duplex-link topology could, in concept, support concurrent non-overlapping data transfers.
SerialBus only partially utilizes these capabilities (arbitration and data transfers can be overlapped), because
its arbitration protocols were inherited from its initial conception as an arbitrated shared broadcast bus.

Figure B.1—SerialBus topologies

root

leaf branch branch

leaf leaf leaf branch

leaf leaf
Contribution from: dvj@alum.mit.edu.
122 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
B.1.1.2 Isochronous data transfers

SerialBus isochronous traffic is transmitted at a 8 kHz rate, as illustrated by the 125 µs cycles within
Figure B.2.

In the absence of conflicting traffic, an 8kHz cycle starts with the transmission of a cycleStart frame, as
illustrated in cycle[n+0]. The cycleStart frame triggers the sending of the isochronous frames that have been
queued for cycle[n+0] transmission; these continue until all isochronous traffic has been sent.

After a cycle’s isochronous traffic has been sent, one or more asynchronous transmissions are allowed, as
illustrated in cycle[n+1].

Devices can be paused, compression rates can be variable, and connections can fail. For such reasons, the
amounts of isochronous traffic within each cycle can vary below its scheduled limits, as illustrated in
cycle[n+2].

The asynchronous traffic is not constrained to start at the end of a cycle, but can start at anytime that the
frame is available and isochronous transfers are idle, as illustrated near the end of cycle[n+3]. If started near
the end of a cycle, the isochronous transfer can be forced to start within the following cycle[n+4].

A large late-starting asynchronous frame can extend the start of isochronous transfers, so that spill-over into
the next cycle is possible, as illustrated in cycle[n+5]. Since isochronous transfers have priority, the delay in
the next isochronous cycle is reduced, and the isochronous traffic completes within the boundaries of
cycle[n+6].

B.1.1.3 Isochronous reservations

Even the best of isochronous transfers fails when the offered load exceeds the link capacity. To eliminate this
possibility, isochronous bandwidth is reserved before being consumed. On a single bus (of up to 64 stations),
reservations are controlled through access to compare&swap register, which all isochronous stations pro-
vide, although only one is selected to be used (based on the largest populated device address).

On a multiple bus topology (buses interconnected through bridges), reservations management is more com-
plex. In this case, frames are passed from the source to its desired-to-be-connected destination(s), reserving
reservations along the data-transmission path. As is true on a single bus, reservation requests are rejected
when insufficient bandwidth capacity remains. This is not described in the baseline 1394 specification, but is
described in a follow-on P1394.1 draft (currently progressing through Sponsor ballot).

Figure B.2—Isochronous data transfer timing

cycle[n+0] cycle[n+1] cycle[n+2] cycle[n+3] cycle[n+4] cycle[n+5] cycle[n+6]

Legend: cycleStart isochronous frame asynchronous frame
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 123

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
B.1.1.4 SerialBus experiences

Experiences, as follows:

a) Cycle slip. Cycle-slip reduces design complexity, permits transmissions of large asynchronous
frames, and improves asynchronous traffic throughput. Transmission precision is unnecessary:
error in the cycleStart transmission time is encoded within that frame, allowing clock-slave devices
to accurately adjust their phase-lock-loops, regardless of observed cycleStart transmission times.

b) Cycle time. An 8 kHz cycle rate represents a good trade-off between efficiency (the overhead is
less, when cycle times are longer) and latency (the latency is less, when cycle times are longer).

c) Pseudo frames. The SerialBus isochronous frames have a distinct (6-bit channel number)
addressing scheme. In hindsight, using a standard frame header (destination address and source
address) would have many benefits, including the simplification of bridges between segments.

d) Service classes. SerialBus has evolved to support three classes of traffic: isochronous, prioritized
asynchronous, and baseline asynchronous. These are roughly equivalent to the classA, classB, and
classC service classes defined for RPR (see B.1.2).

B.1.2 Resilient packet ring (RPR)

As background, the time-sensitive capabilities associated with IEEE P802.17 Resilient packet ring (RPR)
are summarized in this subannex. RPR is a metropolitan area network (MAN) that can be transparently
bridged to Ethernet.

B.1.2.1 RPR rings

RPR employs a ring structure using unidirectional, counter-rotating ringlets. Each ringlet is made up of links
with data flow in the same direction. The ringlets are identified as ringlet0 and ringlet1, as shown in
Figure B.3.

Stations on the ring are identified by an IEEE 802 48-bit MAC address. All links on the ring operate at the
same data rate, but may exhibit different delay properties. Ring circumference of less than 2,000 kilometers.
are assumed.

The portion of a ring bounded by adjacent stations is called a span. A span is composed of unidirectional
links transmitting in opposite directions.

Figure B.3—RPR rings

S0 S1 S2 S3 S4 S5 … S253 S254

ringlet1
ringlet0

span links

< 2,000 km
Contribution from: dvj@alum.mit.edu.
124 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
B.1.2.2 RPR resilience

RPR stations are resilient, in that communications can continue in that operations continue in the presence of
single-point failures, as illustrated in Figure B.4. Resilient features can recover from failed links by
bypassing the frame-manipulation portions of a partially failed station (see Figure B.4-b), thus avoiding a
failed station (see Figure B.4-c and Figure B.4-d) or a failed span (see Figure B.4-e and Figure B.4-f).

B.1.2.3 RPR spatial reuse

RPR efficiently strips local unicast frames at their destination, so that bandwidth on unaffected links is
available for other frame transfers, as illustrated in Figure B.5-a. A unicast frame is added by the source
station, and is stripped at the destination station. The frame is normally copied at the destination station for
delivery to the local MAC client or MAC control entity. If ringlet selection is based on shortest hop-count, a
response frame is likely to take an opposing ringlet path, as illustrated in Figure B.5-b.

Figure B.4—RPR resilience

Figure B.5—RPR destination stripping

a) Failure point

S1 S2 S3 S4 S5 S6 S7

b) Passthrough failure

S1 S2 S3 S4 S5 S6 S7

c) Steered station failure

S1 S2 S3 S4 S5 S6 S7

d) Wrapped station failure

S1 S2 S3 S4 S5 S6 S7

e) Steered span failure

S1 S2 S3 S4 S5 S6 S7

f) Wrapped span failure

S1 S2 S3 S4 S5 S6 S7

S1 S2 S3 S4 S5 S6 S7

a) Unicast on ringlet0

add copy
strip

b) Unicast on ringlet1

S1 S2 S3 S4 S5 S6 S7

copy addstrip
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 125

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The RPR frame transmissions on one link are largely independent of frame transmissions on other link. This
allows per-link bandwidths to be utilized beyond that possible with IEEE Std 802.5-1998 Token Ring or
ANSI FDDI ring based LAN technologies. Spatial reuse is illustrated in Figure B.6.

Concurrent per-ringlet transmissions (see Figure B.6-a) allow stations bandwidths to exceed individual link
capacities. The effective bandwidths of non-overlapping transfers (see Figure B.6-b) are similarly improved.

B.1.2.4 RPR service classes

RPR provides transit queues, which allow received traffic to be queued during a station’s frame
transmission, as illustrated in Figure B.7. The highest priority frames are classA and have their own bypass
buffer; the lower priority frames are classB and classC, and share the use of a distinct bypass buffer. To
minimize the classA latencies, servicing of the classA buffer has precedence over servicing of the
classB/classC buffer.

During the initial phases of investigation, techniques for allowing newly-arrived classA traffic to preempt an
active classB/classC frame transmission were considered. While such techniques are practical, the metro-
politan area networks (MANs) environments limits the effectiveness of such techniques; at these longer
distances, the link delays can often exceed the retransmission-blocked delays within individual stations.

Figure B.6—RPR spatial reuse

Figure B.7—RPR service classes

S1 S2 S3 S4 S5 S6 S7

a) Concurrent ringlet transfers b) Reused allocated bandwidth

S1 S2

S1 S2 S3 S4 S5 S6 S7
datapath0

datapath1
classB/C
classA

receive
Contribution from: dvj@alum.mit.edu.
126 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex C

(informative)

Encapsulated IEEE 1394 frames

To illustrate the sufficiency and viability of the RE isochronous services, the transformation of IEEE 1394
packets is illustrated. A connection between an IEEE 1394 talker, IEEE 1394 adapter, intermediate Ethernet
links, IEEE 1394 adapter, and an IEEE 1394 listener is assumed.

C.1 Hybrid network topologies

C.1.1 Supported IEEE 1394 network topologies

This annex focuses on the use of RE to bridge between IEEE 1394 domains, as illustrated in Figure C.1. The
boundary between domains is illustrated by a dotted line, which passes through a SerialBus adapter station.

C.1.2 Unsupported IEEE 1394 network topologies

Another approach would be to use IEEE 1394 to bridge between IEEE 802.3 domains, as illustrated in
Figure C.2. While not explicitly prohibited, architectural features of the topology-supportive adapters and
encapsulated-frame formats are beyond the scope of this working paper.

Figure C.1—IEEE 1394 leaf domains

Figure C.2—IEEE 802.3 leaf domains

IEEE 1394IEEE 1394 IEEE 802.3

IEEE 1394IEEE 802.3 IEEE 802.3
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 127

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
C.2 1394 isochronous frame formats

C.2.1 1394 isochronous frame formats

An IEEE 1394 isochronous frame contains header and payload components, as illustrated by Figure C.3.
While all components could be encapsulated into an Ethernet frame, some of these fields would be redun-
dant (with fields in the encapsulating frame) or unnecessary.

C.2.2 Encapsulated IEEE 1394 frame payload

For uniframe groups, the IEEE 1394 isochronous frames are modified slightly and placed within an Ethernet
serivceDataUnit. The format of this serviceDataUnit is illustrated by Figure C.4.

C.2.2.1 subType: A 3-bit field that distinguishes encapsulated 1394 frames from other formats with the
same protocolType specifier.

C.2.2.2 cycleCount: A 13-bit field that identifies the isochronous cycle during which this frame was trans-
mitted. For the first frame within any group, this information is needed to perform CIP header updates
(see C.4). These fields also provide error-detecting consistency checks.

Figure C.3—IEEE 1394 isochronous packet format

Figure C.4—Encapsulated IEEE 1394 frame payload

data_length tag tcodechannel sy

zero pad (if necessary)

data_CRC

header_CRC

MSB LSB

dataField

cycleCount tcode sy

zero pad (if necessary)

subType

MSB LSB

flag counts

dataField
Contribution from: dvj@alum.mit.edu.
128 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
C.2.2.3 flag: A 2-bit field that distinctively identifies the frame type, as specified in Table C.1.

C.2.2.4 counts: A 6-bit field that identifies additional frame-group parameters, as specified in Table C.2.
When interpreted as a partCount value, this effectively identifies the number of zero-pad bytes. When
interpreted as a frameCount value, the values of {n-1,n-2,…,1} label the first through next-to-last frames of
an n-frame multiframe group.

C.2.2.5 dataField: For a uniframe group, the contents of the SerialBus ‘data field’ bytes.

Table C.1—flag field values

Value Name Description

0 ONLY Only frame within a uniframe group

1 LAST Final frame within a multiframe group

2 CORE Intermediate frame within an multiframe group

3 LEAD First frame within a multiframe group

Table C.2—counts field values

flag Name Description

ONLY partCount The LSBs of the residual data_length field.

LAST

CORE frameCount A sequence identifier for frames within the group

LEAD
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 129

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
C.3 Frame mappings

C.3.1 Synchronous frame mappings

Adapters are required to manage differences between IEEE 1394 isochronous packets and RE frames, as
illustrated in Figure C.5.

The IEEE 1394 to Ethernet frame translation involves the following:

a) The IEEE 1394 data_length field is discarded
(The data_length information can be reconstructed from the length of the received frame.)

b) The IEEE 1394 tag field is ignored (this connection context is known to higher layer software).

c) The IEEE 1394 channel field becomes an index into an array of communication contexts.
The selected context provides the plugID value, the least-significant portion of the Ethernet da.

d) The IEEE 1394 isochronous transmission cycle number is copied to the Ethernet cycleCount field.
(The cycle number is the cycle_time_data.cycle_count field from the preceding cycle-start packet.)

e) The IEEE 1394 tcode and sy fields are copied to the corresponding Ethernet fields.

f) The data_length, header_CRC, and data_CRC fields are checked; if any are found to be incon-
sistent, no RE frame is created (the presumed to be corrupted frame is dropped).

NOTE — Unlike IEEE 1394, no synchronous frame transformations are required when passing through bridges. This is
consistent with 802.3 specifications, which leave frames unmodified when passing through bridges.

The Ethernet to IEEE 1394 frame translation involves the following:

a) Invalid Ethernet frames (multicast sa address, too-short or too-long, or bad fcs) are discarded.

b) The IEEE 1394 data_length field is derived from the Ethernet frame length.

c) The context with the matching streamId (sa concatenated with plug) values is selected.
This context provides the provides the channel field value.

d) The IEEE 1394 tag and tcode fields are set to identify isochronous IEEE 1394 packets.

e) The IEEE 1394 tcode and sy fields are copied from the Ethernet frame.

f) The IEEE 1394 data_field is directly mapped to the RE content field.
(IEC61883-type content may have its synchronization fields updated as needed, see C.4.)

g) The IEEE 1394 header_CRC and data_CRC fields are computed.

Figure C.5—Conversions between IEEE 1394 packets and RE frames

typeLength

synchronous block

sa

adapter

1394 isochronous cycle

Ethernet bridge
adapter

1394 isochronous cycle
data_CRC

data_length
tag channel

tcode sy
header_CRC

data field

data_CRC

data_length
tag channel

tcode sy
header_CRC

data_field

4

n

2
1

4
1

6

cycleCountst
2
2

fcs4

flag count
tcode sy

1
1

data_field

streamLabel4
plugID2map[n]

match

cycle_count

adjust
Contribution from: dvj@alum.mit.edu.
130 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
C.3.2 Multiframe groups

To avoid exceeding the maximum Ethernet frame size, large frames are decomposed into multiframe groups.
The initial frames within the multiframe group are distinctively identified by their counts values, as
illustrated in Figure C.6.

The final frame within the group is identified by its distinctive flag=LAST identifier. For this frame, the
counts field specifies the number of data bytes within the frame, modulo 64.

C.4 CIP payload modifications

Isochronous 1394 data packets may conform to a common isochronous packet (CIP) format, as defined by
IEC 61883/FIS. The presence of a CIP format is indicated by a tag=1 bit in the Serial Bus isochronous
packet header, as illustrated in Figure C.7. The white shading identifies those fields (when present and valid)
are modified when passing through a RE-to-1394 adapter.

Figure C.6—Multiframe groups

Figure C.7—Isochronous 1394 CIP packet format

typeLength
talkerSa6

cycleCountst
2
2

fcs4

LEAD counts=0
tcode sy

1
1

data_field

streamLabel4
plugID2

4*i

typeLength
talkerSa6

cycleCountst
2
2

fcs4

CORE counts=2
tcode sy

1
1

data_field

streamLabel4
plugID2

4*j

typeLength
talkerSa6

cycleCountst
2
2

fcs4

CORE counts=1
tcode sy

1
1

data_field

streamLabel4
plugID2

4*k

typeLength
talkerSa6

cycleCountst
2
2

fcs4

LAST counts
tcode sy

1
1

data_field

streamLabel4
plugID2

n

frame transmission order

cycle_count cycle_offsetreserved

data_CRC

resdbssid

fmt depends syt cycle_offset

fn qpc

sp
h dbc

eo
h

fo
rm

block[0]

eo
h

fo
rm

block[…]

block[2fn-1]

CIP
header

CIP
payload

data_length channel tCode sytag=1

header_CRC 13
94

he
ad

er

MSB LSB
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 131

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The sid field must be set to the physical ID of the talking portal. This allows the listener to identify the
bridge’s talker portal.

Two-quadlet CIP headers may also contain absolute time stamp information or indicate its presence else-
where in the packet’s data payload. Absolute time stamps may be found in one or more places in isochro-
nous:

— the syt field of the second quadlet of the CIP header if the fmt field in that quadlet has a value
between zero and 1F16, inclusive; and

— the cycle_count and cycle_offset fields of all of the source packet headers (SPH) within the
isochronous subaction.

Both of these time stamps are specified as absolute values that specify a future cycle time. Since isochronous
subactions experience delays when routed over RE, these time stamps must be adjusted by the difference in
cycle times between the talker and the RE-to-1394 bridge. The delay, in units of cycles, is the difference
between the talker and 1394 adapter’s transmission times, as specified in Equation 3.2.

latency= (adapter.sendCycle - syncBock.talkerCycle); (3.1)

When the syt or cycle_count fields are present, their adjustments are specified by Equation 3.2. Because
IEEE 1394 constrains cycle_count to the range zero to 7999, inclusive, the time stamp adjustments must be
performed modulus 8000

transmitted.syt = (received.syt + latency) % 8000; (3.2)
transmitted.cycle_count = (received.cycle_count + latency) % 8000; (3.3)

C.4.1 Time-of-day format conversions

The difference between RE and IEEE 1394 time-of-day formats is expected to require conversions within
the RE-to-1394 adapter. Although multiplies are involved in such conversions, multiplications by constants
are simpler than multiplications by variables. For example, a conversion between RE and IEEE 1394
involves no more than two 32-bit additions and one 16-bit addition, as illustrated in Figure C.8.

Figure C.8—Time-of-day format conversions

seconds cycleOffsetcycleCount

seconds fraction

a
b = (a*125)>>7;

cycles fraction

c
d = (c*3)>>6;

b

d

Notes:
 Two 32-bit additions for b:

b = ((a<<7) - (a<<2) + a) >> 7;
 One 16-bit additions for d:

d = ((c<<2) + c) >> 6;

MSB LSB
Contribution from: dvj@alum.mit.edu.
132 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
C.4.2 Grand-master precedence mappings

Compatible formats allow either an IEEE 1394 or IEEE 802.3 stations to become the network’s grand-mas-
ter station. While difference in format are present, each format can be readily mapped to the other, as illus-
trated in Figure C.9:

Figure C.9—Grand-master precedence mapping

macAddressHisp
MSB LSB

systemID pad

eui64

sp systemID

0

macAddressLo

macAddressHi pad macAddressLo
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 133

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex D

(informative)

Review of possible alternatives

D.1 Clock-synchronization alternatives

D.1.1 Statistical averaging

Wide-area network based protocols distribute time by enclosing time-stamp values in specialized calibration
frames. Higher level frame-processing protocols are responsible for determining the average transmission
delays through the interconnect, so that calibration-frames can be used for accurate time-synchronization
purposes.

The frame transmission latency is highly variable, based on delays incurred when waiting behind other
previously-queue frames. Long-term averaging is typically used to cope with nonrandom delays, whether
they be periodic, biased, or time-of-day dependent.

The use of long-time averages has limited applicability within the home, where small numbers of streams
can exhibit very non-random statistical behaviors. Furthermore, long-term averaging intervals restricts
transient-event response times, such as the insertion or removal of associated clock-synchronized devices.

D.1.2 Phase-locked synchronization

Local-area network based protocols, such as IEEE Std 1588, specify communication protocols for commu-
nicating timer-difference errors from a local clock-master station to its neighboring clock-slave station.
However, this standard does not define how the clock-slave station compensates its values to track the time
reference of the neighboring clock-master station.

The most common method of synchronizing clock-master and clock-slave devices involves phase-lock-loop
(PLL) circuits. Such circuits integrate sensed differences between the clock-master and clock-slave devices,
using these integrated values to adjust the clock-slave operating frequency.

The clock-slave resident PLLs are useful for reducing the transmission-induced timing-error jitters.
However, the response time of a cascaded set of PLLs degrades as the number of cascaded devices increases.
Also, the dynamics of more-responsive (gain peaking) cascaded PLL can be undesirable, causing the devia-
tions of later stages to exponentially increase with their distance from the source, a characteristic commonly
called the whip-lash effect.

D.1.3 Offset-locked synchronization

Another possible IEEE 1588 synchronization technique involves adding an offset value to the clock-slave
device, where the value of that offset is based on the time differences sensed between the clock-master and
clock-slave stations.

Constantly updated offsets ensures tracking of the clock-slave to the clock-master, without the response-time
and whiplash effects normally associated with PLLs. However, since the clock rates remain unchanged,
clock drifts can cause significant forward or backward jumps of the synchronized clock-slave timer. These
discontinuities and transmit-time uncertainties can limit the accuracies of the slave-resident timer values.
Contribution from: dvj@alum.mit.edu.
134 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.2 Pacing alternatives

D.2.1 Higher level flow control

Higher layer protocols (such as the flow-control mechanisms of TCP) throttle the source to the bandwidth
capabilities of the destination or intermediate interconnect. With the appropriate excess-traffic discards and
rate-limiting recovery, such higher layer protocols can be effective in fairly distributing available bandwidth.

For real-time applications, however, the goal is to limit the number of talkers (so they can each have suffi-
cient bandwidth), not to distribute the insufficient bandwidth fairly.

D.2.2 Over-provisioning

Over-provisioning involves using only a small portion of the available bandwidth, so that the cumulative
bandwidth of multiple applications rarely exceeds that of the interconnect. This technique works well when
frame losses are expected (voice over IP delays and gaps are similar to satellite-connected long distance
phone calls) or when large levels of cumulative bandwidth ensure a tight statistical bound for maximum
bandwidth utilization.

For most streaming applications within the home, however, frame losses are viewed as equipment defects
(stutters in video or audio streams), which correspond to eventual loss of brand name values. Also, the exist-
ing kinds of transfers in a home (disk-to-disk, memory-to-display, tuner-to-display, multi-station games,
etc.) do not (nor should not) have bandwidth limits.

D.2.3 Strict priorities

Existing networks can assign priority levels to different classes of traffic, effectively ensuring delivery of
one before delivery of the other. One could provide the highest priority to the video traffic (with large band-
width requirements), a high priority to the audio traffic (lower bandwidth, but critical), and the lowest prior-
ity level to file transfers. A typical number of priorities is eight.

Strict priority protocols are deficient in that the priorities are statically assigned, and the assignments (based
on traffic class) often do not correspond to the desires of the consumer (my PBS show, rather than my
teenager’s games, perhaps). For example, priorities could result in transmission of two video streams, but
not the audio associated with either.

Strict priority protocols usually assign fixed application-dependent priorities, assigning one priority to video
and another to audio, for example. Mixed traffic (such as video streams with encapsulated audio) are not
easily classified in this manner.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 135

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.3 IEEE 1394 alternative

Isochronous data transfers are well supported by the IEEE 1394 Serial Bus family of standards. This IEEE
standards family (also called FireWire and iLink) is herein referred to simply as IEEE 1394.

Existing consumer equipment (digital camcorders, current generation high-definition televisions (HDTVs),
digital video cassette recorders (DVCRs), digital video disk (DVD) recorders, set top boxes (STBs), and
computer equipment intended for media authoring) support the IEEE 1394 interconnect. While some ver-
sions limit cable lengths to 4.5 meters, other physical layers support considerably longer lengths. A hub-like
connection of IEEE 1394 devices supports seamless real-time services.

Although IEEE 1394 supports longer-reach physical layers, not all devices are compatible with these physi-
cal layers, or the distinct connectors associated with distinct physical layers. The RE protocols are based on
Ethernet connections, a vast majority of which are based on 100 meter cables and the RJ-45 connector.

The IEEE 1394 isochronous packet addressing was designed with single-bus topologies in mind, which
complicates the design of such bus bridges. The RE synchronous frames are designed with multiple stations
and bridges in mind.

IEEE 1394 packets are differentiated by bus-local channel identifier, which must be allocated from a central
per-bus resources and updated when isochronous packets pass through bridges. Mechanism must therefore
be defined to agree upon the central per-bus resource, from among multiple available resources, and to rene-
gotiate that agreement when any of the current central per-bus resources are removed.

Furthermore, absolute time stamps within some IEEE 1394 isochronous packets must be adjusted when
passing through bridges. Such data-format dependent adjustments complicate bridge designs; their data-for-
mat dependent nature would most likely inhibit their successful adoption within an Ethernet bridge standard.
Contribution from: dvj@alum.mit.edu.
136 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex E

(informative)

Time-of-day format considerations

To better understand the rationale behind the ‘extended binary’ timer format, other formats are evaluated and
compared within this annex.

E.1 Possible time-of-day formats

E.1.1 Extended binary timer formats

The extended-binary timer format is used within this working paper and summarized herein. The 64-bit
timer value consist of two components: a 32-bit seconds and 32-bit fraction fields, as illustrated in
Figure 5.1.

The concatenation of 32-bit seconds and 32-bit fraction field specifies a 64-bit time value, as specified by
Equation E.1.

time = seconds + (fraction / 232) (E.1)
Where:

seconds is the most significant component of the time value (see Figure 5.1).
fraction is the less significant component of the time value (see Figure 5.1).

E.1.2 IEEE 1394 timer format

An alternate “1394 timer” format consists of secondCount, cycleCount, and cycleOffset fields, as illustrated
in Figure E.2. For such fields, the 12-bit cycleOffset field is updated at a 24.576MHz rate. The cycleOffset
field goes to zero after 3171 is reached, thus cycling at an 8kHz rate. The 13-bit cycleCount field is
incremented whenever cycleOffset goes to zero. The cycleCount field goes to zero after 7999 is reached, thus
restarting at a 1Hz rate. The remaining 7-bit secondCount field is incremented whenever cycleCount goes to
zero.

Figure 5.1—Complete seconds timer format

Figure E.2—IEEE 1394 timer format

seconds fraction

32 bits32 bits

MSB LSB

secondCount cycleOffsetcycleCount

13 bits 12 bits7 bits

MSB LSB
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 137

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
E.1.3 IEEE 1588 timer format

IEEE 1588 timer format consists of seconds and nanoseconds fields components, as illustrated in Figure E.3.
The nanoseconds field must be less than 109; a distinct sign bit indicates whether the time represents before
or after the epoch duration.

E.1.4 EPON timer format

The IEEE 802.3 EPON timer format consists of a 32-bit scaled nanosecond value, as illustrated in
Figure E.4. This clock is logically incremented once each 16 ns interval.

E.1.5 Compact seconds timer format

An alternate “compact seconds” format could consist of 8-bit seconds and 24-bit fraction fields, as
illustrated in Figure E.5. This would provided similar resolutions to the IEEE 1394 timer format, without the
complexities associated with its binary coded decimal (BCD) like encoding.

E.1.6 Nanosecond timer format

An alternate “nanosecond” format could consists of 2-bit seconds and 30-bit nanoSeconds fields, as
illustrated in Figure E.6.

Figure E.3—IEEE 1588 timer format

Figure E.4—EPON timer format

Figure E.5—Compact seconds timer format

Figure E.6—Nanosecond timer format

seconds
MSB LSB

nanoSecondss

Legend: s: sign

nanoTicks
MSB LSB

seconds = nanoTicks/62500000

seconds fraction

24 bits8 bits

MSB LSB

sec nanoSeconds

30 bits2 bits

MSB LSB

Legend: sec: seconds
Contribution from: dvj@alum.mit.edu.
138 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
E.2 Time format comparisons

To better understand the relative benefits of different time formats, the relevant properties are summarized in
Table E.1. Counter complexity is not included in the comparison, since the digital logic complexity (see
7.1.11) is comparable for all formats.

Column 1: A desirable property is the support of a wide range of second values, to eliminate the need for
defining/coordinating/implementing auxiliary seconds-synchronization protocols. The 136-year range of the
extended binary format is sufficient for this purpose.

Column 2: A desirable property is a fine-grained resolution, sufficient to measure each bit-transmission
times. The ‘extened binary’ provides the most precision; exceeds the resolution of expected cost-effective
time-capture circuits.

Column 3: Computation of time differences involves the subraction of two timer-snapshot values. Subtrac-
tion of ‘extended binary’ numbers involving standard 64-bit binary arithmetic; no special field-overlow
compensations are required. Only the less precise ‘compact seconds’ and nanoseconds formats are simpler,
due to the reduced 32-bit size of the timer values.

Column 4: Time values must oftentimes be compared to externally provided values (e.g., timers extracted
from GPS or stratum-clock sources). For these purposes, the availability of a seconds component is desired.
The ‘extended binary’ format provides a seconds component that can be easily extracted or such purposes.

Table E.1—Time format comparison

Name Subclause

R
an

ge

P
re

ci
si

on

A
ri

th
m

et
ic

Se
co

nd
s

D
ef

in
ed

st
an

da
rd

s

Column — 1 2 3 4 5

extended binary TBD 136 years 232 ps Good Good RFC 1305 NTP,
RFC 2030 SNTPv4

IEEE 1394 E.1.2 128 s 30 ns Poor Good IEEE 1394

IEEE 1588 E.1.3 272 years 1 ns Fair Good IEEE 1588

IEEE 802 (EPON) E.1.4 69 s 16 ns Good Poor IEEE 802.3

compact seconds E.1.5 256 s 60 ns Best Good —

nanoseconds E.1.6 4 s 1 ns Best Poor —
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 139

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex F

(informative)

Bursting and bunching considerations

F.1 Topology scenarios

F.1.1 Bridge design models

The sensitivity of bridges to bursting and bunching is highly dependent on the queue management protocols
within the bridge. To better understand these effects, a few bridge design models are evaluated, as illustrated
in Figure F.1.

The input-queue design (see Figure F.1-a) assumes that frames are queued in receive buffers. The transmitter
accepts frames are from the receivers, based on service-class precedence. In the case of a tie (two receivers
can provide same-class frames), the lowest numbered receive port has precedence. This model best illus-
trates nonlinear bunching problems.

The output-queue design (see Figure F.1-b) assumes that received frames are queued in transmit buffers.
Within each service class, frames are forwarded in FIFO order. This model best illustrates linear bunching
problems (for steady flows), but also exhibits nonlinear bunching (for nonsteady flows).

The throttled-output design (see Figure F.1-c) is an enhanced output-queue model, with an output shaper to
limit transmission rates. The purpose of the output shaper is to ensure sufficient nonreserved bandwidth for
less time-sensitive control and monitoring purposes. The model illustrates how shapers can worsen the out-
put-queue bridge’s bunching behaviors.

The retimed-outputs design (see Figure F.1-d) reduces (and can eliminate) bunching problems by detecting
late-arrival frames at the receivers. Several synchronous-cycle buffers are provided at the transmitters, to
compensate for transmission delays in the received data.

Figure F.1—Bridge design models

a) Input-queues

c3

c0

c1

c2

b) Output-queues

c0

c1

c2

c3

c) Throttled outputs

c3 sr

sr

sr

sr c0

c1

c2

d) Retimed outputs

c3 sr

sr

sr

sr c0

c1

c2

sync

sync

sync

sync
Contribution from: dvj@alum.mit.edu.
140 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.1.2 Three-source hierarchical topology

A hierarchical topology best illustrate potential problems with bunching, as illustrated in Figure F.2. Traffic
from talkers {a0,a1,a2} flows into bridge B. Bridge B concentrates traffic received from three talkers, with
the cumulative b3 traffic sent to c3. Identical traffic flows are assumed at bridge ports {c0,c1,c3}, although
only one of these sources is illustrated. Bridges {C,D,E,F,G,H} behave similarly.

F.1.3 Six-source hierarchical topology

Spreading the traffic over multiple sources, as illustrated in Figure F.3, exasperates bursting and bunching
problems. Traffic from talkers {a0,a1,a2,a3,a4,a5} flows into ports on bridge B. Bridge B concentrates
traffic received from six talkers, with the cumulative b6 traffic sent to c6. Identical traffic flows are assumed
at bridge ports {c0,c1,c3,c3,c4,c6}, although only one of these sources is illustrated. Bridges {C,D,E,F,G,H}
behave similarly.

Figure F.2—Three-source topology

Figure F.3—Six-source topology

i3

h0

h1

h2

h3

g0

g1

g2

g3

f0

f1

f2

f3

e0

e1

e2

e3

d0

d1

d2

d3

c0

c1

c2

c3

b0

b1

b2

b3

a0

a2

a1

B C D E F G H

talkers listener

b0

b1

b2

b3

c0

c1

c2

c3

d0

d1

d2

d3

h0

h1

h2

h3

i3

B C D E F G H

talkers listener

a0

a1

a2

a3

a4

a5

c4

c5

c6

b4

b5

b6

d4

d5

d6

e0

e1

e2

e3

e4

e5

e6

f0

f1

f2

f3

f4

f5

f6

g0

g1

g2

g3

g4

g5

g6

h4

h5

h6
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 141

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2 Bursting considerations

F.2.1 Three-source bursting scenario

A troublesome bursting scenario on a 100 Mb/s link can occur when small bandwidth streams coincidentally
provide their infrequent 1500 byte frames concurrently, as illustrated in Figure F.4. Even though the cumula-
tive bandwidths are considerably less than the capacity of the 100 Mb/s links, significant delays are incurred
when passing through multiple bridges.

Figure F.4—Three-source bunching timing; input-queue bridges

b0

b2

b1

b3

c0

c1

c2

c3

d0

d1

d2

d3

9.625

3.375

a0

a1

a2

26.25

Legend:

asynchronous frame

interfering flow0

interfering flow1

measured flow

0 5

10

10 15 20 255

125µs
Contribution from: dvj@alum.mit.edu.
142 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.1.1 Cumulative bunching latencies

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.1 and plotted in
Figure F.5.

The values within this table are computed based on Equation F.1.

delay[n] = mtu × (n + pn) (F.1)

Where:
mtu (maximum transfer unit) is the maximum frame size
n is the number of hops from the source
p is the number of receive ports in each bridge.

Conclusion: The classA traffic bandwidths should be enforced over a time interval that is on the order of an
MTU size (120 µs), so as to avoid excessive delays caused by coincidental back-to-back large-block
transmissions.

Table F.1—Cumulative bursting latencies

Topology Units
Measurement point

A B C D E F G H

3-source
(see F.2.2.1)

mtu 1 4 11 30 85 248 735 2194

ms .120 .480 1.32 3.6 10.2 29.6 88.2 263

6-source
(see F.2.2.2)

mtu 1 7 38 219 1300 7781 46662 229943

ms .120 .840 4.56 26.3 156 934 5600 27600

Figure F.5—Cumulative coincidental burst latencies

A B C D hopsE F G H

1000

10

100

1ms

a) 3-source coincidental burst latency

A B C D hops

b) 6-source coincidental burst latency

1000

10000

100000

1ms

10

100

E F G H
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 143

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.2 Bunching scenarios; input-queue bridges

F.2.2.1 Three-source bunching; input-queue bridges

To illustrate the effects of worst case bunching on input-queue bridges, specific flows are illustrated in
Figure F.6. Bridge ports {b0,b1,b2} concentrates traffic from three talkers; one third of the cumulative traf-
fic is forwarded through b3. Each stream consumes 25% of the link bandwidth; 25% is available for asyn-
chronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c3},…,{e0,e1,e3}, only illustrate the passing-through
listener traffic; the remainder of the traffic is assumed to be routed elsewhere.

Figure F.6—Three-source bunching; input-queue bridges

25.7

b0

b2

b1

b3

c0

c1

c2

c3

d0

d1

d2

d3

e0

e1

e2

e3

8.25

3.5

a0

a1

a2

17.50

34.25

Legend:

asynchronous frame

interfering flow0

interfering flow1

measured flow

16

0 5

5 10

20 25 30 35 40 45

15

10 15 20 25 30 357

e2

45 50 65 60 65

12.8

6.1

49.8

125µs
Contribution from: dvj@alum.mit.edu.
144 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.2.2 Six-source bunching; input-queue bridges

To better illustrate the effects of worst case bunching on input-queue bridges, specific flows are illustrated in
Figure F.7. Bridge ports {b0,b1,b2,b3,b4,b5} concentrates traffic from three talkers; one sixth of the cumu-
lative traffic is forwarded through b6. Each of six streams consumes 12.5% of the link bandwidth, so that
25% is available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2,c3,c4,c6} only illustrate passing-through traffic; the
remainder of the traffic is routed elsewhere.

Figure F.7—Six source bunching timing; input-queue bridges

7.1

a0

a1

a2

Legend:
asynchronous frame
interfering flow0
interfering flow1
interfering flow2
interfering flow3
interfering flow4
measured flow5a3

a4

a5

4.875

b0

b1

b2

b3

b4

b5

b6

c0

c2

c3

c4

c5

c6

c1

14.50

0 5

10 15

c5
20

16.125

125µs
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 145

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.2.3 Cumulative bunching latencies, input-queue bridge

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.2 and plotted in
Figure F.8.

The first few numbers are generated using graphical techniques, as illustrated in Figure F.2.2.2. The follow-
ing numbers are estimated, based on Equation F.2.

delay[n+1] = (mtu + delay[n]) × (1 / (1−0.75 ×(p-1)/p)) (F.2)

Where:
mtu (maximum transfer unit) is the maximum frame size
rate is the fraction of the bandwidth reserved for class A traffic, assumed to be 0.75
n is the number of hops from the source
p is the number of receive ports in each bridge.

Conclusion: A FIFO based output-queue bridge should be used. Alternatively (if input queuing is used),
received frames should be time-stamped to ensure FIFO like forwarding.

Table F.2—Cumulative bunching latencies; input-queue bridge

Topology Units
Measurement point

A B C D E F G H

3-source
(see F.2.2.1)

cycles 0.125 3.5 8.25 17.5 34.25 (70.75) (143.2) (288.2)

ms 0.01 0.44 1.03 2.19 4.28 8.84 17.9 36.0

6-source
(see F.2.2.2)

cycles 0.125 4.875 14.50 (39.33) (107.2) (288.2) (771) 2058

ms 0.01 0.61 1.81 4.92 13.4 36.0 96.4 257

Figure F.8—Cumulative bunching latencies; input-queue bridge

A B C D hopsE F G H

1000

10

100

1ms

a) 3-source input-queue bunching latency

A B C D hopsE F G H

1000

10

100

1ms

b) 6-source input-queue bunching latency
Contribution from: dvj@alum.mit.edu.
146 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.3 Bunching topology scenarios; output-queue bridges

F.2.3.1 Three-source bunching timing; output-queue bridges

To illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.9. Bridge ports
{b0,b1,b2} concentrates traffic from three talkers; one third of the cumulative traffic is forwarded through
b3. Each stream consumes 25% of the link bandwidth; 25% of the link bandwidth is available for
asynchronous traffic.

For clarity, the traces for input traffic on ports {b0,b1,b2},…,{ e0 ,e1, e3} only illustrate the passing-through
listener traffic; the remainder of the traffic is assumed to be routed elsewhere.

Figure F.9—Three-source bunching; output-queue bridges

b0

b2

b1

b3

c0

c1

c2

c3

d0

d1

d3

e0

e1

e2

e3

4.50

a0

a1

a2

8.50

Legend:

asynchronous frame

interfering flow0

interfering flow1

measured flow

0 5

5 10

20

25

10 155

2.75

6.50

125µs

d2
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 147

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.3.2 Six-source bunching; output-queue bridges

To better illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.10. Bridge
ports {b0,b1,b2,b3,b4,b5} concentrates traffic from six talkers; one sixth of the cumulative traffic is
forwarded through port b6. Each of six streams consumes 12.5% of the link bandwidth; 25% of the link
bandwidth is available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2,c3,c4,c6} and {d0,d1,d2,d3,d4,d5} only illustrate
passing-through traffic; the remainder of the traffic is routed elsewhere.

Figure F.10—Six source bunching; output-queue bridges

a0

Legend:
asynchronous frame
interfering flow0
interfering flow1
interfering flow2
interfering flow3
interfering flow4
measured flow5

a4

a5

3.375

b0

b4

b5

b6

c0

c4

c5

c6

0 5

10 15

(…)

(…)

(…)

d0

d4

d6

d5

(…)

8.375

125µs

7.00
Contribution from: dvj@alum.mit.edu.
148 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.3.3 Cumulative bunching latencies; output-queue bridge

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.3 and plotted in
Figure F.11.

Conclusion: For steady-state classA traffic, acceptably small linear latencies are introduced by
output-queue bridges on 75% loaded links. Unfortunately, the nonsteady-state nature of variable-rate traffic
makes this conclusion suspect (see F.2.4).

Table F.3—Cumulative bunching latencies; output-queue bridge

Topology Units
Measurement point

B C D E F G H I

3-source
(see F.2.2.1)

cycles .875 2.75 4.5 6.5 8.5 – – –

ms 0.10 0.34 0.56 0.81 1.6 – – –

6-source
(see F.2.2.2)

cycles .875 3.375 7.00 8.375 – – – –

ms 0.10 0.42 .875 1.05 – – – –

Figure F.11—Cumulative bunching latencies; output-queue bridge

A B C D hopsE F G H

1.25

1.0

0.5ms

a) 3-source output-queue bunching latency

A B C D hopsE F G H

1.25

1.0

0.5ms

b) 6-source output-queue bunching latency
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 149

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.4 Bunching topology scenarios; variable-rate output-queue bridges

F.2.4.1 Three-source bunching; variable-rate output-queue bridges

To illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.12. Bridge ports
{b0,b1,b2} concentrates traffic from three talkers; one third of the cumulative traffic is forwarded through
port b3. Each stream consumes 25% of the link bandwidth; 25% of the link bandwidth is available for
asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c3},…,{e0, e1, e3} only illustrate the passing-through
listener traffic; the remainder of the traffic is assumed to be routed elsewhere.

Figure F.12—Three-source bunching; variable-rate output-queue bridges

b0

b2

b1

b3

c0

c1

c2

c3

d0

d1

d3

e0

e1

e2

e3

4.75

2.75

a0

a1

a2

10.75

Legend:

asynchronous frame

interfering flow0

interfering flow1

measured flow

0 5

5 10

20 25

10 155

7.25

125µs

d2
Contribution from: dvj@alum.mit.edu.
150 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.4.2 Six-source bunching; variable-rate output-queue bridges

To better illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.13. Bridge
ports {b0,b1,b2,b3,b4,b5} concentrates traffic from six talkers; one sixth of the cumulative traffic is
forwarded through port b6. Each of six streams consumes 12.5% of the link bandwidth; 25% of the link
bandwidth is available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2,c3,c4,c6}, {d0,d1,d2,d3,d4,d5}, and
{e0,e1,e2,e3,e4,e6} only illustrate passing-through traffic; the remainder of the traffic is routed elsewhere.

Figure F.13—Six source bunching; variable-rate output-queue bridges

a0

Legend:
asynchronous frame
interfering flow0
interfering flow1
interfering flow2
interfering flow3
interfering flow4
measured flow5

a4

a5

b0

b4

b5

b6

c0

c4

c5

c6

0 5

10

15

(…)

(…)

(…)

6.50

d0

d4

d6

d5

(…)

11.375

e0

e4

e6

e5

(…)

19.625

(…)
15 20

5

125µs

3.50
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 151

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.4.3 Cumulative bunching latencies; variable-rate output-queue bridge

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.4 and plotted in
Figure F.14.

Conclusion: For nonsteady-state classA traffic, significant expediential latencies are introduced by
output-queue bridges on 75% loaded links. Unfortunately, throttled outputs further exasperates this latency
(see F.2.4).

Table F.4—Cumulative bunching latencies; variable-rate output-queue bridge

Topology Units
Measurement point

A B C D E F G H

3-source
(see F.2.2.1)

cycles 0.75 2.75 4.75 7.25 10.75 – – –

ms 0.10 0.34 0.59 0.90 1.34 – – –

6-source
(see F.2.2.2)

cycles 0.75 3.50 6.50 11.38 19.63 – – –

ms 0.10 0.44 0.81 1.42 2.45 – – –

Figure F.14—Cumulative bunching latencies; variable-rate output-queue bridge

A B C D hops

a) 3-source variable-rate bunching latency

1ms

10

100

E F G H A B C D hops

b) 6-source variable-rate bunching latency

1ms

10

100

E F G H
Contribution from: dvj@alum.mit.edu.
152 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.5 Bunching topology scenarios; throttled-rate output-queue bridges

F.2.5.1 Three-source bunching; throttled-rate output-queue bridges

To illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.15. Bridge ports
{b0,b1,b2} concentrates traffic from three talkers; one third of the cumulative traffic is forwarded through
port b3. Each stream consumes 25% of the link bandwidth; 25% of the link bandwidth is available for
asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c3}, {d0,d1,d2}, and {e0,e1,e3} only illustrate the
passing-through listener traffic; the remainder of the traffic is assumed to be routed elsewhere.

Figure F.15—Three-source bunching; throttled-rate output-queue bridges

b0

b2

b1

b3

c0

c1

c2

c3

d0

d1

d3

e0

e1

e2

e3

5.75

3.00

a0

a1

a2

15.75

Legend:

asynchronous frame

interfering flow0

interfering flow1

measured flow

0 5

5 10

2010 155

9.75

2010 15 25 30

125µs

5

d2
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 153

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.5.2 Six-source bunching; throttled-rate output-queue bridges

To better illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.16. Bridge
ports {b0,b1,b2,b3,b4,b5} concentrates traffic from six talkers; one sixth of the cumulative traffic is for-
warded through port b6. Each of six streams consumes 12.5% of the link bandwidth; 25% of the link
bandwidth is available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2,c3,c4,c5},…,{e0, e1,e2, e3, e4, e6} only illustrate
passing-through traffic; the remainder of the traffic is routed elsewhere.

Figure F.16—Six source bunching; throttled-rate output-queue bridges

a0

Legend:
asynchronous frame
interfering flow0
interfering flow1
interfering flow2
interfering flow3
interfering flow4
measured flow5

a4

a5

b0

b4

b5

b6

c0

c4

c5

c6

0 5

10 15

(…)

(…)

(…)

9.50

d0

d4

d6

d5

(…)

17.625

(...) 9 10 15

4.25

3 20

125µs
Contribution from: dvj@alum.mit.edu.
154 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.5.3 Cumulative bunching latencies; throttled-rate output-queue bridge

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.5 and plotted in
Figure F.17.

Conclusion: On large topologies, the classA traffic latencies can accumulate beyond acceptable limits.
Some form of receiver retiming may therefore be desired.

Table F.5—Cumulative bunching latencies; throttled-rate output-queue bridge

Topology Units
Measurement point

A B C D E F G H

3-source
(see F.2.2.1)

cycles 0.75 3.00 5.75 9.75 15.75 – – –

ms 0.09 0.38 0.73 1.21 1.97 – – –

6-source
(see F.2.2.2)

cycles 0.75 4.25 9.5 17.63 – – – –

ms 0.09 0.53 1.19 2.20 – – – –

Figure F.17—Cumulative bunching latencies; throttled-rate output-queue bridge

A B C D hops

a) 3-source throttled-rate output-queue latency

1ms

10

100

E F G H A B C D hops

b) 6-source throttled-rate output-queue latency

1ms

10

100

E F G H
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 155

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.6 Bunching topology scenarios; classA throttled-rate output-queue bridges

The extent of bunching extent is worst when large classC frames are present. However, bunching can also
occur in the absence of large classC frames, as described in the remainder of this subannex.

F.2.6.1 Three-source bunching; classA throttled-rate output-queue bridges

To illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.18 and Figure F.19.
Bridge ports {b0,b1,b2} concentrates traffic from three talkers; one third of the cumulative traffic is for-
warded through port b3. Each stream consumes 25% of the link bandwidth; 25% of the link bandwidth is
available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c3}, {c0,d1,d2}, and {e0,e1,e3} only illustrate the
passing-through listener traffic; the remainder of the traffic is assumed to be routed elsewhere.

Figure F.18—Three-source bunching; throttled-rate output-queue bridges

b0

b2

b1

b3

c0

c1

d2

d3
2.0

1.00

a0

a1

a2

Legend:

asynchronous frame

interfering flow0

interfering flow1

measured flow

0 5

5

125µs

d0

d1

d2

d3
3.50

5 10

e0

e1

e2

e3
5.75

5 10
Contribution from: dvj@alum.mit.edu.
156 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure F.19—Three-source bunching; throttled-rate output-queue bridges

f0

f1

f3

h0

h1

h2

h3

22.25

2010 155

9.00

20 25 30

g0

g1

g3

14.5

g2

f2

2010 15
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 157

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.6.2 Six-source bunching; classA throttled-rate output-queue bridges

To better illustrate the effects of worst case bunching, specific flows are illustrated in Figure F.20. Bridge
ports {b0,b1,b2,b3,b4,b5} concentrates traffic from six talkers; one sixth of the cumulative traffic is
forwarded through port b6. Each of six streams consumes 12.5% of the link bandwidth; 25% of the link
bandwidth is available for asynchronous traffic.

For clarity, the traces for input traffic on ports {c0,c1,c2,c3,c4,c5},…,{d0, d1,d2,d3, d4, d6} only illustrate
passing-through traffic; the remainder of the traffic is routed elsewhere.

Figure F.20—Six source bunching; classA throttled-rate output-queue bridges

a0

Legend:
asynchronous frame
interfering flow0
interfering flow1
interfering flow2
interfering flow3
interfering flow4
measured flow5

a4

a5

b0

b4

b5

b6

c0

c4

c5

c6

0 5

(…)

(…)

(…)

3.75

d0

d4

d6

d5

(…)

10

1.385

e0

e4

e6

e5

(…)

2 5 15

125µs

5

6.625
10

12.50
Contribution from: dvj@alum.mit.edu.
158 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.2.6.3 Cumulative bunching latencies; classA throttled-rate output-queue bridge

The cumulative worst-case latencies implied by coincidental bursting are listed in Table F.6 and plotted in
Figure F.21.

Conclusion: On large topologies, the classA traffic latencies can accumulate beyond acceptable limits, even
in the absence of conflicting lower-class traffic. Some form of receiver retiming may therefore be desired,
even on higher speed links where the size of the MTU (in time) becomes much smaller than an assumed
8 kHz cycle time.

Table F.6—Cumulative bunching latencies; classA throttled-rate output-queue bridge

Topology Units
Measurement point

A B C D E F G H

3-source
(see F.2.2.1)

cycles – 1.00 2.00 3.5 5.75 9.00 14.5 22.5

ms – 0.125 0.25 0.44 0.72 1.13 1.81 2.81

6-source
(see F.2.2.2)

cycles – 1.385 3.75 6.625 12.50 – – –

ms – 0.17 0.47 0.83 1.56 – – –

Figure F.21—Cumulative bunching latencies; classA throttled-rate output-queue bridge

A B C D hops

a) 3-source throttled-rate output-queue latency

E F G H

1ms

10

A B C D hops

b) 6-source throttled-rate output-queue latency

1ms

10

E F G H
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 159

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex G

(informative)

Denigrated alternatives

G.1 Stream frame formats

G.1.1 VLAN routed frame formats (alternative 4)

Frames within a stream are no different than other Ethernet frames, with the exception of their distinct da
(destination address) and control field values, as illustrated in Figure G.1.

A single multicast address (labeled as RE_GROUP_MAC_ADDRESS) identifies the multicast
time-sensitive nature of the frame. The following VLAN tag identifies the frame priority and provides a
distinct vlanID identifier. The vlanID identifier is also the streamID identifier, allowing each stream to be
independently selectively-switched through bridges.

The over-riding disadvantages of this design approach relates to its forwarding through bridges:

a) Overloaded. This novel vlanID usage could conflict with existing bridge implementations.

b) VLAN service. A method of generating distinct vlanID values would be required.
(Some for of central server or distributed assignment algorithm would be required).

NOTE—The following streaming classA frame format options were considered but rejected.
These options are retained for historical purposes and (if opinions change) possible reconsideration.
For these reasons, the perceived advantages and disadvantages of each technique are listed.

Figure G.1—classA frame formats

6 da

6 sa

2 protocolType

m data[n]

4 fcs

vlanID

tag

2 protocolType1

2 control priority cfi

RE_GROUP_MAC_ADDRESSg

key

(this bit is 1)
Contribution from: dvj@alum.mit.edu.
160 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
G.1.2 Broadcast routed frame formats (alternative5)

Frames within a stream are no different than other Ethernet frames, with the exception of their distinct fixed
multicast da (destination address), as illustrated in Figure G.2.

A single multicast address (labeled as RE_GROUP_MAC_ADDRESS) identifies the multicast
time-sensitive nature of the frame.

The over-riding disadvantages of this design approach relates to its forwarding through bridges:

a) Bandwidth. Bandwidth is wasted because frames are broadcast to all potential listeners, rather than
only the subscribed listeners.

b) Ambiguous. The da field is insufficient to identify the frame, mandating the presence of stream
identifier information within the data[] payload.

Figure G.2—ClassA frame formats

6 da

6 sa

2 protocolType

m data[n]

4 fcs

RE_GROUP_MAC_ADDRESSg

key

(this bit is 1)
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 161

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
G.2 Subscription

G.2.1 Simple Reservation Protocol (SRP) overview

Subscription involves explicit negotiation for bandwidth resources, performed in a distributed fashion,
flowing over the paths of intended communication. The RE subscription protocols are called Simple
Reservation Protocols (SRP), due to their simplicity as compared to the Resource Reservation Protocol
(RSVP). SRP shares many of the baseline RSVP features, including the following:

a) SRP is simplex, i.e. reservations apply to unidirectional data flows.

b) SRP is receiver-oriented, i.e., the receiver of a classA stream initiates and maintains the resource
reservation used for that stream.

c) SRP maintains “soft” state in bridges, providing graceful support for dynamic membership changes
and automatic adaptations to changes in network topology.

d) SRP is not a routing protocol, but depends on transparent bridging and STP routing protocols.

SRP simplicity is derived from its restricted layer-2 ambitions, as follows.

a) SRP is symmetric, i.e. the listener-to-talker path is the inverse of the talker-to-listener path.

b) SRP does no not provide for transcoding; any stream is fully characterized by its streamID and
bandwidth.

G.2.2 Soft reservation state

SRP takes a “soft state” approach to managing the reservation state in bridges. SRP soft state is created and
periodically refreshed by listener generated RequestRefresh messages; this state is deleted if no matching
RequestRefresh messages arrive before the expiration of a “cleanup timeout” interval. Listener’s may also
force state deletions by generating an explicit RequestLeave message.

RequestRefresh messages are idempotent. When a route changes, the next RequestRefresh message will ini-
tialize the path state to the new route, and future RequestRefresh messages will establish state there. The
state on the now-unused segment of the route will be deleted after a timeout interval. Thus, whether a
RequestRefresh message is “new” or a “refresh” is determined separately by each station, depending upon
the existence of state at that station.

SRP soft state is also deleted in the continued absence of associated classA traffic; this state is deleted if no
matching classA traffic arrives before the expiration of a “cleanup timeout” interval. Thus, talker stations or
agents may force reservation-state deletions by stopping their transmissions of classA traffic.

SRP sends it messages as layer-2 datagrams with no reliability enhancement. Periodic transmissions by lis-
tener stations and agents is expected to handle the occasional loss of an SRP message.

In the steady state, state is refreshed on a hop-by-hop basis to allow merging. Propagation of a change stops
when and if it reaches a point where merging causes no resulting state change. This minimizes the SRP con-
trol traffic and is essential for scaling to large audiences.

G.2.3 Subscription bandwidth constraints

The SRP subscription protocols limit cumulative bandwidth allocations to a fixed percentage less than the
capacity of the link, much like IEEE 1394 limits isochronous traffic to less than the capacity of its bus. This
guarantees that high priority management information can be transmitted across the link. For RE systems,
Contribution from: dvj@alum.mit.edu.
162 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
classA traffic is limited to 75% of the capacity of any RE link. Enforcement of such a limit is done in multi-
ple ways:

a) Admissions controls (described in previous subclauses) reject any RequestRefresh message that
(when combined with previously accepted request) would consume more than 75% of link
bandwidth.

b) Transmit queue hardware of RE stations (including bridges) discards classA content that (if trans-
mitted) would cause classA traffic to exceed 75% of the transmit link capacity.

Method (b) is desired to recovery from unexpected transient conditions (typically topology changes) that
result in admission control violations, and is also useful for managing misbehaving devices

G.2.4 Bridge-resident agents

Subscription facilities establish multicast paths from a talker to one or more listeners. Streams of
time-sensitive data can then flow over these established paths, as illustrated by the dark arrow paths in
Figure G.3-a. Maintaining these established paths involves active participation of agents within the
end-point talker, local listener, local talker, and end-point listener entities, as illustrated in Figure G.3-b.

The talker stations/agents are responsible for maintaining an account consisting of {streamID, bandwidth}
pairs, one for each of their distinct flows. Requests for additional link bandwidth are checked against these
accounts and rejected if the cumulative bandwidth would exceed 75% of the link capacity. The talker agents
are also responsible for sustaining streams of classA data; their absence can result in disconnections of the
attached listener agent.

The listener agents are responsible for periodically refreshing their adjacent talker agents, to confirm their
continued presence. A persistent absence of refreshes causes the adjacent talker agent to disconnect its
stream transmissions and (if appropriate) to inform other station-local agents.

For each established stream within a bridge, the listener agent remains active while all but the last down-
stream flows are disconnected. The upstream station receives its disconnect notice only after the last of the
downstream flows has disconnected.

The listener agent’s messages that establish and maintain the path are the same. This reduces design com-
plexity and (most importantly) automatically re-routes stream flows after topology changes.

Figure G.3—Agents on an established path

T

a) Established stream

Legend:
talker listener other

established conversation

L

L

T L

b) Agents on the established path

Legend:
talker station listener station
talker agent listener agent
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 163

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
G.2.5 Controller entities

Subscription when a relative-intelligent controller discovers the need to establish a classA path between
talker and listener entities. For example, user interactions with a television (called the controller) may cause
streams flowing between the content source (called the talker) and speakers (the listeners), as illustrated in
Figure G.4.

A controller can potentially simplify the listener by reducing the need to providing user interface and
device-discovery capabilities. However, a controller could also reside within talker and/or listener compo-
nents. However, actions between controllers and talker/listener stations are beyond the scope of this
working paper.

G.2.6 Pinging the talker

After being activated by a talker, listeners are expected to ping the talkers before initiating subscription oper-
ations, as illustrated in Figure G.5. The purpose of the ping is to ensure that bridges have learned listener and
talker addresses, allowing frames to be sequentially passed from the listener-to-talker.

Figure G.4—Controller activation

Figure G.5—Pinging the talker

Legend:
controller talker listener other communication flowL

T L

C

C T

a) Phase 1: RequestRefresh messages

(unintended flooding)

T L

Legend:
talker listener other
ping request

T L

b) Phase 2: Stream transmissions

LT

Legend:
talker listener other
ping response

T L
Contribution from: dvj@alum.mit.edu.
164 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
G.2.7 Path creation

Establishing a conversation between a listener and a talker involves sending a RequestRefresh message from
the listener towards the talker, illustrated by the dark arrow paths in Figure G.6-a. If available bandwidths are
sufficient, the talker starts its stream transmissions, as illustrated by the gray arrow paths in Figure G.6-b.

In rare circumstances, some talker addresses may not have been learned and the RequestRefresh message
will terminate with a returned ResponseError message. The listener has the option of repeating the
RequestRefresh after performing a ping (see G.2.6), which validates the talker presence and activates bridge
learning.

Another timeouts is associated with the absence of periodic RequestRefresh messages. In the continued
absence of these expected messages, the listener is assumed to be absent or deactivated. Based on this
assumption, the associated talker (station or agent) resources are released.

G.2.8 Side-path extensions

A second listener joins an established conversation by sending a RequestRefresh message towards the talker,
as illustrated by the dark-arrow path in Figure G.7-a. When an established connection is discovered, the
switch (not the talker) returns stream transmissions, as illustrated by the dark-gray path in Figure G.7-b.

Figure G.6—Path creation

Figure G.7—Side-path extensions

a) Phase 1: RequestRefresh messages

Legend:
talker new listener other
RequestRefresh flow

T L

T L

b) Phase 2: Stream transmissions

Legend:
talker new listener other
stream transmissions

LT

T L

a) Phase 1: RequestRefresh messages

Legend:
talker old listener new listener
other existing path

RequestRefresh path

L

N

T

T L N

b) Phase 2: Extended paths

LT

N

Legend:
talker old listener new listener
other revised paths

T L N
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 165

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Each talker agent maintains separate state, so that classA traffic can be multicast to the applicable stations,
rather than flooded downstream. The distinct markers also allow the switch to detect when the last listener
disconnects, so that its previously shared upstream span can be released appropriately.

G.2.9 Side-path release

A retiring listener normally leaves an established conversation, by sending a RequestLeave message towards
the talker. That message propagates to the nearest merging bridge connection, as illustrated by the
dark-arrow path in Figure G.8-a. When an established/merged connection is discovered, the switch (not the
talker) stops the stream transmissions, as illustrated by the disappearance of a side path in Figure G.8-b.

G.2.10 Released path

The final listener bandwidth release involves sending a RequestLeave message towards the talker. In this
case, that message propagates to the talker, as illustrated by the dark-arrow path in Figure G.9-a. The stream
transmissions then stop, as illustrated in Figure G.9-b.

Figure G.8—Side-path demolition

Figure G.9—Released path

T

a) Phase 1: RequestLeave messages

L

N

Legend:
talker leaving listener existing listener
other existing paths

RequestLeave path

T L N

b) Phase 2: Contracted path

T

N

Legend:
talker other new listener
revised paths

T L

a) Phase 1: LeaveResponse messages

Legend:
talker leaving listener other
active stream RequestLeave path

T

N

T N

b) Phase2: Released path

T

N

Legend:
talker previous listener otherT N
Contribution from: dvj@alum.mit.edu.
166 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
G.2.11 Errors and timeouts

G.2.11.1 Subscription failures

A RequestRefresh message can encounter an error while flowing from the listener towards the talker,
illustrated by the dark arrow paths in Figure G.10-a. When such errors occur, a ResponseError message is
normally returned to the listener, as illustrated by the gray arrow paths in Figure G.10-b.

Errors may be associated with a variety of errors including (but not limited to) the following:

a) Insufficient resources. Necessary resources are available within the bridge:

1) Insufficient bandwidth is available on the link from the talker agent to its adjacent listener.
2) Insufficient path-related resources are available in the bridge’s talker agent.
3) Insufficient path-related resources are available in the bridge’s upstream listener agent.
4) Insufficient link or memory bandwidth is available with the bridge.

b) Unlearned address. The route from the bridge to the talker is unknown.
(To avoid complexities and inefficiencies, RequestRefresh messages are never flooded.)

Figure G.10—Error responses

a) Phase 1: RequestRefresh messages

Legend:
talker new listener other
RequestRefresh flow

T L

T L

b) Phase 2: ResponseError messages

Legend:
talker new listener other
ResponseError transmissions

LT

T L
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 167

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
G.2.11.2 Listener-presence timeouts

Listener agents and stations are responsible for refreshing their local talkers, to demonstrate their continued
presence. In the absence of these refresh messages, the talkers assume the listener is absent and teardown the
inactive path (or inactive branch from the path).

Thus, sustaining the active paths of Figure G.11-a requires periodic refresh messages on each hop, as
illustrated in Figure G.11-b. The refresh messages and associated timeouts are performed independently on
each span. The messages that establish the path (see G.2.7 and G.2.8) are the same as these listener-initiated
messages that sustain the established path.

G.2.11.3 Talker-presence timeouts

Talker agents and stations are responsible for updating their local listeners, to demonstrate their continued
presence. In the absence of these updates, the listeners assume the talker is absent and teardown the inactive
path (or inactive branch from the path).

Thus, sustaining the active paths of Figure G.11-a requires periodic transmissions of classA traffic on each
hop (not illustrated). The associated timeouts are performed independently on each span. The frames that
transfer classA data are the same as these talker-initiated frames that sustain the established path.

Figure G.11—Side-path demolition

T

a) Established paths

L0

L1

Legend:
talker listeners other
existing paths

T L

T

b) Periodic link-local refresh

L0

L1

Legend:
talker listeners other
RequestRefresh messages

T L
Contribution from: dvj@alum.mit.edu.
168 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex H

(informative)

Frequently asked questions (FAQs)

H.1 Unfiltered email sequences

H.1.1 Bandwidth allocation

Question (AM): Is bandwidth allocation really necessary to meet RE requirements? Over-provisioning and
best-effort (with class of service) may be adequate. You can get a lot of data through a conventional gigabit
switch with very low latencies. The RE traffic can be given a higher priority and so not be held up by less
urgent traffic.

Answer (MJT): I think admission control is needed. In an unmanaged layer 2 environment there is no way
to guarantee that the streaming QoS parameters can be met … you can only say probably. With GigE and a
fully bridge-based environment with class of service you can get to a pretty good probably, but you can't get
to the it will always work QoS that the wonderful BER of Ethernet promises. On the other hand, a simple
admission control system and simple pacing mechanism can get you there, even with an FE-only network.

H.1.2 Best effort

Question (AM): With access control what happens if access is denied? My assumption is that a user
connecting to a RE network would prefer best-effort service to no service at all if there is no spare
bandwidth to be allocated. If you decide you need to support best-effort as a fallback then you need buffers
in your end stations and the reason for using time slots goes away.

Answer (MJT): Your assumption is only correct if the service the consumer is subscribing to is a best-effort
service. Right now, consumers expect that when they select a channel, or a CD, or a DVD they will get it
perfectly. Cable companies get lots of calls if a stream is substandard for any reason. The general procedure
to select a stream on a CE-oriented network would be something like:

a) Hit the directory or guide button on your remote control

b) Find the content you want (note that the content entries might be labeled with not currently
available or low quality only or not even present depending on the state of the path to the source).

c) Hit the play button.

Once the consumer hits that play button, the endpoints and network need to make a contract to deliver the
content with the QoS expected by the consumer. So, in the case you describe where there is no guaranteed
bandwidth available, you may present an alternative method (such as the low quality tag). This may be
perfectly OK. If, on the other hand, the consumer wants to see the HD movie with full quality, they can yell
at their kid to stop watching the movie that is causing the network link of interest to saturate.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 169

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
H.2 Formulated responses

TBD
Contribution from: dvj@alum.mit.edu.
170 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex I

(informative)

Comment responses

I.1 Recent review-comment resolutions

TBD.

NOTE—This clause should be skipped on the first reading (reading starts at Clause 1).
This clause is provided for communicating detailed responses to reviewer comments.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 171

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Contribution from: dvj@alum.mit.edu.
172 This is an unapproved working paper, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 173

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 174

ject to change. 175

JggD RE)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

An

(inf

C-c

This ormational purposes, and should not be construed
as m her normative portion of this standard, the other
norm

The

NO
tion
com
Als
lan
cod
Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, sub

vj2005Apr16/D0.136, August 10, 2005 WHITE PAPER CONTRIBUTION TO RESIDENTIAL ETHERNET (

nex J

ormative)

ode illustrations

 Annex provides code examples that illustrate the behavior of RE entities. The code in this Annex is purely for inf
andating any particular implementation. In the event of a conflict between the contents of this Annex and anot
ative portion shall take precedence.

syntax used for the following code examples conforms to ANSI X3T9-1995.

TE—This annex is provided as a placeholder for illustrative C-code. Locating the C code in one loca-
 (as opposed to distributed throughout the working paper) is intended to simplify its review, extraction,
pilation, and execution by critical reviewers.

o, placing this code in a distinct Annex allows the code to be conveniently formatted in 132-character
dscape mode. This eliminates the need to truncate variable names and comments, so that the resulting
e can be better understood by the reader.

JggD E)

ject to change. 176

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// * ********************************
// 1 1 1
// 1 2 3
//34 12345678901234567890123456789012

#inc
#inc

// u teger
// u teger
// u teger
// u teger

// s ger
// s ger
// s ger
// s ger

#def ange is very-quick
#def dware is provided
#def a 32-bit signed integer
#def d fraction component
#def itive integer
#def constraints
#def nition
#def nition
#def
#def lue
#def ivalent of (1<<64)
#def irst station port
#def ext station port
#def rand-master mode
#def r, slave mode

// T
//
//
//
//
//
//
//
// I
// O
//

#if
type
{

} Do
type
vj2005Apr16/D0.136, August 10, 2005 WHITE PAPER CONTRIBUTION TO RESIDENTIAL ETHERNET (R

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, sub

**
 1
 1 2 3 4 5 6 7 8 9 0
567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

lude <assert.h>
lude <stdio.h>

nsigned char uint8_t; // 1-byte unsigned in
nsigned short uint16_t; // 2-byte unsigned in
nsigned int uint32_t; // 4-byte unsigned in
nsigned long long uint64_t; // 8-byte unsigned in

igned char int8_t; // 1-byte signed inte
igned short int16_t; // 2-byte signed inte
igned int int32_t; // 4-byte signed inte
igned long long int64_t; // 8-byte signed inte

ine OPTION_FAST 0 // 1 if precedence-ch
ine OPTION_BASE 0 // 1 if baseTimer har
ine DIFF_SCALE ((double)4096 * ((uint64_t)1 << 31)) // Changes <200PPM to
ine EXTRACT_CORE(a, b) (((a) << 32) | ((b) >> 32)) // Extract seconds an
ine FULL_SCALE (0x7FFFFFFF) // Biggest 32-bit pos
ine LIMIT(a, b, c) MAX(MIN((a), (b)), (c)) // Force base/bounds
ine MAX(a, b) ((a) < (b) ? (b) : (a)) // Maximum value defi
ine MIN(a, b) ((a) > (b) ? (b) : (a)) // Minimum value defi
ine MINIMUM_WIDE(a, b) (CompareWide((a), (b)) < 0 ? (a) : (b))
ine ONES64 ~((uint64_t)0) // 64-bit all-ones va
ine SCALE64 ((double)16 * (1 << 30) * (1 << 30)) // Floating-point equ
ine BASE_PORT(siPtr) (siPtr->portPtr) // A pointer to the f
ine NEXT_PORT(piPtr) (piPtr->portPtr) // A pointer to the n
ine GRAND 2 // An indication of g
ine SLAVE 1 // If not grand-maste

he grand-master precedence check is based on concatenated fields, as follows:

 MSB LSB
 | hi | lo |
 +---+
 | 0000 systemTag eui64 00 hops portTag |
 +----16----’----16----’--------------------64-----------------------’--8--’--8--’----16---+

f hops == ONES, this value is considered VOID and has the worse precedence
therwise, the best precedence corresponds to the smallest of two tested values.

(CPU_TYPE == BIG)
def struct

uint64_t hi; // more-significant portion
uint64_t lo; // less-significant portion
ubleData;
def struct

ject to change. 177

JggD RE)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

{

} Do
#els
type
{

} Do
type
{

} Do
#end

type
{

} Pr

type
{

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, sub

vj2005Apr16/D0.136, August 10, 2005 WHITE PAPER CONTRIBUTION TO RESIDENTIAL ETHERNET (

unsigned fill16:16;
unsigned systemTag:16;
unsigned uniqueHi:32;
unsigned uniqueLo:32;
unsigned fill08:8;
unsigned hopsCount:8;
unsigned portLevel:4;
unsigned portNumber:12;
ubleInfo;
e
def struct

uint64_t lo; // less-significant portion
uint64_t hi; // more-significant portion
ubleData;
def struct

unsigned portNumber:12;
unsigned portLevel:4;
unsigned hopsCount:8
unsigned fill08:8;
unsigned uniqueLo:32;
unsigned uniqueHi:32;
unsigned systemTag:16;
unsigned fill16:16;
ubleInfo;
if

def union

DoubleData data; // As 64-bit data values
DoubleInfo info; // As data fields
ecedenceInfo;

def struct _PortInfo

struct _PortInfo *portPtr; // Points to the next linked port
unsigned portLevel:4; // Relative priority number of ports
unsigned portNumber:12; // Port number
DoubleData portPrecedence; // Incoming frame parameters

uint8_t skipCount; // Number of 10ms intervals
uint32_t cableDelay; // The cable delay, from local master
uint32_t linkOffset; // The cable difference, from local master
uint64_t deltaTime; // For inclusion in transmitted frames

 // Best if captured accurately by the PHY
uint64_t latchRxFlexTime; // Snapshot of flexTimer, on clockSync arrival,
 // available for this clockSync reception.
uint64_t latchTxFlexTime; // Snapshot of flexTimer, on clockSync departure,
 // available for next clockSync transmission

uint64_t savedRxFlexTime; // Previous latchRxFlexTime value
uint64_t savedRxFlexData; // Previous clockSync.lastFlexTime value

ject to change. 178

JggD RE)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

} Po

type
{

} St

type
{

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, sub

vj2005Apr16/D0.136, August 10, 2005 WHITE PAPER CONTRIBUTION TO RESIDENTIAL ETHERNET (

 // If OPTION_BASE is 1, baseTimer snapshots:
uint32_t latchRxBaseTime; // Captured clockSync base-time arrival
uint32_t latchTxBaseTime; // Captured clockSync base-time departure (delayed)
rtInfo;

def struct
 // Customized per-station components
PortInfo *portPtr; // Points to a linked-list of ports
double nominalFrequency; // Nominal clock frequency, in Hz
int8_t clockDeviation; // Deviation in parts-per-million
uint64_t eui64; // 64-bit extended unique identifier
unsigned systemLevel:4; // Relative priority number of ports
unsigned systemNumber:12; // Port number

unsigned selectCount; // Grand-master selection count

uint8_t skipCount; // Number of 10ms intervals
uint32_t myDiffRate; // The rate difference, from upstream neighbor
uint32_t diffRate; // The rate difference, from grand-master
uint32_t linkOffset; // The cable difference, from local master
uint64_t deltaTime; // For inclusion in transmitted frames

DoubleData thisPrecedence; // The precedence of this station
DoubleData bestPrecedence; // The best observed precedence
int16_t bestPort; // Selected clock-slave port

uint64_t savedRxFlexTime; // Previous latchRxFlexTime value
uint32_t savedRxBaseTime; // Previous latchRxBaseTime value

uint64_t timeOfDay; // Offset and rate-compensated timer value
uint64_t flexTimerHi; // Offset and rate adjustable 64-bit timer
uint64_t flexTimerLo; // Offset and rate adjustable 64-bit timer
uint64_t flexOffset; // Adjustable offset value for flexTimer
uint64_t flexRate; // 40-bit adjustable rate for flexTimer

uint64_t baseTimer; // Fixed-rate fixed-offset 64-bit timer
uint64_t baseRate; // SCALE64/clockFrequency, pre-initialized

uint32_t savedRxBaseTickTime; // Saved values of savedRxBaseTime
uint32_t savedRxBaseTickData; // Saved values of clockSync.lastBaseTime;
ationInfo;

def struct // The clockSync frame, reserved-padded to
 // the minimum 64-byte frame size.
uint32_t da_hi; // Ethernet’s 48-bit destination address
uint16_t da_lo; // "
uint16_t sa_hi; // Ethernet’s 48-bit source address
uint32_t sa_lo; // "
uint16_t protocolType; // Specifies format/meaning of following
uint8_t subType; // Refined format/meaning specification
uint8_t syncCount; // Sequence numbers for consistency checks
uint8_t hopsCount; // Hop counts from the grand master
uint8_t reserved; // A few reserved bytes, for 64-byte minimum
uint16_t systemTag; // Precedence for grand-master election

ject to change. 179

JggD RE)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

} Cl

uint
void
void
void
void
int
Doub
void
int

// C
//
void
Stat
{

 / The nominal frequency
 / Mid-range default with
 / systemNumber extension
 / This station precedence
 // has zero-valued hopsCount

 / Per-port initialization
 / Mid-range default with
 / port-number extension

}

// C
//
//
//
void
Cloc int8_t rateAdjust)
{

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, sub

vj2005Apr16/D0.136, August 10, 2005 WHITE PAPER CONTRIBUTION TO RESIDENTIAL ETHERNET (

uint64_t uniqueID; // Identifier for grand-master election
uint64_t lastFlexTime; // flexTimer on last clockSync transmission
uint64_t deltaTime; // Time difference on opposing link
uint64_t offsetTime; // Cumulative grand-master offset differences
uint32_t diffRate; // Cumulate grand-master rate differences
uint32_t lastBaseTime; // baseTimer on last clockSync transmission
uint32_t fcs; // Frame check sequence
ockSyncFrame;

32_t BaseTimerChange(uint64_t, uint64_t, double);
 ClockSyncArrived(StationInfo *, PortInfo *);
 ClockSyncDeparted(StationInfo *, PortInfo *);
 ClockSyncReceive(StationInfo *, PortInfo *, ClockSyncFrame *, uint8_t);
 ClockSyncTransmit(StationInfo *, PortInfo *, ClockSyncFrame *);
 CompareWide(DoubleData, DoubleData);
leData PrecedenceMerge(uint16_t, uint64_t, uint8_t, uint8_t, uint16_t);
 TimerTick(StationInfo *);
 UpdatePrecedence(StationInfo *, PortInfo *);

alled with:
 stationInfoPtr -- the station information context

ionSetup(StationInfo *stationInfoPtr)

PortInfo *portPtr;
StationInfo *siPtr = stationInfoPtr;
uint16_t systemTag;
uint16_t count;

assert(siPtr != NULL);
siPtr->baseRate = SCALE64 / siPtr->nominalFrequency; /
siPtr->systemLevel = 0X8; /
systemTag = ((uint16_t)(siPtr->systemLevel) << 12) | siPtr->systemNumber; /
siPtr->thisPrecedence = /
 PrecedenceMerge(systemTag, siPtr->eui64, 0, 0, 0);
count = 0;
for (portPtr = BASE_PORT(siPtr); portPtr != NULL; portPtr = NEXT_PORT(portPtr)) { /
 portPtr->portLevel = 0X8; /
 portPtr->portNumber = count; /
 count += 1;
}

alled with:
 stationInfoPtr -- the station information context
 portInfoPtr -- the port information context
 clockSyncPtr -- the contents of a clockSync frame

kSyncReceive(StationInfo *stationInfoPtr, PortInfo *portInfoPtr, ClockSyncFrame *clockSyncPtr, u

PortInfo *piPtr = portInfoPtr, *portPtr;
PrecedenceInfo precedence;
StationInfo *siPtr = stationInfoPtr;
ClockSyncFrame *csPtr = clockSyncPtr;

JggD E)

ject to change. 180

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 / Compute the precedence,
 / in the absence of timeouts

 / Compute the precedence,
 / in the presence of timeouts

 / Measured receive-link delay
 / Reported transmit-link delay
 / Local timer differences
 / Cable transmission delay

 / Grand-master properties
 / Slave port identification

 / Grand-master properties
 / override slave-port ID
 / Grand-master reference
 / runs at the base rate

 / Low-rate adjustments
 / Clock-slave difference
 / Clock-master difference
 / Previous saved value
 / Previous saved value
 / Local rate difference
 / Rate difference limits

 / Rate-range limitation
 / Offset compensation
 / Rate compensation

 / Receiver’s baseTimer snapshot

vj2005Apr16/D0.136, August 10, 2005 WHITE PAPER CONTRIBUTION TO RESIDENTIAL ETHERNET (R

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, sub

uint32_t measuredDelta, receivedDelta, diffRate;
uint64_t rxDelta, txDelta, clockDelta, cableDelay;
double tempRate;
int8_t grand, slave;

assert(siPtr != NULL && piPtr != NULL);
if (csPtr != NULL && csPtr->hopsCount != 0XFF) /
 piPtr->portPrecedence = PrecedenceMerge(csPtr->systemTag, /
 csPtr->uniqueID, csPtr->hopsCount, piPtr->portLevel, piPtr->portNumber);
else /
 piPtr->portPrecedence.hi = piPtr->portPrecedence.lo = ~((uint64_t)0); /

if (OPTION_FAST && UpdatePrecedence(siPtr, piPtr)) {
 for (portPtr = BASE_PORT(siPtr); portPtr != NULL; portPtr = NEXT_PORT(portPtr))
 siPtr->bestPrecedence = MINIMUM_WIDE(piPtr->portPrecedence, siPtr->bestPrecedence);
 siPtr->selectCount += 1;
}
if (csPtr == NULL)
 return;

rxDelta = piPtr->savedRxFlexTime - csPtr->lastFlexTime; /
txDelta = csPtr->deltaTime; /
clockDelta = (txDelta - rxDelta)/2; /
cableDelay = (txDelta + rxDelta)/2; /

precedence.data = siPtr->bestPrecedence;
grand = (precedence.info.hopsCount == 0) ? GRAND : 0; /
slave = (precedence.info.portNumber == piPtr->portNumber) ? SLAVE : 0; /
switch(grand | slave) {
case GRAND: /
case GRAND | SLAVE: /
 siPtr->diffRate = 0; /
 siPtr->flexRate = siPtr->baseRate; /
 break;
case SLAVE:
 if (rateAdjust) { /
 measuredDelta = (siPtr->savedRxBaseTime - siPtr->savedRxBaseTickTime); /
 receivedDelta = (csPtr->lastBaseTime - siPtr->savedRxBaseTickData); /
 siPtr->savedRxBaseTickTime = siPtr->savedRxBaseTime; /
 siPtr->savedRxBaseTickData = csPtr->lastBaseTime; /
 tempRate = DIFF_SCALE * ((double)(receivedDelta - measuredDelta)/receivedDelta); /
 siPtr->myDiffRate = LIMIT(tempRate, FULL_SCALE, -FULL_SCALE); /
 }
 siPtr->diffRate = diffRate =
 LIMIT(siPtr->myDiffRate + csPtr->diffRate, FULL_SCALE, -FULL_SCALE); /
 siPtr->flexOffset = csPtr->offsetTime + clockDelta + siPtr->linkOffset; /
 siPtr->flexRate = siPtr->baseRate + siPtr->baseRate * (diffRate / DIFF_SCALE); /
 if (OPTION_BASE)
 siPtr->savedRxBaseTime = piPtr->latchRxBaseTime;
 else
 siPtr->savedRxBaseTime += /
 BaseTimerChange(siPtr->savedRxFlexTime, piPtr->latchRxFlexTime, diffRate);
 break;
default:
 break;

ject to change. 181

JggD RE)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 / Local cable-delay knowledge
 / Saved reference time
 / Saved for retransmission
}

// C
//
//
int
Upda
{

 / Set grand-master precedence

 / Compare precedence values
 / If this is the best port,
 / update baseline precedence
 / If this is not the best port,
 / update overall precedence
 / A precedence-change result
}

// C
//
//
//
void
Cloc
{

 / If precedence has changed,
 / start fast transmissions

 / Derived from latchTxFlexRate

 / Increment hop-count value
 / Supply systemTag values
 / Unique number tie-breaker
Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, sub

vj2005Apr16/D0.136, August 10, 2005 WHITE PAPER CONTRIBUTION TO RESIDENTIAL ETHERNET (

}
piPtr->cableDelay = cableDelay; /
piPtr->savedRxFlexTime = piPtr->latchRxFlexTime; /
piPtr->deltaTime = rxDelta; /

alled with:
 stationInfoPtr -- the station information context
 portInfoPtr -- the port information context

tePrecedence(StationInfo *stationInfoPtr, PortInfo *portInfoPtr)

PortInfo *piPtr = portInfoPtr;
DoubleData pastPrecedence;
PrecedenceInfo precedence;
StationInfo *siPtr = stationInfoPtr;
 /
assert(siPtr != NULL && piPtr != NULL);
precedence.data = pastPrecedence = siPtr->bestPrecedence; /
if (piPtr->portNumber == precedence.info.portNumber) /
 siPtr->bestPrecedence = MINIMUM_WIDE(piPtr->portPrecedence, siPtr->thisPrecedence); /
else /
 siPtr->bestPrecedence = MINIMUM_WIDE(piPtr->portPrecedence, siPtr->bestPrecedence); /
return(CompareWide(siPtr->bestPrecedence, pastPrecedence) != 0); /

alled with:
 stationInfoPtr -- the station information context
 portInfoPtr -- the port information context
 clockSyncPtr -- the contents of a clockSync frame

kSyncTransmit(StationInfo *stationInfoPtr, PortInfo *portInfoPtr, ClockSyncFrame *clockSyncPtr)

ClockSyncFrame *csPtr = clockSyncPtr;
PortInfo *piPtr = portInfoPtr;
PrecedenceInfo precedence;
StationInfo *siPtr = stationInfoPtr;

assert(siPtr != NULL && piPtr != NULL && csPtr != NULL);
if (UpdatePrecedence(siPtr, piPtr)) /
 siPtr->selectCount += 1; /

// An absent baseTimer is emulated by properly scaling time differences,
// measured from the last recorded received-clockSync event.
// - baseTime value was computed
// - a different normDiffRate value has taken effect
if (!OPTION_BASE)
 piPtr->latchTxBaseTime = siPtr->savedRxBaseTime + /
 BaseTimerChange(siPtr->savedRxFlexTime, piPtr->latchTxFlexTime, siPtr->diffRate);

precedence.data = siPtr->bestPrecedence;
csPtr->hopsCount = precedence.info.hopsCount; /
csPtr->systemTag = precedence.info.systemTag; /
csPtr->uniqueID = ((uint64_t)(precedence.info.uniqueHi) << 32) | precedence.info.uniqueLo; /

JggD E)

ject to change. 182

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 / Send last timer value
 / Send received-link delay
 / Send last baseTimer value
 / This station’s cumulative offset
 / Send current diffRate value
}

// C
// L
//
// C
//
//
void
Cloc
{

 / Latch seconds:fraction fields
 / If a baseTimer is present,
 / latch its fraction field
}

// C
// L
//
// C
//
//
void
Cloc
{

 / Latch seconds:fraction fields
 / If a baseTimer is present,
 / latch its fraction field
}

// C
// T
// t
//
//
//
//
//
//
//
//
//
vj2005Apr16/D0.136, August 10, 2005 WHITE PAPER CONTRIBUTION TO RESIDENTIAL ETHERNET (R

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, sub

csPtr->lastFlexTime = piPtr->latchTxFlexTime; /
csPtr->deltaTime = piPtr->deltaTime; /
csPtr->lastBaseTime = piPtr->latchTxBaseTime; /
csPtr->offsetTime = siPtr->flexOffset; /
csPtr->diffRate = siPtr->diffRate; /

alled when a clockSync frame is received, to latch timer values.
atches timers are available when ClockSyncReceive() is called.

alled with:
 stationInfoPtr -- the station information context
 portInfoPtr -- the port information context

kSyncArrived(StationInfo *stationInfoPtr, PortInfo *portInfoPtr)

PortInfo *piPtr = portInfoPtr;
StationInfo *siPtr = stationInfoPtr;

assert(siPtr != NULL);
piPtr->latchRxFlexTime = EXTRACT_CORE(siPtr->flexTimerHi, siPtr->flexTimerLo); /
if (OPTION_BASE) /
 piPtr->latchRxBaseTime = siPtr->baseTimer >> 32; /

alled when a clockSync frame is transmitted, to latch timer values.
atches timers are available for the next ClockSyncTransmit() call.

alled with:
 stationInfoPtr -- the station information context
 portInfoPtr -- the port information context

kSyncDeparted(StationInfo *stationInfoPtr, PortInfo *portInfoPtr)

PortInfo *piPtr = portInfoPtr;
StationInfo *siPtr = stationInfoPtr;

assert(siPtr != NULL);
piPtr->latchTxFlexTime = EXTRACT_CORE(siPtr->flexTimerHi, siPtr->flexTimerLo); /
if (OPTION_BASE) /
 piPtr->latchTxBaseTime = siPtr->baseTimer >> 32; /

alled at a high clock rate (less than 20 ns) to update flexTimer and baseTimer (if present).
his routine is intended to illustrate the computations involved in updating hardware timers;
his code is _not_ expected to be incorporated into firmware.

 +---+
 0000 0000 0000 0000(hex) | fraction subfraction | flexRate
 | +---------32---------.---------32---------+
 | |
 ____________________v____________________ ____________________v____________________
’---’---’
(flexAdd:128)

ject to change. 183

JggD RE)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
// C
//
void
Time
{

 / Saved to detect overflows
 / Addition of the subfractions
 / Propagate carry into seconds
 / Compensate for offset drifts

}

// C
//
//
//
uint
Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, sub

vj2005Apr16/D0.136, August 10, 2005 WHITE PAPER CONTRIBUTION TO RESIDENTIAL ETHERNET (

 ^ |
 | v
+---+
| superSeconds seconds fraction subfraction | flexTimer
+---------32---------’---------32---------’---------32---------’---------32---------+
 _______________________________________/
 |
 v

 (offsetAdd:64)-->timeOfDay

 ^
 |
 +---+
 | seconds fraction | flexOffset
 +----------32--------’---------32---------+

 +---+
 | fraction subfraction | baseRate
 +---------32---------.---------32---------+
 |
 v

 (baseAdd:64)

 ^ |
 | v
 +---+
 | fraction subfraction | baseTimer
 +---------32---------’---------32---------+

alled with:
 stationInfoPtr -- the station information context

rTick(StationInfo *stationInfoPtr)

StationInfo *siPtr = stationInfoPtr;
int64_t pastTimerLo;

assert(siPtr != NULL);
pastTimerLo = siPtr->flexTimerLo; /
siPtr->flexTimerLo += siPtr->flexRate; /
siPtr->flexTimerHi += (pastTimerLo > siPtr->flexTimerLo) ? 1 : 0; /
siPtr->timeOfDay = EXTRACT_CORE(siPtr->flexTimerHi, siPtr->flexTimerLo) + siPtr->flexOffset; /
if (OPTION_BASE)
 siPtr->baseTimer += siPtr->baseRate;

alled with:
 stationInfoPtr -- the station information context
 currentTime -- the current flexTimer value
 diffRate -- the scaled rate difference
32_t

JggD E)

ject to change. 184

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Base
{

 / Compute lapsed time
 / Compensate by rate difference
 / Return incremenal change
}

// M
// C
//
//
//
//
Doub
Prec t portNumber)
{

}

// P
// C
//
//
int
Comp
{

}

vj2005Apr16/D0.136, August 10, 2005 WHITE PAPER CONTRIBUTION TO RESIDENTIAL ETHERNET (R

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, sub

TimerChange(uint64_t lastTime, uint64_t nextTime, double diffRate)

uint64_t delta;

delta = nextTime - lastTime; /
delta -= delta * (diffRate / DIFF_SCALE); /
return(delta); /

erge multiple fields into an 128-bit integer, for comparisons
alled with:
 systemTag -- the 16-bit most-significant precedence subfield
 uniqueID -- the 64-bit unique identifier (EUI-64)
 hopsCount -- the hop-count distance from the grand master
 portTag -- the tag associated with the port
leData
edenceMerge(uint16_t systemTag, uint64_t uniqueID, uint8_t hopsCount, uint8_t portLevel, uint16_

PrecedenceInfo result;

result.info.fill16 = 0;
result.info.systemTag = systemTag;
result.info.uniqueHi = (uniqueID >> 32);
result.info.uniqueLo = uniqueID;
result.info.fill08 = 0;
result.info.hopsCount = hopsCount;
result.info.portLevel = portLevel;
result.info.portNumber = portNumber;
return(result.data);

erforms a comparison of 128-bit preceision unsigned values
alled with:
 a -- the first of two 128-bit values
 b -- the final of two 128-bit values

areWide(DoubleData a, DoubleData b)

if (a.hi != b.hi)
 return(a.hi > b.hi ? 1 : -1);
if (a.lo != b.lo)
 return(b.lo > b.lo ? 1 : -1);
return(0);

JggDvj2005Apr16/D0.136
RESIDENTIAL ETHERNET (RE) August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Index

C
classA frame

da ... 59
sa.. 59
protocolType .. 59
serviceDataUnit ... 59
fcs ... 59

clockSync frame
da ... 60
sa.. 60
protocolType .. 60
subType .. 60
hopsCount .. 60
syncCount .. 60
cycleCount ... 61
systemTag .. 61

systemLevel... 61
systemNumber... 61

uniqueID .. 61
oui ... 62
extension ... 62
ouiDependent.. 62

lastFlexTime .. 61
seconds ... 62
fraction ... 62

deltaTime ... 61
seconds ... 62
fraction ... 62

offsetTime... 61
seconds ... 62
fraction ... 62

diffRate... 61
lastBaseTime.. 61
fcs ... 61

cycleCount
See clockSync frame

D
da

See classA frame
See clockSync frame
See RequestRefresh frame

deltaTime
See clockSync frame

diffRate
See clockSync frame

E
extension

See clockSync frame

F
fcs

See classA frame
See clockSync frame
See RequestRefresh frame

fraction
See clockSync frame
See time field

H
hopsCount

See clockSync frame

I
info

See RequestRefresh frame
info field

reserved ... 64
talkerID ... 64
plugID.. 64
maxCycles.. 64
multicastID .. 64
maxBw ... 64
reserved ... 64

L
lastBaseTime

See clockSync frame
lastFlexTime

See clockSync frame

M
maxBw

See info field
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

maxCycles
See info field
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

mcastID
See RequestLeave frame
See ResponseError frame

mcastSrc
See RequestRefresh frame

multicastID
See info field

O
offsetTime

See clockSync frame
Copyright © 2002, 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change. 185

JggDvj2005Apr16/D0.136
August 10, 2005 WHITE PAPER CONTRIBUTION TO

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
oui
See clockSync frame

ouiDependent
See clockSync frame

P
pad

See RequestRefresh frame
plugID

See info field
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

protocolType
See classA frame
See clockSync frame
See RequestRefresh frame

R
RequestLeave frame

info
mcastID... 64
talkerID... 64
plugID... 64
maxCycles... 64
maxBw .. 64
reserved .. 64

RequestRefresh frame
da ... 63
sa.. 63
protocolType .. 63
subType .. 63
count .. 63
info ... 63

mcastID... 64
talkerID... 64
plugID... 64
maxCycles... 64
maxBw .. 64
reserved .. 64

pad ... 63
fcs ... 63

reserved
See info field
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

ResponseError frame
info

mcastID... 64
talkerID... 64
plugID... 64
maxCycles... 64
maxBw .. 64

reserved .. 64

S
sa

See classA frame
See clockSync frame
See RequestRefresh frame

seconds
See clockSync frame
See time field

serviceDataUnit
See classA frame

subType
See clockSync frame
See RequestRefresh frame

syncCount
See clockSync frame

systemLevel
See clockSync frame

systemNumber
See clockSync frame

systemTag
See clockSync frame

T
talkerID

See info field
See RequestLeave frame
See RequestRefresh frame
See ResponseError frame

time field
seconds .. 62
fraction .. 62

U
uniqueID

See clockSync frame
Copyright © 2002, 2003 IEEE. All rights reserved.
186 This is an unapproved IEEE Standards Draft, subject to change.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 187

JggDvj2005Apr16/D0.136 WHITE PAPER CONTRIBUTION TO
August 10, 2005

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Contribution from: dvj@alum.mit.edu.
188 This is an unapproved working paper, subject to change.

	Contents
	List of figures
	List of tables
	1. Overview
	1.1 Scope and purpose
	1.2 Introduction

	2. References
	3. Terms, definitions, and notation
	3.1 Conformance levels
	3.2 Terms and definitions
	3.3 Service definition method and notation
	3.4 State machines
	3.5 Arithmetic and logical operators
	3.6 Numerical representation
	3.7 Field notations
	3.8 Bit numbering and ordering
	3.9 Byte sequential formats
	3.10 Ordering of multibyte fields
	3.11 MAC address formats
	3.12 Informative notes
	3.13 Conventions for C code used in state machines

	4. Abbreviations and acronyms
	5. Architecture overview
	5.1 Latency constraints
	5.2 Service classes
	5.3 Architecture overview
	5.4 Subscription
	5.5 Synchronized time-of-day clocks
	5.6 Formats
	5.7 Pacing

	6. Frame formats
	6.1 ClassA frames
	6.2 clockSync frame format
	6.3 Subscription frame
	6.4 Common info field format
	6.5 Unique identifier values

	7. Clock synchronization
	7.1 Clock-synchronization overview
	7.2 Terminology and variables
	7.3 Clock synchronization state machines

	8. Subscription state machines
	8.1 Terminology and variables
	8.2 Subscription state machines

	9. Transmit state machines (proposal 1)
	9.1 Pacing overview
	9.2 Terminology and variables
	9.3 Pacing state machines

	10. Transmit state machines (proposal 2)
	10.1 Rate-based scheduling overview
	10.2 Terminology and variables
	10.3 Pacing state machines

	Annex A
	Annex B
	Annex C
	C.1 Hybrid network topologies
	C.2 1394 isochronous frame formats
	C.3 Frame mappings
	C.4 CIP payload modifications

	Annex D
	D.1 Clock-synchronization alternatives
	D.2 Pacing alternatives
	D.3 IEEE 1394 alternative

	Annex E
	E.1 Possible time-of-day formats
	E.2 Time format comparisons

	Annex F
	F.1 Topology scenarios
	F.2 Bursting considerations

	Annex G
	G.1 Stream frame formats
	G.2 Subscription

	Annex H
	H.1 Unfiltered email sequences
	H.2 Formulated responses

	Annex I
	I.1 Recent review-comment resolutions

	Annex J
	Index

