
RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 107

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

10. Transmit state machines (proposal 2)

10.1 Rate-based scheduling overview

The clause describes a rate-based scheduling technique. The rate-based scheduling concepts are similar to
those within rate monotonic scheduling protocols, commonly used within real-time systems. Objectives
associated with time-sensitive forwarding alternatives include the following:

a) Multiple time-sensitive transmission rates are supported, including:

1) Highest rate 8 kHz traffic, such as the traffic generated by simple bridges between RE and
existing IEEE 1394[B6] A/V devices.

2) Lower rate traffic, such as voice over internet protocol (VOIP) traffic, without forcing this
traffic to be reblocked into smaller (and therefore less efficient) frame sizes.

b) Frame forwarding should not be dependent on successful time-of-day synchronization between the
bridge and adjacent stations. Frame forwarding should succeed before the grand clock-master
station has been selected, or when the selected grand-master clock station changes.

c) Frame-forwarding protocols should leverage existing bridge queue and service models, although
specification of abstract rate shaper details is expected.

Rate-based scheduling involves associating a priority with frame transmissions, where the priority is a
monotonic function of the frame transmission frequency, as illustrated in Figure 10.1. Assuming the cumula-
tive traffic is limited to less than the link capacity, the latency of each traffic class is guaranteed (the latency
guarantee is approximately an MTU more than an inter-arrival period).

NOTE—Multiple bunch-avoiding pacing protocols are presented for consideration:
a) Clause 9 presents a pseudo-synchronous transmission model.
b) Clause 10 (this clause) presents cross-flow shaper transmission model.

Figure 10.1—Rate-based priorities

us
e

a) Fastest rate, highest priority
time

125 µs

us
e

b) Fast rate, high priority
time

500 µs

us
e

c) Slow rate, low priority
time

2 ms

time

us
e

d) Slower rate, lower priority

8 ms

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 108

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

10.1.1 Rate-based priorities

Quality of service is based on the availability of user_priority field parameter associated within transmitted
time-sensitive frames, as listed in Table 10.1.

Table 10.1—Tagged priority values

Code Interval (ms) Name Description

0 n/a CLASS_C Best effort, with minimal guaranteed BW

1 n/a CLASS_B Preferred, with minimal guaranteed BW

2 — — Used for other purposes

3 8 CLASS_A3 Guaranteed BW over longer interval

4 2 CLASS_A2 Guaranteed BW over long interval

5 0.5 CLASS_A1 Guaranteed BW over short interval

6 0.125 CLASS_A0 Guaranteed BW over shorter interval

7 — — Used for other purposes

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 109

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

10.1.2 Port-to-port reshaping, without bunching accumulation

The concept of rate-based scheduling assumes shaped talkers and reshaped talker agents within bridges, as
illustrated in Figure 10.2 (only the components associated with specific flows are illustrated). In this
illustration, classA0 traffic flows between points (a, b, c, d, e), exhibits bunched and reshaped behaviors, as
illustrated in Figure 10.3.

The (a) through (e) time lines represent the flow of frames from within one talker-or-bridge into another
bridge-or-listener, described as follows:

a) A properly shaped source stream is originally generated within a talker, or a port-to-port flow
(consisting of multiple streams) within a bridge.

b) Forwarding of multiple sources to a shared transmission link can produce jitter, due to slight differ-
ences in frame-to-frame spacings.

c) Forwarding of multiple sources to a shared transmission link can produce additional jitter, when
higher-class traffic waits for the completion of previously initiated lower-class transmissions.

d) Bunching becomes apparent in the port-to-port flow, representing the portion of the received (c)
traffic that is forwarded to a specific transmitter port.

e) A shaper delays the forwarding of bunched frames, so that the port-to-port flow is properly shaped.
Delays can be invoked by time stamping frames with an in-the-future transmission time.

The reshaped flow (e) retains the properly shaped properties of the preceding flow (a), while incurring a
maximum delay d through the bridge. These properties ensure a linear maximum delay of n ×d, for streams
that flow through N bridges.

Figure 10.2—Reshaped bridge-traffic topology, with bunching control

Figure 10.3—Reshaped bridge-traffic timing

sh
ap

e0
sh

ap
e1

sh
ap

e2

lo
w

er
C

la
ss

sh
ap

e0
sh

ap
e1

sh
ap

e2

lo
w

er
C

la
ss

(a)

(b)

(c)

(d) (e)
merge

c) Lo-class conflict

b) Hi-class conflicts
Legend:

asynchronous frame

interfering flow1

passthrough flow

d) Port-to-port flow

e) Reshaped flow

a) Shaped source

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 110

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

10.1.3 Port-to-port reshaping, with bunching control

The complexity of managing traffic classes can be reduced by eliminating shapers, so that receiver inputs are
merged before being shaped, as illustrated in Figure 10.4 (only the components associated with specific
flows are illustrated). In this illustration, classA0 traffic flows between points (a, b, c, d, e), exhibits bunched
and reshaped behaviors, as illustrated in Figure 10.3.

This cost-reduced approach solves the bursting problem, without addressing the bunching problem. Within
constrained topologies this can sometimes be sufficient to meet worst-case latency requirements.

10.1.4 Transmit ports

10.1.4.1 Transmit port structure

The transmit port is responsible for shaping classA traffic (to avoid bunching) and pacing classB/classC
traffic (to avoid classC traffic starvation). Pacing and shaping algorithms assume functionally distinct
queues within each transmit port, as illustrated in Figure 10.5.

The intent of per-class shapers is to avoid priority inversions, wherein higher-class frames are delayed by the
presence of concurrent lower-class traffic. Independent per-class shapers and queues allow enqueued
higher-class and lower-class frames to be forwarded independently, thus avoiding priority inversions within
queues.

Figure 10.4—Reshaped bridge-traffic topology, without bunching control

Figure 10.5—Transmit-queue structure

sh
ap

e0
sh

ap
e1

sh
ap

e2

lo
w

er
C

la
ss

sh
ap

e0
sh

ap
e1

sh
ap

e2

lo
w

er
C

la
ss

(a)

(b)

(c)

(d)
(e)

merge

hi

cl
as

sB

low

cl
as

sC

contexts
stampAndPlace

class

mux

shaperA

demultiplexer

cl
as

sA
3

cl
as

sA
2

cl
as

sA
1

cl
as

sA
0

B
mid

src0 src1 src2
classA0

classA1

classA2

classA3

a) Without
bunching control

forwarding
database

forwardOrDiscard

b) With
bunching control

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 111

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The intent of per-source shapers is to avoid increasingly large cumulative bunching delays. The per-source
reshaping eliminates bunches before merging, so that the pass-through bunching severity for 1-bridge and
n-bridge flows are the same.

10.1.4.2 Enqueue reshaping contexts

The desired per-class latencies could not be guaranteed in the presence of classA traffic bunching. To avoid
bunching, frames are shaped before being placed into classified transmit queues.

A shaper is responsible for attaching a time-stamp label to frames. With bursting control, a time-stamp
shaper is logically associated with each source port and each classA traffic subclass (classA0, classA1,
classA2, classA3). E.g, a four-port switch (which has three possible source ports) would have 12 time-stamp
shapers on each transmit port. Without bursting control, a time-stamp shaper is logically associated with
each classA traffic subclass (classA0, classA1, classA2, classA3). E.g, a N-port switch (which has N-1 pos-
sible source ports) would have 4 time-stamp shapers on each transmit port.

The purpose of a time-stamp shaper is to associate a time-stamp label with each queued frame. The
time-stamp label represents a time in the future; the frame’s transmission is deferred until the current time
reaches the frame’s time-stamp value. This facilitates the delayed forwarding of successive frames within
each bunch, thus suppressing the bunching effects found on receive-link transmission.

The context for each time-stamp shaper is based on the frame’s receive port and traffic class. While the con-
text is considerably larger than that associated with strict per-port shapers, only one shaper (within each
port) is ever active. Thus, context-switching per-port shaper instances represent a viable implementation
technology

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 112

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

10.1.4.3 Dequeue shaping and pacing

Transmit ports utilize a shaper and pacer, as illustrated as shaperA and B components within Figure 10.5.
The purpose of these is to ensure forward progress of best-effort control traffic. In concept, this involves a
two-step bandwidth partitioning mechanism:

a) The shaperA limits the cumulative classA and primary classB traffic to 75% of the link bandwidth.
The intent is to ensure that 25% residual bandwidth remains available for lower-class traffic.

b) Pacer B partitions the residual 25% traffic equally between classB and classC traffic.
This ensures that classB traffic is never starved, in the presence of 75% classA traffic.
This ensures that classC traffic is not starved, in the presence of excess classB traffic.

10.1.5 Credit-based shapers and pacers

10.1.5.1 Credit-based shapers

Although multiple shapers are specified within this working paper, the behavior of most shapers can be
characterized by a common algorithm and instance-specific parameters (as done within RPR[B5]). The
shaper’s credits are adjusted down or up, as illustrated in Figure 10.6. The decrement and increment values
typically represent sizes of a transmitted frame and of credit increments in each update interval, respectively.

Crossing below the zero threshold generates a rate-limiting indication, so that offered traffic can stop. By
design, the credit value never goes below the – loLimit extreme. To bound the burst traffic after inactivity
intervals, when no frames are ready for transmission, credits are reduced to zero (if currently higher than
zero) and can accumulate to no more than the zero-value limit.

The hiLimit threshold limits the positive credits, to avoid overflow. When frames are ready for transmission
(and are being blocked by transit traffic), credits can accumulate to no more than this hiLimit value.

In concept, the shaper consist of a token bucket. The number of credits in a token bucket is decremented by
the size of each transmitted frame. The credits in the token bucket are incremented at the end of every credit
update interval. A frame is only transmitted when the credits are positive.

Figure 10.6—Credit-based shapers

0
increasing time

hiLimit

-loLimit

cr
ed

its

incSize
TICK

credit limit when
frames are waiting

credits withdrawn
when no frames
are waiting* credit limit

when no frames
are waiting

send indication withdrawn when
credits reduced below low limit

Legend: decSize: decrement size incSize: increment size TICK: credit update time interval

de
cS

iz
e

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 113

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

10.1.5.2 Credit-based pacers

Although multiple pacers are specified within this working paper, the behavior of most pacers can be
characterized by a common algorithm and instance-specific parameters (as done within RPR[B5]). The
pacer’s credits are adjusted down or up, as illustrated in Figure 10.7. The decrement and increment values
typically represent sizes of debit and credit frames in each update interval, respectively.

Crossing below the zero threshold generates a rate-limiting indication, so that offered traffic can stop. By
design, the credit value never goes below the – loLimit extreme. To bound the burst traffic after inactivity
intervals, when no frames are ready for transmission, credits are reduced to zero (if currently higher than
zero) and can accumulate to no more than the zero-value limit.

The hiLimit threshold limits the positive credits, to avoid overflow. When frames are ready for transmission
(and are being blocked by transit traffic), credits can accumulate to no more than this hiLimit value.

In concept, the pacer consists of a token bucket. The credits in the token bucket are incremented by the size
of each transmitted debit-frame. The number of credits in a token bucket is decremented by the size of each
transmitted credit-frame. A credit-frame is only transmitted when the credits are positive; a debit-frame is
only transmitted when the credits are negative.

10.2 Terminology and variables

10.2.1 Common state machine definitions

The following state machine inputs are used multiple times within this clause.

Figure 10.7—Pacer credit adjustments over time

0
increasing time

hiLimit

-loLimit

cr
ed

its

credit limit when
frames are waiting

credits withdrawn
when no credit
frames are waiting* debits withdrawn

when no debit
frames are waiting

send indication withdrawn when
credits reduced below low limit

Legend: decSize: decrement size incSize: increment size

de
cS

iz
e

in
cS

iz
e

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 114

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

queue values
Enumerated values used to specify shared queue structures.

QP_TX_PUSH—The transmit port’s internal queue, where received frames are placed.
QP_TX_A0—The first of the output port’s classA buffers.
QP_TX_A1—The second of the output port’s classA buffers.
QP_TX_A2—The third of the output port’s classA buffers.
QP_TX_A3—The fourth of the output port’s classA buffers.
QP_TX_A4—The second of the output port’s classA buffers.
QP_TX_A5—The third of the output port’s classA buffers.
QP_TX_BP—The output port’s classB queue.
QP_TX_CP—The output port’s classC queue.
QP_TX_LINK—The output port’s transmit-PHY queue.

10.2.2 Common state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.

currentTime
A value representing the current time.

framed
The contents of a received frame, with supplemental information, as follows:

frame—The contents of a frame.
sourcePort—The source port that received the frame.
txTime—A time-stamp value representing the intended (bunching delayed) transmission time.

10.2.3 Common state machine routines

Max(value1, value2)
Returns the numerically larger of two values.

10.2.4 Variables and routines defined in other clauses

This clause references the following variables and routines defined in Clause 7:

currentTime
See 7.2.2.

Dequeue(queue)
Enqueue(queue, frame)
Min(value1, value2)

See 7.2.3.

10.3 Pacing state machines

10.3.1 TransmitRx state machine

The TransmitRx state machine is responsible for enqueuing traffic (received on other ports and broadcast to
all possible transmitter ports) for possible forwarding. An intent is to transfer each to the appropriate output
queue.

The following subclauses describe parameters used within the context of this state machine.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 115

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

10.3.1.1 TransmitRx state machine definitions

queue values
Enumerated values used to specify shared queue structures.

QP_TX_A0, QP_TX_A1, QP_TX_A2, QP_TX_A3, QP_TX_A4, QP_TX_A5
QP_TX_BP, QP_TX_CP
QP_TX_PUSH

See 10.2.1.

10.3.1.2 TransmitRx state machine variables

class
A value that represents the frame’s priority class.

count
A value that represents the current credits, while miminum and maximum limits are being applied.

currentTime
See 10.2.4.

delay
A value that represents the time delay assigned by the frame’s shaper.

framed
See 10.2.2.

sPtr
Represents a pointer to shaper values.

10.3.1.3 TransmitRx state machine routines

ContextCheck(sourcePort, class)
Returns a pointer to the associated pacer context, with the following fields:

credit—The cumulative credit from past pacer activities.
lastTime—The last time the pacer was invoked.
loLimit—The low limit for shaper credits.
rate—The highest allowed rate of the paced traffic, in bytes-per-second.

Dequeue(queue)
See 10.2.4.

Enqueue(queue, frame)
Places the frame at the tail of the specified queue within the assumed port.

ForwardClass(framed)
The forwarding database is checked. If forwarding is enabled, the priority class is returned.
Otherwise, a NULL class value is returned. The following enumerated values are returned:

CLASS_A0—The associated multicast frame is forwarded as classA traffic.
CLASS_A1—The associated multicast frame is forwarded as classA traffic.
CLASS_A2—The associated multicast frame is forwarded as classA traffic.
CLASS_A3—The associated multicast frame is forwarded as classA traffic.
CLASS_A4—The associated multicast frame is forwarded as classA traffic.
CLASS_A5—The associated multicast frame is forwarded as classA traffic.
CLASS_B—The associated multicast frame is forwarded as classB traffic.
CLASS_C—The associated multicast frame is forwarded as classC traffic.

Max(value1, value2)
See 10.2.3.

Min(value1, value2)
See 10.2.4.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 116

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

10.3.1.4 TransmitRx state table

The TransmitRx state machine is specified in Table 9.2. In the case of any ambiguity between the text and
the state machine, the state machine shall take precedence. The notation used in the state table is described in
3.4.

Row 10.2-1: If a frame has arrived, process that frame.
Row 10.2-2: Otherwise, wait for the next frame to arrive.

Row 10.2-3: When forwarded frames, the shaper context is based on the source port and class.
Row 10.2-4: The non-forwarded frames are discarded.

Row 10.2-5: The classA0 frames are forwarded to the appropriate time-sensitive classA0 queue.
Row 10.2-6: The classA1 frames are forwarded to the appropriate time-sensitive classA1 queue.
Row 10.2-7: The classA2 frames are forwarded to the appropriate time-sensitive classA2 queue.
Row 10.2-8: The classA3 frames are forwarded to the appropriate time-sensitive classA3 queue.
Row 10.2-9: The classA4 frames are forwarded to the appropriate time-sensitive classA4 queue.
Row 10.2-10: The classA5 frames are forwarded to the appropriate time-sensitive classA5 queue.

Table 10.2—TransmitRx state table

Current

R
ow

Next

state condition action state

START (framed =
Dequeue(QP_TX_PUSH))!=NULL

1 — FIRST

— 2 — START

FIRST (class =
ForwardClass(framed)) != NULL

3 sPtr = ContextCheck(framed.sourcePort, class); NEXT

— 4 — START

NEXT class == CLASS_A0 5 queue = QP_TX_A0; PACE

class == CLASS_A1 6 queue = QP_TX_A1;

class == CLASS_A2 7 queue = QP_TX_A2;

class == CLASS_A3 8 queue = QP_TX_A3;

class == CLASS_A4 9 queue = QP_TX_A4;

class == CLASS_A5 10 queue = QP_TX_A5;

class == CLASS_B 11 queue = QP_TX_BP; FINAL

— 12 queue = QP_TX_CP;

PACE — 13 count = sPtr–>credit + sPtr–>rate *
(currentTime – sPtr–>lastTime) – Size(frame);

count = Max(0, Min(sPtr–>loLimit, count));
sPtr–>credit = count;
sPtr–>lastTime = currentTime;
delay = Max(0, –count / sptr–>rate);
framed.txTime = currentTime + delay;

FINAL

FINAL — 14 Enqueue(queue, frame); START

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 117

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Row 10.2-11: The classB frames are forwarded to the appropriate time-sensitive classB queue.
Row 10.2-12: The classC frames are forwarded to the appropriate time-sensitive classC queue.

Row 10.2-13: ClassA frames are time stamped by shapers.
Shaper pacer parameters for each distinct {class, source} pair constrains bunching within each class.
Shaper parameters are updated as in 10.1.5.1: decremented on transmissions and incremented over time.
High and low limits are applied to the updated credits and the last-updated time is updated.
Negative credits correspond to transmission-delay values, which are attached to output-port queued frames.

Row 10.2-12: The received frames are placed into the appropriate queue.

10.3.2 TransmitTx state machine

The TransmitTx state machine is responsible for pacing/shaping classA traffic and shaping classB traffic
destined for 1 Gb/s links. An intent is to support projected MTU-sized transfers and interleaved lower-class
traffic, without exceeding the 1-cycle delay inherent with cycle-synchronous bridge-forwarding protocols.

The following subclauses describe parameters used within the context of this state machine.

10.3.2.1 TransmitTx state machine definitions

BPS
The nominal link transmission rate, in bytes per second.

MTU
The maximum frame size, in bytes.

queue values
Enumerated values used to specify shared queue structures.

QP_TX_A0, QP_TX_A1, QP_TX_A2, QP_TX_A3
QP_TX_BP, QP_TX_CP
QP_TX_LINK

See 10.2.1.
TICK

The amount of time between shaper updates.
Range: [1 bytes transmit time, 16-bit transmit time]
Default: 1 byte transmit time

10.3.2.2 TransmitTx state machine variables

best
A value that represents the weight and identify of the next-best classA queue.

goodness—The smallest weight×wait value associated with alternate classA transmissions.
queue—The queue associated with the best futuristic encapsulated frame.

countA
A speculative value of creditA, used only when the frame is qualitified for transmission.

countB
A speculative value of creditB, used only when the frame is qualitified for transmission.

creditA
A shaper credit whose positive value enables classA/classB primary transmissions.

creditB
A shaper credit value whose positive and negative values enable secondary classB and classC
transmissions respectively.

currentTime
See 10.2.4.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 118

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

frame
The contents of a to-be-transmitted frame.

framed
See 10.2.2.

hiLimitA
A value that limits the cumulative creditA credits.

Value: MTU.
hiLimitB

A value that limits the cumulative creditB credits.
Value: MTU.

limit
A value that limits the amount of transmitted primary classA/classB bandwidth.

loLimitA
A value that limits the cumulative creditA debits.

Value: MTU.
loLimitB

A value that limits the cumulative creditB debits.
Value: MTU.

tickTime
A value that defines when the time-tick interval ends.

10.3.2.3 TransmitTx state machine routines

Dequeue(queue)
See 10.2.4.

Unqueue(queue, weight, &best, currentTime)
Dequeues and returns the most overdue frame from the specified queue, excluding those frames
whose scheduled transmission time is after the specified currentTime value.

framed—The oldest of the overdue frame.
NULL—No frame available.

In the presence of only futuristic frames, a test= weight×(txTime-currentTime) value is computed.
If best.queue is NULL or test<best.goodness, the best.queue and best.goodness components are
updated to reflect the best alternate classA transmission queue.

Enqueue(queue, frame)
See 10.2.4.

Size(frame)
Returns the size of the specified frame.

StaleFrame(frame, queue)
Indicates whether the specified frame is stale and discardable, as specified by Equation 10.1.

0—The specified frame is not stale.
1—(Otherwise.)

// The value of "internal" depends on the class, as specified in Table 10.1. (10.1)
(index = (QP_TX_A0 - queue),
(currentTime - framed.txTime) > (2 * (MTU + interval[index] * BPS)))

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 119

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

10.3.2.4 TransmitTx state table

The TransmitTx state machine is specified in Table 9.3. In the case of any ambiguity between the text and
the state machine, the state machine shall take precedence. The notation used in the state table is described in
3.4.

Table 10.3—TransmitTx state table

Current

R
ow

Next

state condition action state

START (currentTime – tickTime) >= TICK; 1 creditA = Min(hiLimitA,
creditA + 0.75 * TICK * BPS);
tickTime = currentTime ;

START

!QueueEmpty(QP_TX_LINK) 2 —

creditA < 0 3 — FAIR

— 4 best.queue = NULL; BEST

BEST (framed = Unqueue(queue= QP_TX_A0,
32, &best, currentTime)) != NULL

5 countA = Min(loLimitA,
creditA – Size(framed));

NEAR

(framed = Unqueue(queue= QP_TX_A1,
16, &best, currentTime)) != NULL

6

(framed = Unqueue(queue= QP_TX_A2,
8, &best, currentTime)) != NULL

7

(framed = Unqueue(queue= QP_TX_A3,
4, &best, currentTime)) != NULL

8

(framed = Unqueue(queue= QP_TX_A4,
2, &best, currentTime)) != NULL

9

(framed = Unqueue(queue= QP_TX_A5,
1, &best, currentTime)) != NULL

10

best.queue != NULL && (framed =
Dequeue(queue= best.queue)) != NULL

11

(framed = Dequeue(QP_TX_BP)) != NULL 12 creditA = Min(loLimitA,
creditA – Size(framed));

FINAL

— 13 creditA = 0; START

FAIR creditB >= 0 &&
(framed = Dequeue(QP_TX_BP)) != NULL

14 creditB = creditB – Size(framed); FINAL

creditB <= 0 &&
(framed = Dequeue(QP_TX_CP)) != NULL

15 creditB = creditB + Size(framed);

(framed = Dequeue(QP_TX_BP)) != NULL 16 creditB = 0;

(framed = Dequeue(QP_TX_CP)) != NULL 17

— 18 creditB = 0; START

NEAR StaleFrame(framed, queue) 19 — START

— 20 creditA = countA; FINAL

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.136
August 10, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 120

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Row 10.3-1: Update the classA credits after each tick interval.
Row 10.3-2: Wait for the queue to be emptied, so that something can be transmitted.
Row 10.3-3: In the absence of classA credits, fairly transmit enqueued classB and classC frames.
Row 10.3-4: Fairly service classB/classC when the classA/classB transmissions are disallowed.

Row 10.3-5: If enabled and available, a classA0 frame is transmitted.
Row 10.3-6: If enabled and available, a classA1frame is transmitted.
Row 10.3-7: If enabled and available, a classA2 frame is transmitted.
Row 10.3-8: If enabled and available, a classA3 frame is transmitted.
Row 10.3-9: If enabled and available, a classA4 frame is transmitted.
Row 10.3-10: If enabled and available, a classA5 frame is transmitted.
Row 10.3-11: If available, a scheduled-for-the-future classA frame is transmitted.
Row 10.3-12: If enabled and available, a classB frame is transmitted.
Row 10.3-13: Since nothing is ready to be sent, the classA credits are cleared.

Row 10.3-14: If enabled and available, a classB frame is transmitted.
The creditB values is decremented by the transmitted frame size, to avoid classC starvation.
Row 10.3-15: If enabled and available, a classC frame is transmitted.
The creditB values is incremented by the transmitted frame size, to avoid classB starvation.
Row 10.3-16: If available, a classB frame is transmitted.
Row 10.3-17: If available, a classC frame is transmitted.
Row 10.3-18: Otherwise, no frame is transmitted.

Row 10.3-19: Stale frames, whose delivery times cannot be guaranteed, are discarded.
Row 10.3-20: Non-stale frames are not discarded.

Row 10.3-21: The next frame is transmitted and credits are updated accordingly.

FINAL — 21 Enqueue(
QP_TX_LINK, framed.frame);

START

Table 10.3—TransmitTx state table (continued)

Current

R
ow

Next

state condition action state

